JPS6159914B2 - - Google Patents

Info

Publication number
JPS6159914B2
JPS6159914B2 JP53101189A JP10118978A JPS6159914B2 JP S6159914 B2 JPS6159914 B2 JP S6159914B2 JP 53101189 A JP53101189 A JP 53101189A JP 10118978 A JP10118978 A JP 10118978A JP S6159914 B2 JPS6159914 B2 JP S6159914B2
Authority
JP
Japan
Prior art keywords
liquid
recording
path
heat
droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53101189A
Other languages
Japanese (ja)
Other versions
JPS5527282A (en
Inventor
Ichiro Endo
Koji Sato
Seiji Saito
Takashi Nakagiri
Shigeru Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10118978A priority Critical patent/JPS5527282A/en
Priority to CA312,280A priority patent/CA1127227A/en
Priority to GB8034376A priority patent/GB2060499B/en
Priority to GB8034377A priority patent/GB2060500B/en
Priority to GB7838899A priority patent/GB2007162B/en
Priority to FR7828134A priority patent/FR2404531B1/en
Priority to GB8034375A priority patent/GB2060498B/en
Priority to DE2858824A priority patent/DE2858824C2/en
Priority to DE2858825A priority patent/DE2858825C2/en
Priority to DE19782843064 priority patent/DE2843064A1/en
Priority to AU40348/78A priority patent/AU525509B2/en
Priority to DE2858823A priority patent/DE2858823C2/en
Priority to DE2858822A priority patent/DE2858822C2/en
Publication of JPS5527282A publication Critical patent/JPS5527282A/en
Priority to US06/827,489 priority patent/US4723129A/en
Priority to US06/827,490 priority patent/US4740796A/en
Publication of JPS6159914B2 publication Critical patent/JPS6159914B2/ja
Priority to HK896/87A priority patent/HK89687A/en
Priority to HK898/87A priority patent/HK89887A/en
Priority to HK897/87A priority patent/HK89787A/en
Priority to HK899/87A priority patent/HK89987A/en
Priority to US07/151,281 priority patent/US4849774A/en
Priority to US07/579,270 priority patent/US5122814A/en
Priority to US07/769,751 priority patent/US5159349A/en
Priority to US08/180,831 priority patent/US5521621A/en
Priority to US08/484,335 priority patent/US5754194A/en
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0458Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on heating elements forming bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04593Dot-size modulation by changing the size of the drop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/195Ink jet characterised by ink handling for monitoring ink quality

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は液体噴射記録法及びその装置、殊には
記録液体を液滴状として飛翔させて記録する液体
噴射記録法及びその装置に関する。 〔従来の技術〕 ノンインパクト記録法は、記録時に於ける騒音
の発生が無視し得る程度に極めて小さいという点
に於いて、最近関心を集めている。その中で、高
速記録が可能であり、而も所謂普通紙に特別の定
着処理を必要とせずに記録の行える所謂インクジ
エクト記録法は、極めて有力な記録法であつて、
これ迄にも様々な方式が考案され、改良が加えら
れて商品化されたものもあれば、現在も尚実用化
への努力が続けられているものもある。 この様なインクジエツト記録法は所謂インクと
称される記録液体の液滴(droplet)を飛翔さ
せ、記録部材に付着させて記録を行うものであつ
て、この記録液体の液滴の発生法及び発生された
記録液体の液滴の飛翔方向を制御する為の制御方
法によつて幾つかの方式に大別される。 先ず第1の方式は、例えばUSP3060429に開示
されているもの(Teletype方式)であつて、液
流の発生を静電吸引的に行い、必要に応じて発生
した液流をそのまま記録部材上に付着させるか又
はその飛翔方向を電界制御し、記録部材上に液滴
を付着させて記録を行うものである。 この中の電界制御法に就いて、更に詳述すれば
吐出オリフイス(吐出口)を有するノズル内の液
体と加速電極間に電界を掛けて、一様に帯電した
液滴流をノズルの吐出口より吐出させ、該吐出し
た液滴流を記録信号に応じて電界制御可能な様に
構成されたxy偏向電極間を飛翔させ、電界の強
度変化によつて選択的に液滴を記録部材上に付着
させて記録を行うものである。 第2の方式は、例えばUSP3596275(Sweet方
式)、USP3298030(Lewis and Brown方式)等
に開示されている方式であつて、連続振動発生法
によつて帯電量の制御された液滴流を発生させ、
この発生された帯電量の制御された液滴流を、一
様の電界が掛けられている偏向電極間を飛翔させ
ることで、記録部材上に記録を行うものである。 具体的には、ピエゾ振動素子の付設されている
記録ヘツドを構成する一部であるノズルの吐出口
の前に記録信号が印加される様に構成した帯電電
極を所定距離だけ離して配置し、前記ノズル内に
は加圧された液体を供給し、前記ピエゾ振動素子
に一定周波数の電気信号を印加することでピエゾ
振動素子を機械的に振動させ、前記吐出口より噴
射される液体を液滴流と成す。この時前記帯電電
極によつて噴射する液体には電荷が静電誘導され
て、形成される液滴は記録信号に応じた電荷量で
帯電される。帯電量の制御された液滴は、一定の
電界が一様に掛けられている偏向電極間を飛翔す
る時、負荷された帯電量に応じて偏向を受け、記
録信号を担う液滴のみが記録部材上に付着し得る
様にされている。 第3の方式は例えばUSP3416153に開示されて
いる方式(Hertz方式)であつて、ノズルとリン
グ状の帯電電極間に電界を掛け、連続振動発生法
によつて、液滴を発生霧化させて記録する方式で
ある。即ちこの方式ではノズルと帯電電極間に掛
ける電界強度を記録信号に応じて変調する事によ
つて液滴の霧化状態を制御し、記録画像の階調性
を出して記録する。 第4の方式は、例えばUSP3747120に開示され
ている方式(Stemme方式)で、この方式は前記
3つの方式とは根本的に原理が異なるものであ
る。 即ち、前記3つの方式は、何れもノズルの吐出
口より吐出された液滴を、飛翔している途中で電
気的に制御し、記録信号を担つた液滴を選択的に
記録部材上に付着させて記録を行うのに対して、
該Stemme方式は、記録信号に応じて必要時毎に
吐出口より液滴を吐出飛翔させて記録するもので
ある。 詰り、Stemme方式は、記録液体としての液体
を吐出する吐出口を有する記録ヘツドに付設され
いるピエゾ振動素子に、電気的な記録信号を印加
し、この電気的記録信号をピエゾ振動素子の機械
的振動に変え、該機械的振動に従つて前記吐出口
より液滴を吐出飛翔させて記録部材に付着させる
事で記録を行うものである。 〔発明が解決しようとする問題点〕 これ等、従来の4つの方式は各々に特長を有す
るものであるが、又、他方に於いて本質的な又は
解決され得る可き点が存在する。 即ち、第1乃至第3の方式は記録液体の液滴又
は液滴流の発生の直接的エネルギーが電気的エネ
ルギーであり、又液滴の偏向制御も電界制御であ
る。その為に第1の方式に於いては構成上はシン
プルであるが、液滴又は液滴流の発生に高電圧を
要し、又記録ヘツドのマルチオリフイス化が困難
であるので高速記録には不向きである。 第2の方式は、記録ヘツドのマルチオリフイス
化が可能で高速記録に向くが、構成上複雑であ
り、又液滴流の飛翔方向の電気的制御が高度で困
難であること、記録部材上にサテライトドツトが
生じ易いこと等の問題点がある。 第3の方式は吐出された液滴を霧化する事によ
つて階調性に優れた画像が記録され得る特長を有
するが、他方霧化状態の制御が困難である事、記
録画像にカブリが生ずる事、及び記録ヘツドのマ
ルチオリフイス化が困難で、高速記録には不向き
である事、等の諸問題点が存する。 第4の方式は、第1乃至第3の方式に較べ利点
を比較的多く有する。即ち、構成上シンプルであ
る事、オンデマンド(on demand)で液滴をノ
ズルの吐出口より吐出して記録を行う為に、第1
乃至第3の方式の様に吐出飛翔する液滴の中、画
像の記録に要さなかつた液滴を回収することが不
要である事及び第1乃至第2の方式の様に、記録
液体として導電性の液体を使用する必要性がなく
記録液体を構成する物質の選択上の自由度が大で
ある事等の大きな利点を有する。而乍ら、一方に
於て、記録ヘツドの加工上に問題があること、所
望の共振数を有するピエゾ振動素子の小型化が極
めて困難である事等の理由から記録ヘツドの小型
化及びマルチオリフイス化が難しく、又、ピエゾ
振動素子の機械的振動という機械的エネルギーに
よつて液滴の吐出飛翔を行うので高速記録には向
かない事、等の欠点を有する。 更には、特開昭48−9622号公報(前記
USP3747120の対応)には、変形例として、前記
のピエゾ振動素子等の手段による機械的振動エネ
ルギーを利用する代りに熱エネルギーを利用する
ことが記載されている。 即ち、上記公報には、圧力上昇を生じさせる蒸
気を発生する為に液体を直接加熱する加熱コイル
をピエゾ振動素子等の圧力上昇手段として使用す
ることが記載されている。 しかし、上記公報には、圧力上昇手段としての
加熱コイルに通電して液体インクが出入りし得る
口が一つしかない袋状のインク室(液室)内の液
体インクを直接加熱して蒸気化することが記載さ
れているに過ぎず、連続繰返し液吐出を行う場合
に、どの様に加熱すれば良いかは、何等示唆され
るところがない。加えて、加熱コイルが設けられ
ている位置は、液体インクの供給路から遥かに遠
い袋状液室の最深部に設けられているので、ヘツ
ド構成上複雑であるに加えて高速での連続繰返し
使用には、不向きとなつている。 しかも、該公報に記載の技術内容からでは、実
用上重要である発生する熱で液吐出を行つた後に
次の液吐出の準備状態を速やかに形成することは
出来ない。 この様に従来法には、構成上、高速記録化上、
記録ヘツドの製造上及びマルチオリフイス化上、
サテライトドツトの発生及び記録画像のカブリ発
生等の点に於いて一長一短があつて、その長所を
利する用途にしか適用し得ないという制約が存在
していた。 〔目的及び構成〕 従つて、本発明は、上記の諸点に鑑み、構造的
にシンプルであつてマルチオリフイス化を容易に
し、高速記録が可能であつて、サテライトドツト
の発生がなく、カブリのない鮮明な記録画像の得
られる液体噴射記録法及びその装置を提供するこ
とを主たる目的とする。 本発明の別の目的は、高密度マルチオリフイス
化が極めて容易に実現し得、信号応答性が良く、
高い駆動周波数にも充分追従し得、液滴形成が安
定しており、吐出効率が高く、液吐出エネルギー
の省力化が図れる液体噴射記録法及びその装置を
提供することでもある。 本発明によれば液体を所定の方向に吐出する為
の吐出口に連通する液路中の液体の一部を熱して
膜沸騰を生起させることにより前記吐出口より吐
出される液体の飛翔的液滴を形成し、該液滴を記
録部材に付着させて記録する事を特徴とする液体
噴射記録法及び該液体噴射記録法を具現化する装
置が与えられる。 又、本発明によれば液体を吐出するための吐出
口と液体を供給するための流入口とを有する液路
の複数と、該液路毎に設けられた電気熱変換体と
を有する記録ヘツドを使用する液体噴射記録法に
おいて、前記各々の電気熱変換体に、記録情報信
号に基づいて信号処理手段により出力される信号
を選択的に供給し、選択された電気熱変換体より
発生される熱エネルギーを対応する液路中の液体
の一部に作用させて膜沸騰を生起させることによ
り、対応する前記吐出口より吐出される液体の飛
翔的液滴を形成し、該液体を記録部材に付着させ
て記録する事を特徴とする液体噴射記録法及び該
液体噴射記録法を具現化する装置が与えられる。 〔作用〕 本発明の液体噴射記録法によれば、高密度マル
チオリフイス化記録法を容易に実現し得るので超
高速記録が可能であつて、信号応答性が格段に良
く、高い駆動周波数にも充分追従し得、液滴形成
が安定しており、吐出効率が高く、液吐出エネル
ギーの使用効率が高いサテライトドツトの発生が
なく、カブリのない鮮明で良質の記録画像が得ら
れるばかりか、階調性に優れ品位の高い画像が得
られ、また、その記録法を具現化する装置は、構
造上極めてシンプルであつて、微細加工が容易に
出来るためにその主要部である記録ヘツド自体を
従来に較べて格段に小型化し得、又、その構造上
のシンプルさと加工上の容易さから高速記録には
不可欠な高密度マルチオリフイス化が極めて容易
に実現し得、さらに加わうればマルチオリフイス
化に於いて、その記録ヘツドの吐出口のアレー
(array)構造を所望に従つて任意に設計し得、従
つて、記録ヘツドをバー状(full line)とするこ
とも極めて容易に成し得る。 〔実施態様例〕 以下、本発明を図面に従つて具体的に説明す
る。 本発明の概要を第1図を以つて説明する。 第1図は本発明の基本的原理構造を説明する為
の説明図である。 ノズル状の液路1内には、必要に応じてポンプ
等の適当な加圧手段によつて、所望の圧力を印加
されてそれ自体でも吐出される様な、又はそれだ
けでは吐出口2より吐出されない程度の圧力Pが
与えられている記録液体3が供給されている。
今、吐出口2よりlの距離の液路1中にある記録
液体3aが幅△lの液路部分(熱作用部分)に於
いて不図示の電気熱変換体から熱エネルギーの作
用を受けると記録液体3aの急激な状態変化によ
り、作用させたエネルギー量に応じて液路1の幅
l内に存在する記録液体3bの一部分又はほぼ全
部が吐出口2より吐出されて記録部材4方向に飛
翔して、記録部材4上の所定位置に付着する。 この点を、更に具体的に述べれば、熱作用部分
△lにある記録液体3aに不図示の電気熱変変換
体よりの熱エネルギーが作用されると、熱作用部
分△l内にある記録液体3aの電気熱変換体側に
於いて、瞬時的に気泡が生じる熱的な状態変化を
起し、該状態変化に基づく作用力によつて、幅l
内に存在する記録液体3bの一部又はほぼ全部が
吐出口2より吐出される。一方、電気熱変換体か
らの熱エネルギーの供給は停められ、又、ほぼ吐
出した分に見合うだけの記録液体が瞬時に補給さ
れる。他方、記録液体3a中に生じた気泡はその
体積を瞬時に減縮され、消滅するか又は殆ど無視
し得る程度の体積まで減縮される。 吐出された分の記録液体は、気泡の体積の収縮
作用によつて、又は/及び、強制的加圧或いは毛
細管力によつて液路1内に補給される。 吐出口2より吐出されて飛翔する液滴5の大き
さは、作用させる熱エネルギーの量、液路1内に
存在する記録液体の熱エネルギーの作用を受ける
部分3aの幅△lの大きさ、液路1の内径d、吐
出口2の位置より熱エネルギーの作用を受ける位
置迄の距離l、記録液体に与えられる圧力P、記
録液体の比熱、熱伝導率、及び熱膨張係数等に依
存する。従つて、これ等の要素の何れか一つ又は
二つ以上を変化させることにより、液滴5の大き
さを容易に制御することが出来、所望に応じて任
意のドロプレツト径、スポツト径を以つて記録部
材4上に記録することが可能である。殊に距離l
を任意に変化させ得ることは、記録時に熱エネル
ギーの作用位置を所望に応じて適宜変更し得るこ
とであつて、従つて、作用させる熱エネルギーの
単位時間当りの量を変化させなくとも吐出口2よ
り吐出飛翔する液滴5の大きさを記録時に任意に
制御して記録することが出来、階調性のある記録
画像が容易に得られる。 本発明に於て、液路1の熱作用部分△l内にあ
る記録液体3aに作用させる熱エネルギーは時間
的に連続して作用させても良いし、又パルス的に
ON−OFFして不連続に作用させても良い。 本発明に於いては、記録液体3に熱エネルギー
を時間的に不連続化して作用させ、熱エネルギー
に記録情報を担わせることが出来る。即ち、記録
情報信号に従つて電気・熱変換体をパルス的に発
熱させることで、吐出口2より吐出する液滴5の
何れにも記録情報を担わせる事が出来、従つてそ
れ等の総てを記録部材4に付着させて記録を行う
ことが出来る。 この場合に、電気熱変換体の発熱パルスの振幅
及び発熱パルス幅の所望に応じて任意に選択し、
又変化させることが容易に出来るので、液滴の大
きさ及び単位時間当りに発生する液滴の個数No.を
極めて容易に制御することが出来る。 熱エネルギーに記録情報を担わせないで、不連
続的に記録液体3に作用させる場合には、ある一
定の周波数で繰返して作用させるのが好ましい。 この場合の周波数は、使用される記録液体の種
類およびその物性、液路の形態、液路内の記録液
体の体積、液路内への液体供給速度、吐出口径、
記録速度等を考慮して所望に応じて適宜決定され
るものであるが、通常0.1〜1000KHz、好適には
1〜1000KHz、最適には2〜500KHzとされるの
が望ましい。 この場合には記録液体3に加わる圧力は吐出口
2より記録液体3が電気・熱変換体での熱エネル
ギーの発生がない状態で吐出する程度以上に加圧
されていてもよいし、または、それだけでは吐出
されない程度に加圧されていてもよい。 いずれの圧力に於ても熱作用部分△lでは電気
熱変換体により記録液体3aが熱作用を受けて、
気泡を発生し、その気泡発生による体積変化の繰
り返し、かつ又は発生する気泡の体積変化の繰り
返しに基づく振動を生じて、所望の径及び周波数
で液滴流を噴射せしめることが可能である。 その様な形態で吐出された液滴は、別の手段、
例えば、電荷制御、電界制御・或は空気流制御等
で記録情報に従つて制御されて記録が実行され
る。 本発明に於ては、電気・熱変換体は、液路1の
熱作用部分△lの内壁面又は外壁面に直接接触し
て設けても良いし、又は、間に熱伝導効率の良い
物質を介在させて設けても良いが、何れの場合に
も液路1の熱作用部分の内壁の少なくとも一部に
付設されているか又はその外壁の少なくとも一部
に付設された電気熱変換体から発生された熱エネ
ルギーを記録液体3aに効果的に作用させ得る様
に構成配置される。 又、別には、液路1の少なくとも熱作用部分△
lの壁自体を電気熱変換体で構成しても良い。 電気熱変換体として、一般的にあるものとして
は、通電すると発熱するだけのタイプのものであ
るが与えられる電気信号に応じた記録液体への熱
エネルギーの作用のON−OFFを一層効果的に行
うには、ある方向に通電すると発熱し、該方向と
は逆方向に通電すると吸熱する、いわゆるペルチ
イエー効果(Peltitereffect)を示すタイプの電
気熱変換体を使用すると良い。 その様な電気熱変換体としては、例えば、Biと
Sbの接合素子(Bi・Sb)2Te3とBi2(Te・Se)3
接合素子等が挙げられる。 更には又、上記の発熱するだけの電気熱変換体
とペルチイエー効果を示す電気熱変換体とを組合
せて用いても良いものである。 第2図は、本発明の主要部である記録ヘツドの
好適な一実施態様を説明する為の模式的構成断面
図である。 第2図に示されている記録ヘツド6は、記録液
体が吐出する為の吐出口7と記録液体が流入する
為の供給オリフイス(流入口)8を有し、熱エネ
ルギーの作用によつて内部にある記録液体が熱的
状態変化を起すところである熱作用部分9の壁1
1の外表面上には電気熱変換体10が設けられて
いる。 電気熱変換体10の最も一般的な構成は、次の
様である。壁11の外表面上に発熱抵抗体12を
設け、該発熱抵抗体12の両側に各々、発熱抵抗
体12に通電する為の電極13,14を付設す
る。電極13,14の付設された発熱抵抗体12
表面上には通常発熱抵抗体12を保護する為の保
護層として次の様な層が設けられる。即ち、発熱
抵抗体12の酸化を防止する為の耐酸化層15が
設けられる。さらに必要に応じて機械的摺擦など
による殺傷を防止する為の耐摩耗層16が設けら
れているが、これは必ずしも必要なものではな
い。 発熱抵抗体12は、例えば、ZrB2等の硼素含
有化合物、Ta2N、W、Ni−Cr、SnO2、或るい
は、Pd−Agを主成分にしたものやRuを主成分と
したもの、更には、Si拡散抵抗体、半導体のPN
結合体等から成り、これ等の発熱抵抗体は例えば
蒸着、スパツタリング等の方法で形成される。 耐熱化層15としては、例えばSiO2等とさ
れ、スパツタリング等の方法で形成される。 耐摩耗層16としては、例えばTa2O5等とさ
れ、これも又、スパツタリング等の方法で形成さ
れる。 例えば、電気熱変換体として具体的な構成例を
一つ示せば、先ず、所定の前処理を行つたガラス
製ノズル状の液路上に発熱抵抗体としてZrB2
スパツタリングにより800Åの厚さに形成し、そ
の後、マスクをして、500μmの厚さにAl電極を
蒸着する。その後、SiO2の保護層を2μmの厚
さで、発熱抵抗体を中心に2mmの幅にスパツタリ
ングにより形成する。 第2図に於て、今、電極13と電極14間に電
気熱変換体10を駆動する電気的手段である駆動
回路18より発生されたパルス電圧が印加される
と発熱抵抗体12は瞬時に発熱を開始し、発生し
た熱は壁11を伝わつて記録液体貯蔵槽19より
導管20を通つて液路17内を満たしている記録
液体21に急速に伝達される。この急速に熱エネ
ルギーを与えられることにより熱作用部分9にあ
る記録液体は少なくとも内部気体発生の温度(内
部的気体発生の温度)にまで達し、壁11の熱作
用部分で瞬時に気泡が発生し、その体積が急速に
増加する。この気泡の急速な体積増加により、記
録液体は吐出口部分で表面張力以上の圧力を熱作
用部分9側から受け、記録液体は液滴となつて吐
出口7から吐出する。一方、発熱抵抗体12はパ
ルス電圧の立下り終了と同時に発熱を停止され
る。他方形成された気泡はその体積を収縮させて
消失し、熱作用部分9は後続の記録液体で満たさ
れる。同様に次々に駆動回路18より発生される
パルス電圧を電極13と電極14との間に印加す
ることで、該パルス電圧に追従して熱作用部分9
中では気泡の発生消失を繰り返し、その度に液滴
を吐出口7から吐出噴射させることが出来る。第
2図に示す記録ヘツド6の様に電気熱変換体10
を液路17に固設した構成とする場合には、熱エ
ネルギーの作用部を変更出来る様に液路17の外
表面に複数個の電気熱変換体を設けても良い。更
には必要に応じて多数に分割した発熱抵抗体12
に多数のリード電極を設ける構成とすることによ
り、これ等リード電極の中から必要なリード電極
を少なくとも2本選択してこれより発熱抵抗体1
2に通電することで、適当な発熱容量に分割集合
が出来、熱エネルギーの作用領域の大きさや位置
を種々変更することが出来るばかりか、発熱容量
も変化させることが出来る。 又、更には、第2図に於いては、電気熱変換体
10を液路17の片側だけに設けてあるが両側に
設けても良く、或いは液路17の外周に沿つて全
域に設けても良い。 液路17を構成する材料としては、電気熱変換
体10から発生される熱エネルギーによつて非可
逆的な変形を受けずに、熱エネルギーを効率良く
液路17内にある記録液体21に伝達し得るもの
であれば、大概のものが好ましく採用される。そ
の様な材料として代表的なものを挙げれば、セラ
ミツクス、ガラス、金属、耐熱プラスチツク等が
好適なものとして例示される。殊にガラスは加工
上容易であること、適度の耐熱性、熱膨張係数、
熱伝導性を有しているので好適な材料の1つであ
る。 液路17を構成する材料の熱膨張係数は、比較
的小さいほうが液路7より記録液体の液滴を効果
的に吐出することが出来る。 尚、実施例では液路17を内径100μ肉厚10μ
の円筒状ガラスフアイバーで実施したが、後述す
る様に円筒であることは必ずしも要するものでは
ない。 又、吐出口7は液路17と一体で熱溶融させる
ことで60μの吐出口7を形成したが、別の実施方
法として吐出口7は液路17とは別に形成した
後、例えばガラスプレートに電子ビーム加工やレ
ーザ加工等によつて穴を形成して、液路17と合
体させることも出来る。そのような方法は特に複
数の熱作用部分と、複数の吐出口を有するヘツド
を製作する時に有効である。 液路17の吐出口7の周り、殊に吐出口7の周
りの外表面は記録液体で漏れて、記録液体が液路
17の外側に回り込まないように、記録液体が水
系の場合には撥水処理を、記録液体が非水系の場
合には撥油処理を施した方がよい。 その様な処理を施す為の処理剤としては、液路
を構成する部材の材質及び記録液体の種類によつ
て種々選択して使用する必要があり、通常その様
な処理剤としては市販されているものの多くが有
効である。具体的には、例えば3M社製のFC−
721、FC−706等が挙げられる。 又、実施例に於いては、後端の供給口8は特別
な処理をせず、発熱抵抗体中心から10mmの長さと
し、液体貯蔵槽19より液体21を供給する供給
チユーブとしての導管20に接続したが、供給側
への後方圧力伝翻を配慮してその断面積を熱作用
部分9の断面積より絞つた形状にした形態でもか
まわない。 以上の様にして作成した第2図に示される記録
ヘツド6を第8図にブロツク図で示す装置に組込
んで発熱抵抗体12が発熱しない状態では記録液
体が吐出口7から吐出しない程度の圧力で記録液
体を供給し乍ら画像信号に従つて電気・熱変換体
にパルス的に電圧を印加して記録を実行したとこ
ろ、鮮明な画像が得られた。 その時の装置のブロツク図を示した第8図を説
明すれば、37はフオトダイオード等で構成され
る公知の読取り用の光学的入力フオトセンサー部
で、該光学的入力フオトセンサー部37に入力し
た画像信号はコンパレータ等の回路からなる処理
回路38で処理されて、ドライヴ回路39に入力
されるドライヴ回路39は、記録ヘツド6を入力
信号に従つてパルス幅、パルス振幅、繰り返し周
波数等を制御してドライヴする。 例えば、最も簡便な記録では、入力画像信号を
処理回路38において白黒判別してドライヴ回路
39に入力される。ドライヴ回路39では適当な
液滴径を得る為のパルス幅、パルス振幅及び所望
の記録液滴密度を得る為の繰り返し周波数を制御
された信号に変換されて、記録ヘツド6を駆動す
る。 又、階調を考慮した別の記録法としては、1つ
には液滴径を変化させた記録、又もう1つには記
録液滴数を変化させた記録を次の様にして行なう
ことも出来る。 先ず、液滴径を変化させる記録法は、光学的入
力フオトセンサ部37で入力した画像信号は、所
望の液滴径を得る為に定められた各々のレベルの
パルス幅、パルス振幅の駆動信号を出力する回路
を複数有したトライヴ回路39のいずれのレベル
の信号を出力する回路で行なうべきかを処理回路
38で判別され処理される。又、記録液滴数を変
化させる方法では、光学的入力フオトセンサー部
37への入力信号は、処理回路38においてA−
D変換されて出力され該出力信号に従つてドライ
ヴ回路39は1つの入力信号当りの噴出液滴の数
を変えて記録が行なわれる様に記録ヘツド6を駆
動する信号を出力する。 又、別の実施法として同様な装置を使用して発
熱抵抗体12が発熱しない状態で記録液体21が
吐出口7からあふれ出る程度以上の圧力で記録液
体21を記録ヘツド6に供給し乍ら、電気熱変換
体10に連続繰り返しパルスで電圧を印加して記
録を実行したところ、印加周波数に応じた個数の
液滴が安定に且つ均一径で吐出噴射することが確
認された。 この点から、第2図に示される記録ヘツド6は
高周波での連続吐出に極めて有効に適用されるこ
とが判明した。 又、第2図に示される如き本発明の主要部とな
る記録ヘツドは微小であるから容易に複数個並べ
ることが出来、高密度マルチオリフイス化記録ヘ
ツドが可能である。その場合の記録液体の供給は
個々に設けた供給手段で行なわずに、共通した供
給手段で行ない得る。 次に本発明の主要部である記録ヘツドの好適な
実施態様の別な例を説明する。 第3図には、本発明の主要部となる複数の吐出
口を有する記録ヘツド22の構成を示す為の模式
的斜視図が示される。 第4図は、第3図に示される記録ヘツドの模式
的正面図、第5図は、第3図で示される記録ヘツ
ドの内部構造を説明する為に第3図に示した線
X1Y1で切断した場合の部分切断面図、第6図は
第3図で示した記録ヘツドに具備されている電
気・熱変換体の平面的構造を説明する為に第5図
に示した線X2Y2で切断した場合の部分切断面図
である。 尚、第3図に示される記録ヘツド22は、説明
を簡単にする為に吐出口7を7個有するマルチオ
リフイスタイプとされているが、斯かる数に限定
されるものではなく、吐出口の数は、所望に従つ
て一つから所望の数まで任意に設計することが出
来るものである。又マルチオリフイスタイプとす
る場合第3図においては吐出口の配列は、シング
ルアレーとされているが、マルチアレーとしても
良い。 第3図に示される記録ヘツド22は、基板24
の先端部に、7本の溝を有する溝蓋25を、溝の
設けられている側を基板24と接触する側にし
て、固設することによつて、基板24と溝蓋25
とで7本の液路と、その先端においてそれ等に相
当して7個の吐出口23が形成された構造を有し
ている。 26は供給室蓋であつて、溝蓋25とで、前記
7本の液路の各々に記録媒体としての液体を供給
する為の共通の供給室36を形成しており、該供
給室36には、外部の液体貯蔵槽より液体を該室
に給与する為の導管27が付設されている。 基板24の後端部表面には、7本の液路の各々
に設けられている電気熱変換体の共通電極28と
選択電極29のリード部が外部電気手段との接続
の為に各々が電気的に隔絶されて配設されてい
る。 基板24の裏面に付設されているヒートシンク
30は、流路の液体全体が高温になるのを防止し
て、記録ヘツドの記録特性を良好にする為に設け
られているもので、基板24が斯かる機能を兼備
するもので構成される場合には必ずしも要するも
のではない。 第4図は、第3図に示される記録ヘツド22の
正面図であつて、殊に、吐出口23の配列構造を
判り易くしてある。 記録ヘツド22においては、吐出口23は、そ
の形状が略々半楕円形とされたものとして図示さ
れているが、斯かる形状に限定されることは必ず
しも無く、その他、角状、丸状、円形状等等、実
際面において加工し易い形状が選択される。 本発明の主要部となる記録ヘツドの加工におい
ては、その構造上の優位性から、超微細加工技術
を導入することが出来るのでその技術の限度まで
吐出口23の間隔を最小限にし、且つ吐出口23
の大きさを小さくすることが出来るので、高密度
マルチオリフイス化が極めて容易に達成する事が
出来る。従つて、記録される画像は、高解像度な
ものと成り得るし、又、所望の解像度を有する記
録ヘツドが容易に製造され得る。因みに、製造さ
れた本発明の記録ヘツドの中のあるものでは、
10line pairs/mmが達成されている。 第5図には、記録ヘツド22の内部構造、殊に
電気・熱変換体31の構成と液体の流路を説明す
る為に、第3図に示される線X1Y1で切断した場
合の部分切断面図で示される。 電気・熱変換体31は、基板24上に、蒸着、
鍍金等の方法によつて設けられる蓄熱層32と該
蓄熱層32上に設けられた発熱抵抗体33と、該
発熱抵抗体33に通電する為の電極である、共通
電極28と選択電極29と、その上に液体35に
よる電極間のリークを防止し、かつ又は、液体3
5による電極28,29及び発熱抵抗体33の汚
染を防止し、かつ又は、発熱抵抗体33の酸化を
防止する為の絶縁性の保護層34が設けられた構
成とされている。 供給室36は、溝蓋25と、供給室蓋26及び
基板24とで包囲された空間として形成され、基
板24と溝蓋25とで形成された7本の液路の
各々と連通している一方、導管27とも連通して
いて、外部より導管27を通じて供給される液体
が各液路内に給与される様になつている。又、供
給室36は、各液路の熱作用部分△lで発生され
るバツク波が液路内で吸収され切れずに供給室3
6内方向に伝翻されて来た時、各液路相互間に該
バツク波による各液路からの液体の噴射に対する
干渉が生じない様に充分なインピーダンスが与え
られる可く、その容積及び形状が決められる。 記録ヘツド22の場合には、供給室36は、溝
蓋25と供給室蓋26と基板24とで包囲された
空間部分とされているが、この他、供給室蓋26
と基板24とで包囲する空間部分を供給室として
利用しても良いし、又は、供給室蓋26のみで包
囲する空間部分を供給室として利用しても良い。 而乍ら、微細加工の容易さ及び組立の容易さ、
加工精度等の点から第3図に示す構造の記録ヘツ
ド22が最も良いものである。 第6図には、記録ヘツド22の具備する電気・
熱変換体31の平面的構造配置を説明する為に第
5図に示した線X2Y2で切断した場合の部分切断
面図が示される。 7本の液路の各々に相応して、所定位置に所定
の寸法と形状で7個の電気・熱変換体31−1,
32−2,…………33−7が基板24上に設け
られており、共通電極28は、その一部が吐出口
23側に、7個の発熱抵抗体33−1,33−
2,…………33−7の各々の一端と電気的に接
触した状態で設けられると共に外部の電気回路と
接続され得るように7本並列的に設けられる液路
を囲んでその外側にリード部が設けられた形状配
置となつている。 他方7個の発熱抵抗体33の各々には、液体の
流路に沿つて、選択電極29−1,29−2,…
………29−7が設けられている。 記録ヘツド22においては、電気・熱変換体3
1は、基板24上に設けられているが、この他、
溝蓋25側に設けても良いものである。又、記録
ヘツド22では、蓋25に液路形成用の溝を所定
数設けたが、斯かる溝は基板24側に設けても良
いし、又、蓋25と基板24との両者に設けても
良い。基板24側に液路形成用の溝を設ける場合
には、電気・熱変換体は、蓋25側に設ける方が
製作上簡便さの点から都合が良いものである。 第5図において、今、電極28と電極29間に
パルス電圧が印加されると発熱抵抗体33は発熱
を開始し、発生した熱は保護層34を伝わつて熱
作用部分△lにある液体に与えられる。この熱エ
ネルギーにより液体は少なくとも内部気体発生の
温度にまで達し、熱作用部分△lで膜沸騰による
気泡を発生する。この気泡の瞬時的な体積増加に
より、吐出口側にある液体は吐出口23部分での
表面張力以上の圧力を熱作用室部分△l側から受
け、表面張力に打ち勝つて液滴が吐出口23から
飛翔的に吐出する。一方、発熱抵抗体33はパル
ス電圧の立下り終了と同時に発熱を停止される。
他方形成された気泡はその体積を減衰して消失
し、吐出された分の液体は後続の液体で補給され
る。同様に次々にパルス電圧を電極28と電極2
9との間に印加することで、該パルス電圧に追従
して熱作用部分△lにおいては気泡の発生消失を
繰り返し、その度に液滴を吐出口23から吐出噴
射させることが出来る。 この様に前記内部気体発生の温度(第7図のE
付近;例えば水の場合は沸点よりも約100℃高い
温度付近であつて膜沸騰が最初に生じる温度、詳
細は後述)、すなわち膜沸騰を起す温度まで液路
壁面の一部を構成する熱作用面(伝熱面)上にあ
る記録液体を急速に加熱することを繰返すことに
より、気泡の発生・気泡の体積の増加・気泡の体
積の収縮・気泡の消失までの一連の過程を前記加
熱の繰返しに応じて即応性良く正確に制御するこ
とが出来る。この点については更に詳細な説明を
第7図を以つて後述する。 保護層34は、液体35の電気的抵抗が、発熱
抵抗体33の電気的抵抗に較べて著しく大きく、
電極28と電極29間への液体35の介在による
電気的リーク現象が起らない様な場合には、絶縁
性であることは必ずしも要するものではなく、そ
の他の要求される特性を満足してさえすれば良い
ものである。保護層34に要求される特性として
最も重要なものは、発熱抵抗体33で発生された
熱を熱作用部分△lにある液体に効果的に伝達さ
れるのを可能な限り妨げずに、液体より発熱抵抗
体を保護するという特性である。 この特性に加えて、先に述べた機能を充分果す
様な特性が付与される様に材料及び層厚が選択さ
れる。 保護層34を構成する材料として、有用なもの
には、例えば、酸化シリコン、酸化マグネシウ
ム、酸化アルミニウム、酸化タンタル、酸化ジル
コニウム等が挙げられ、これ等は電子ビーム蒸
着、スパツタリング等の層形成法で層形成され
る。更に、上記の材料の層は、二層以上組合せた
多層構成としても良い。層厚としては、使用する
材料及び発熱抵抗体33を構成する材料及びその
形状と寸法、基板24の材料等及び発熱抵抗体3
3から熱作用部分△lに在る液体への熱応答性、
発熱抵抗体33の酸化防止、液体の発熱抵抗体3
3への浸透防止、電気的絶縁性等の観点から、そ
の下限及び上限が適宜決定されるものであるが、
通常は0.01〜10μ、好適には0.1〜5μ、最適に
は0.1〜3μとされるのが望ましいものである。 熱作用部分△l内にある液体に発熱抵抗体33
で発生される熱エネルギーをより効果的に作用さ
せて応答性をより高めると共に液体の連続吐出が
長時間安定に実行し得且つ高い駆動周波数で発熱
抵抗体33を駆動しても液吐出が充分追従し得る
様にするには、蓄熱層32及び基板24とを次の
様に構成することによつて発熱抵抗体33の特性
を一段と向上させるのが望ましいものである。 蓄熱層32と基板24との構成を述べる前に、
本発明の記録法を物理的観点から第7図を用いて
説明する。 発熱抵抗体表面の温度TRと液体の沸点Tbとの
温度差△Tを横軸に、発熱抵抗体から液体へ伝達
される熱エネルギーETを縦軸にとると一般的に
は、第7図に示される様な形状の曲線(沸騰曲
線)が得られる(例えば伝熱の分野で著名であ
り、一般に知られている「伝熱概論」甲藤好郎著
養賢堂版、295頁乃至299頁参照)。 尚、第7図の横軸、縦軸、目盛は液体が水の場
合のものである。第7図の沸騰曲線に於いて、普
通の自然対流による熱伝達が支配的であるAB領
域を越えると急激な沸騰の影響が現われ、所謂、
核沸騰領域(BCDの領域)と膜沸騰領域(EFG
の領域)とが実現される。この2つの領域の沸騰
現象が物理的に著しく異なることは前記の「伝熱
概論」の中でも明白に述べられている。この点を
本発明の観点から説明すれば、第7図から明白な
様に発熱抵抗体の表面温度TRが水の沸点Tbより
数十度高い温度領域(D付近)にある時、水への
エネルギー伝達は大きくなる。他方、水の沸点T
bより約100℃高い温度領域(E付近)では、発熱
抵抗体と水との間に、気泡が速やかに形成される
ので余分な熱が液体に伝達されない。 従つて、吐出効率、応答性、周波数特性を高め
る為には、発熱抵抗体の表面温度を急激に上昇さ
せ、前記熱作用部分の液体を膜沸騰を生じさせる
温度(E点付近:水の場合には沸点より約100℃
以上高い)にすることによつて膜沸騰を起こさせ
るのが良い(第6図のA→B→C→D→Eの過
程)。 膜沸騰が起こると発熱抵抗体表面(熱作用面)
上には速やかに膜状の気泡が形成される。その結
果、前記形成された気泡の断熱作用のため熱作用
部分やその周辺の液体への余分な加熱が生じな
い。そして、余分に加熱されていない液体領域に
気泡が成長し、前記気泡が最大体積に達した時に
は、既に気泡周辺はかなり低い温度の液体に囲ま
れており、気泡内の圧力はすでに下がつているの
で気泡は急激に収縮する(自己収縮)。若し、発
熱抵抗体表面との接触面積の小さい、不安定な球
状気泡が発生する(核沸騰:第7図B→C→Dの
過程)場合には、多くの熱エネルギーが液体に伝
達されてしまうので、熱作用部分やその周辺の液
体への余分な加熱が生じてしまい気泡の収縮が速
やかに行われず、熱的応答の即応性及び確実性の
低下を招き、強いては連続繰返し吐出が不能とな
る。 従つて、吐出効率、応答性、周波数特性を高め
る為には、発熱抵抗体表面領域にある液体にはエ
ネルギー伝達が瞬時的に然も効率良く行えると共
に、他の領域にある液体には、実質的に伝達され
ない様に曲線ABCDEで示される温度領域の発熱
時間が可能な限り短くなる様にする方が良く、
又、発熱が停止された時には瞬時に元の温度に戻
る様にするのが良い。 この様な考察から蓄熱層32は、発熱抵抗体3
3で発生された熱が必要とされる時には基板24
側に拡散して仕舞うのを防止して、結果的には熱
作用部分△lの熱的作用面上にある液体に効果的
に伝達し得る様にし、不必要とされる時には、逆
に、基板24側に逸散させ得る様な機能を有する
ものとされ、この様な機能を有させる為に、材料
及び層厚が決められる。蓄熱層32を構成する材
料として、有効なもととしては、例えば酸化シリ
コン、酸化ジルコニウム、酸化タンタル、酸化マ
グネシウム、酸化アルミニウム等が挙げられ、こ
れ等は、例えば、電子ビーム蒸着、スパツターリ
ング等の層形成法で層形成される。 層厚としては、前述の機能を充分に果し得る様
に、使用する材料、基板24及び発熱抵抗体33
の材質等によつて適宜決定されるが通常は0.01〜
50μ、好適には0.1〜30μ、最適には0.5〜10μと
されるのが望ましい。 基板24としては発熱抵抗体33で発生された
熱の中不必要な熱を放散させが為に、熱伝導率の
良い、例えば金属等の材料が使用される。その様
な基板となり得る金属としては、具体的には例え
ばAl、Cu、ステンレス等が挙げられ、殊にAlは
好ましいものとして採用される。 溝蓋25及び供給室蓋26を構成する材料とし
ては、記録ヘツドの工作時の、或いは使用時の環
境下に於て形状に熱的影響を受けないか或いは殆
んど受けないものであつて微細精密加工が容易に
適用され得ると共に面精度が所望通りに容易に
出、更には、それ等によつて形成される液路中を
液体がスムーズに流れ得る様に加工し得るもので
あれば、大概のものが有効である。 その様な材料として代表的なものを挙げれば、
セラミツクス、ガラス、金属、プラスチツク等が
好適なものとして例示される。殊に、ガラス、プ
ラスチツクは加工上容易であること、適度の耐熱
性、熱膨張係数、熱伝導性を有しているので好適
な材料の1つである。 次に、第3図に示される記録ヘツド23の良好
な結果を与える実施例を示す。 0.6mmのAl2O3の基板24上に蓄熱層32とし
て、SiO2を3μの厚さになる様にスパツタリン
グし、発熱抵抗体33としてZrB2を800Å、電極
としてAlを5000Åの層厚に積層した後、選択ホ
トエツチングで幅50μ長さ300μの約400Ωの発熱
抵抗体を250μのピツチで7個形成した。続い
て、SiO2を1μの厚さにスパツタリングして絶
縁保護層34を形成し、電気・熱変換体部を完成
した。 次にガラス板に微細カツテイング機により幅60
μ深さ60μ、ピツチ250μの溝を形成した溝板2
5とこれもガラス製の供給室蓋26を上記の様に
して電気・変換体部の設けられた基板24上に接
着し、続いて斯かる接着面とは反対側の面にAl
のヒートシンク30を接着した。 本実施例では、吐出口23は充分小さいので形
成されたノズルの先端に別な部材を設けて所望径
の吐出口を形成する様な特別な処置は行わなかつ
たが、形成されるノズルの内径が大きいか又は、
吐出特性を更に良好にしたい場合或は吐出液滴形
状寸法を所望のものにしたい場合等の場合は、ノ
ズル先端部に新たに所望の形状寸法の吐出口を有
する吐出口プレートをつけてもよい。 次に、第3図に示される記録ヘツド22を記録
装置に組込んで実際に記録を行なう場合の制御機
構を第9図乃至第16図を以つて説明する。 先ず、第9図乃至第12図では外部信号に従つ
て各電気・熱変換体31−1,31−2,………
…31−7を同時に制御して各吐出口33−1,
33−2,…………33−7から同時に外部信号
に応じた液吐出を行なう場合の制御機構の例が説
明される。 第9図には装置全体のブロツク図が示される。 第9図において、コンピユータのキーボード操
作による入力信号はインターフエース回路41か
らデータジエネレーター42に入力される。次に
キヤラクタージエネレーター43内の所望のキヤ
ラクターを選択し、プリントしやすい形態にデー
タジエネレーター42にてデータ信号を配列す
る。データジエネレーター42において、配列さ
れたデータはバツフアー回路44で一度記憶さ
れ、順次ドライヴアー回路45に送られて各変換
体31−1,31−2,…………31−7をドラ
イヴし、液滴を吐出する。制御回路46は各回路
の入出力のタイミングを制御したり、各回路の動
作を指令する信号を出力する回路である。 第10図は第9図に示されるバツフアー回路4
4の動作を説明するタイミングチヤートである。
バツフアー回路44は第10図に示す様にデータ
ジエネレーター42で配列されたデータ信号S1
02をキヤラクタージエネレーターで発生される
キヤラクタークロツクS101とタイミングされ
て入力し、もう一方のタイミングでは順次ドライ
ヴ回路45へ出力信号を与えている。第9図の例
では、1つのバツフアー回路で入出力を行なつた
が複数のバツフアー回路による制御、所謂ダブル
バツフアリングを行なつてもよい。即ち、一方の
バツフア回路が入力している時に他方のバツフア
回路から出力し次のタイミングでは逆の動作を
各々のバツフア回路で行なうやり方を採用しても
良い。ダブルバツフアで行う場合には、液滴を連
続して吐出させる事も出来る。 この様にして7個の変換体31−1,31−
2,…………31−7は、例えば第11図に示す
様な液滴吐出タイミングチヤートに従つて同時に
制御され、結果として第12図に示す様な印字を
7個の吐出口からの液滴吐出をもつて行なう事が
出来る。尚、信号S111〜S117の各々は、
7個の変換体31−1,31−2,…………31
−7の各々に印加される信号である。 次に、第13図乃至16図では外部信号に従つ
て各電気・熱変換体を順次制御して、液滴吐出を
各吐出口から順次行なう制御機構の例が説明され
る。 第13図には装置全体のブロツク図が示され
る。 第13図において、外部信号S130はインタ
ーフエース回路47を通つて、データジエネレー
タ48でプリントしやすい順序に配列される。第
13図に示す例の様に、コラムごとにプリントす
る例では、コラムごとにキヤラクタージエネレー
ター49からデータを読み出し、コラムバツフア
回路50に一旦蓄える。そしてコラムデータをキ
ヤラクタージエネレーター49から読んでコラム
バツフア回路50−2に入力しているタイミング
で、コラムバツフア回路50−1からは別のデー
タが出力され、ドライヴ回路51が動作される。 第14図にはバツフア回路50の動作を説明す
るタイミングチヤートが示される。ドライヴ回路
51から出力されたコラムデータ信号はゲート回
路53によつて制御され各変換体31−1,31
−2,…………31−7が順次駆動される。その
時のタイミングチヤートを第14図に示す。図に
おいて、S141はキヤラクタークロツク、S1
42はコラムバツフア回路50−1への入力信
号、S143はコラムバツフア回路50−2への
入力信号、S144はコラムバツフア回路50−
1から出力される信号、S145はコラムバツフ
ア回路50−2から出力される信号を示す。結果
として、例えば、第15図に示すような液滴吐出
タイミングに従つて、7個の吐出口から順次液滴
が吐出されて、第16図に示す様な文字が印字さ
れる。尚、信号S151〜S157の各々は、7
個の変換体31−1,31−2,…………31−
7の各々に印加される信号を示したものである。 尚、制御機構をキヤラクターの印字の例で説明
したが、複写画像等を得る場合にも同様の手法で
行なわれる。又、本例では7個の吐出口を有する
記録ヘツドを使用した例で説明したが、フルライ
ンマルチオリフイスタイプの記録ヘツドを使用し
た場合にも同様の手法で記録を行なう事が可能で
ある。 次に、前記した様にして製造した記録ヘツド
(第3図に示す7個の吐出口を有する記録ヘツ
ド)で実際に記録を行なつた例を示す。 前記の様にして製造した記録ヘツドを液体噴射
制御回路を有する装置に組込んで発熱抵抗体33
が発熱しない状態では記録液体が吐出口7から吐
出しない程度の圧力で記録液体を導管20を通し
て供給し乍ら画像信号に従つて7個の電気・熱変
換体にパルス的に電圧を印加して記録を実行した
ところ、鮮明な画像が得られた。 この時の記録条件を下記の第1表に示す。
[Industrial Field of Application] The present invention relates to a liquid jet recording method and an apparatus thereof, and particularly to a liquid jet recording method and apparatus for recording by flying a recording liquid in the form of droplets. [Prior Art] Non-impact recording methods have recently attracted attention because the noise generated during recording is so small that it can be ignored. Among these, the so-called ink direct recording method, which enables high-speed recording and can record on so-called plain paper without the need for special fixing treatment, is an extremely powerful recording method.
Various methods have been devised so far, some have been improved and commercialized, and others are still being worked on to put them into practical use. This type of inkjet recording method is a method of recording by flying droplets of a recording liquid called ink and adhering them to a recording member. There are several methods for controlling the flying direction of recording liquid droplets. The first method is, for example, the one disclosed in USP 3060429 (Teletype method), in which a liquid flow is generated by electrostatic attraction, and the generated liquid flow is directly attached to the recording member as necessary. In this method, recording is performed by causing the droplets to adhere to the recording member by controlling the flying direction with an electric field. More specifically, the electric field control method is described in more detail by applying an electric field between the liquid in a nozzle having a discharge orifice and an accelerating electrode to control a uniformly charged droplet stream at the nozzle discharge port. The ejected droplet flow is caused to fly between x and y deflection electrodes configured to be able to control an electric field according to a recording signal, and droplets are selectively directed onto a recording member by changing the intensity of the electric field. It is used to record by attaching it. The second method is a method disclosed in USP3596275 (Sweet method), USP3298030 (Lewis and Brown method), etc., and uses a continuous vibration generation method to generate a droplet flow with a controlled amount of charge. ,
Recording is performed on a recording member by causing the generated flow of droplets with a controlled amount of charge to fly between deflection electrodes to which a uniform electric field is applied. Specifically, a charging electrode configured to apply a recording signal is arranged at a predetermined distance in front of the ejection opening of a nozzle that is a part of the recording head to which the piezo vibrating element is attached. A pressurized liquid is supplied into the nozzle, and an electrical signal of a constant frequency is applied to the piezoelectric vibrating element to mechanically vibrate the liquid to form droplets of the liquid ejected from the ejection port. Become a flow. At this time, charges are electrostatically induced in the liquid ejected by the charging electrode, and the formed droplets are charged with an amount of charge corresponding to the recording signal. When a droplet with a controlled amount of charge flies between deflection electrodes to which a constant electric field is uniformly applied, it is deflected according to the amount of charge applied, and only the droplet that carries the recording signal is recorded. It is adapted to be attached onto a member. The third method is, for example, the method disclosed in USP3416153 (Hertz method), in which an electric field is applied between a nozzle and a ring-shaped charged electrode, and droplets are generated and atomized by a continuous vibration generation method. This is a recording method. That is, in this method, the atomization state of the droplets is controlled by modulating the electric field strength applied between the nozzle and the charging electrode in accordance with the recording signal, and the gradation of the recorded image is produced and recorded. The fourth method is, for example, the method disclosed in USP 3,747,120 (Stemme method), and this method is fundamentally different in principle from the above three methods. That is, in all three methods, the droplets ejected from the nozzle's ejection opening are electrically controlled while they are in flight, and the droplets carrying the recording signal are selectively attached to the recording member. In contrast to recording by
The Stemme method performs recording by ejecting droplets from an ejection port whenever necessary in response to a recording signal. In the Stemme method, an electrical recording signal is applied to a piezo vibrating element attached to a recording head that has an ejection port for ejecting liquid as a recording liquid, and this electrical recording signal is transmitted to the mechanical vibration of the piezo vibrating element. Instead of vibration, recording is performed by ejecting droplets from the ejection port and adhering them to the recording member in accordance with the mechanical vibration. [Problems to be Solved by the Invention] Each of these four conventional systems has its own advantages, but there are also problems that are essential or can be solved in the other method. That is, in the first to third methods, the direct energy for generating droplets or droplet streams of the recording liquid is electrical energy, and the deflection control of the droplets is also electric field control. Therefore, although the first method has a simple structure, it requires a high voltage to generate droplets or a stream of droplets, and it is difficult to create a multi-orifice recording head, so it is not suitable for high-speed recording. Not suitable. The second method allows the recording head to be multi-orifice and is suitable for high-speed recording, but it is complicated in structure, and electrical control of the flying direction of the droplet flow is sophisticated and difficult. There are problems such as the tendency for satellite dots to occur. The third method has the advantage of being able to record images with excellent gradation by atomizing the ejected droplets, but on the other hand, it is difficult to control the atomization state and the recorded image may be foggy. There are various problems, such as the fact that a recording head with multiple orifices is difficult to form, and is therefore unsuitable for high-speed recording. The fourth method has relatively many advantages compared to the first to third methods. In other words, the configuration is simple, and the first
As in the third method, it is not necessary to collect droplets that are not required for recording an image from among the ejected flying droplets, and as in the first and second methods, there is no need to collect droplets that are not needed for recording an image. It has great advantages such as there is no need to use a conductive liquid and there is a great degree of freedom in selecting the material that constitutes the recording liquid. However, on the other hand, there are problems in processing the recording head, and it is extremely difficult to miniaturize a piezoelectric vibrating element with a desired resonance number, so it is necessary to miniaturize the recording head and use a multi-orifice. Furthermore, since droplets are ejected and ejected using mechanical energy such as mechanical vibration of a piezoelectric vibrating element, it is not suitable for high-speed recording. Furthermore, Japanese Patent Application Laid-Open No. 48-9622 (mentioned above)
USP3747120 (corresponding to USP3747120) describes, as a modification, the use of thermal energy instead of the use of mechanical vibrational energy by means such as the piezo vibrating element. That is, the above-mentioned publication describes the use of a heating coil that directly heats a liquid as a pressure increasing means such as a piezo vibration element in order to generate steam that causes a pressure increase. However, in the above publication, the liquid ink in the bag-shaped ink chamber (liquid chamber), which has only one opening through which liquid ink can go in and out, is directly heated and vaporized by energizing the heating coil as a pressure increasing means. However, there is no suggestion as to how to heat the liquid when continuously and repeatedly discharging the liquid. In addition, the heating coil is located at the deepest part of the bag-like liquid chamber far from the liquid ink supply path, which makes the head configuration complicated and requires continuous high-speed repetition. It has become unsuitable for use. Moreover, with the technical content described in this publication, it is not possible to quickly prepare for the next liquid discharge after discharging the liquid using the generated heat, which is important for practical use. In this way, the conventional method has problems due to its structure, high-speed recording,
Due to recording head manufacturing and multi-orifice design,
There are advantages and disadvantages in terms of the generation of satellite dots and fogging of recorded images, and there is a restriction that it can only be applied to applications that take advantage of these advantages. [Object and Structure] Therefore, in view of the above points, the present invention has a simple structure, facilitates multi-orifice construction, enables high-speed recording, does not generate satellite dots, and is fog-free. The main object of the present invention is to provide a liquid jet recording method and an apparatus therefor that can produce clear recorded images. Another object of the present invention is that high-density multi-orifice structure can be realized very easily, and signal response is good.
Another object of the present invention is to provide a liquid jet recording method and an apparatus thereof that can sufficiently follow high driving frequencies, have stable droplet formation, have high ejection efficiency, and can save energy for ejecting liquid. According to the present invention, by heating a part of the liquid in a liquid path communicating with a discharge port for discharging the liquid in a predetermined direction and causing film boiling, the liquid is jetted out from the discharge port. A liquid jet recording method characterized in that droplets are formed and the droplets are attached to a recording member for recording, and an apparatus that embodies the liquid jet recording method is provided. Further, according to the present invention, there is provided a recording head having a plurality of liquid paths each having an ejection port for ejecting liquid and an inlet for supplying liquid, and an electrothermal converter provided for each of the liquid paths. In the liquid jet recording method using the electrothermal transducer, a signal output by a signal processing means based on the recorded information signal is selectively supplied to each of the electrothermal transducers, and a signal is generated from the selected electrothermal transducer. By applying thermal energy to a portion of the liquid in the corresponding liquid path to cause film boiling, flying droplets of the liquid are ejected from the corresponding ejection ports, and the liquid is directed onto the recording member. A liquid jet recording method characterized by recording by adhesion and an apparatus for implementing the liquid jet recording method are provided. [Function] According to the liquid jet recording method of the present invention, a high-density multi-orifice recording method can be easily realized, so ultra-high-speed recording is possible, the signal response is extremely good, and it can be used at high drive frequencies. It has sufficient tracking, stable droplet formation, high ejection efficiency, and high efficiency in the use of ejection energy.There is no generation of satellite dots, and not only can clear and high-quality recorded images without fogging be obtained, but also the droplet formation is stable. It is possible to obtain images with excellent tonality and high quality, and the device that embodies this recording method is extremely simple in structure and can be easily microfabricated, so the recording head itself, which is the main part, has been replaced with the conventional one. It is much more compact than the previous model, and its simple structure and ease of processing make it extremely easy to create high-density multi-orifices, which is essential for high-speed recording. The array structure of the ejection openings of the recording head can be arbitrarily designed as desired, and therefore, the recording head can be formed into a bar shape (full line) very easily. [Embodiment Examples] The present invention will be specifically described below with reference to the drawings. The outline of the present invention will be explained with reference to FIG. FIG. 1 is an explanatory diagram for explaining the basic principle structure of the present invention. A desired pressure is applied to the nozzle-shaped liquid path 1 by an appropriate pressurizing means such as a pump as necessary, and the liquid is discharged by itself, or by itself, it is discharged from the discharge port 2. The recording liquid 3 is supplied to which a pressure P is applied to the extent that the recording liquid 3 does not cause any damage.
Now, when the recording liquid 3a in the liquid path 1 at a distance l from the ejection port 2 receives the action of thermal energy from an electrothermal converter (not shown) in the liquid path portion (thermal action portion) having a width Δl. Due to the sudden change in the state of the recording liquid 3a, a portion or almost all of the recording liquid 3b existing within the width l of the liquid path 1 is ejected from the ejection port 2 and flies in the direction of the recording member 4 depending on the amount of energy applied. Then, it adheres to a predetermined position on the recording member 4. To describe this point more specifically, when thermal energy from an electrothermal converter (not shown) is applied to the recording liquid 3a in the heat acting part Δl, the recording liquid 3a in the heat acting part Δl On the side of the electrothermal converter 3a, a thermal state change occurs that instantly generates bubbles, and the acting force based on the state change causes the width l to increase.
A part or almost all of the recording liquid 3b present within the recording liquid 3b is ejected from the ejection port 2. On the other hand, the supply of thermal energy from the electrothermal converter is stopped, and recording liquid almost equivalent to the amount ejected is instantly replenished. On the other hand, the volume of the bubbles generated in the recording liquid 3a is instantly reduced, disappearing, or reduced to an almost negligible volume. The ejected recording liquid is replenished into the liquid path 1 by the contraction of the volume of the bubbles and/or by forced pressure or capillary force. The size of the droplet 5 ejected from the ejection port 2 and flying is determined by the amount of thermal energy applied, the width Δl of the portion 3a that is affected by the thermal energy of the recording liquid present in the liquid path 1, It depends on the inner diameter d of the liquid path 1, the distance l from the position of the discharge port 2 to the position where thermal energy is applied, the pressure P applied to the recording liquid, the specific heat, thermal conductivity, thermal expansion coefficient, etc. of the recording liquid. . Therefore, by changing one or more of these elements, the size of the droplet 5 can be easily controlled, and the droplet diameter and spot diameter can be adjusted to any desired diameter as desired. It is possible to record on the recording member 4 using the same method. Especially the distance l
Being able to arbitrarily change the position of the thermal energy during recording means that the location of the application of thermal energy can be changed as desired. 2, the size of the ejected flying droplets 5 can be arbitrarily controlled during recording, and a recorded image with gradation can be easily obtained. In the present invention, the thermal energy applied to the recording liquid 3a in the heat acting portion Δl of the liquid path 1 may be applied continuously in time, or may be applied in a pulsed manner.
It may also be applied discontinuously by turning ON and OFF. In the present invention, thermal energy can be applied to the recording liquid 3 in a temporally discontinuous manner, and the thermal energy can carry recording information. That is, by generating heat in the electric/thermal converter in a pulsed manner according to the recording information signal, any of the droplets 5 ejected from the ejection port 2 can carry the recording information, and therefore all of them can be Recording can be performed by attaching the material to the recording member 4. In this case, the amplitude and width of the heating pulse of the electrothermal converter are arbitrarily selected according to desire,
Furthermore, since it can be easily changed, the size of droplets and the number of droplets generated per unit time can be controlled extremely easily. When thermal energy is applied discontinuously to the recording liquid 3 without carrying recording information, it is preferable to apply the thermal energy repeatedly at a certain frequency. In this case, the frequency depends on the type of recording liquid used and its physical properties, the form of the liquid path, the volume of the recording liquid in the liquid path, the liquid supply speed into the liquid path, the ejection port diameter,
Although it is determined as desired in consideration of the recording speed, etc., it is usually 0.1 to 1000 KHz, preferably 1 to 1000 KHz, and most preferably 2 to 500 KHz. In this case, the pressure applied to the recording liquid 3 may be higher than the level at which the recording liquid 3 is discharged from the discharge port 2 without the generation of thermal energy in the electric/thermal converter, or It may be pressurized to such an extent that it cannot be discharged by itself. At any pressure, the recording liquid 3a is subjected to heat action by the electrothermal converter in the heat action part Δl,
It is possible to eject a droplet stream with a desired diameter and frequency by generating bubbles and repeating volume changes due to the bubble generation, and/or by generating vibrations based on the repeated volume changes of the generated bubbles. The droplets ejected in such a form can be removed by another means,
For example, recording is performed under control according to recording information using charge control, electric field control, air flow control, or the like. In the present invention, the electric/thermal converter may be provided in direct contact with the inner wall surface or outer wall surface of the heat-acting portion Δl of the liquid path 1, or a material with high heat conduction efficiency may be provided in between. However, in either case, the heat generated from an electrothermal converter attached to at least a part of the inner wall of the heat acting part of the liquid path 1 or attached to at least a part of the outer wall thereof. The structure and arrangement are such that the generated thermal energy can be effectively applied to the recording liquid 3a. In addition, at least the heat acting portion △ of the liquid path 1
The wall of l may itself be composed of an electrothermal converter. Generally speaking, electrothermal converters are of the type that only generate heat when energized, but it is possible to more effectively turn on and off the effect of thermal energy on the recording liquid in response to the applied electrical signal. To do this, it is preferable to use an electrothermal transducer of a type that exhibits the so-called Peltiter effect, which generates heat when current is applied in a certain direction and absorbs heat when current is applied in the opposite direction. Examples of such electrothermal converters include Bi and
Examples include bonding elements of Sb (Bi/Sb) 2 Te 3 and Bi 2 (Te/Se) 3 . Furthermore, the electrothermal converter that only generates heat and the electrothermal converter that exhibits the Peltier effect may be used in combination. FIG. 2 is a schematic cross-sectional view for explaining a preferred embodiment of the recording head, which is the main part of the present invention. The recording head 6 shown in FIG. 2 has an ejection port 7 for ejecting the recording liquid and a supply orifice (inflow port) 8 for the recording liquid to flow in. The wall 1 of the heat-active part 9 is where the recording liquid in the area undergoes a change of thermal state.
An electrothermal converter 10 is provided on the outer surface of 1. The most common configuration of the electrothermal converter 10 is as follows. A heating resistor 12 is provided on the outer surface of the wall 11, and electrodes 13 and 14 are provided on both sides of the heating resistor 12, respectively, for supplying current to the heating resistor 12. Heat generating resistor 12 with electrodes 13 and 14 attached
The following layer is usually provided on the surface as a protective layer to protect the heating resistor 12. That is, an oxidation-resistant layer 15 is provided to prevent the heating resistor 12 from being oxidized. Further, a wear-resistant layer 16 is provided as necessary to prevent damage caused by mechanical rubbing or the like, but this is not always necessary. The heating resistor 12 is made of, for example, a boron-containing compound such as ZrB 2 , Ta 2 N, W, Ni-Cr, SnO 2 , or one whose main component is Pd-Ag or one whose main component is Ru. , furthermore, Si diffused resistor, semiconductor PN
These heating resistors are formed by, for example, vapor deposition, sputtering, or the like. The heat-resistant layer 15 is made of, for example, SiO 2 and is formed by a method such as sputtering. The wear-resistant layer 16 is made of Ta 2 O 5 , for example, and is also formed by a method such as sputtering. For example, to give one specific example of the structure of an electrothermal converter, first, ZrB 2 is formed as a heating resistor to a thickness of 800 Å by sputtering on the liquid path of a glass nozzle that has been subjected to a predetermined pretreatment. Then, using a mask, an Al electrode is deposited to a thickness of 500 μm. Thereafter, a protective layer of SiO 2 is formed with a thickness of 2 μm and a width of 2 mm around the heating resistor by sputtering. In FIG. 2, when a pulse voltage generated by a drive circuit 18, which is an electrical means for driving the electrothermal transducer 10, is applied between the electrodes 13 and 14, the heating resistor 12 instantly moves. Heat generation starts, and the generated heat is rapidly transmitted through the wall 11 from the recording liquid storage tank 19 to the recording liquid 21 filling the liquid path 17 through the conduit 20. Due to this rapid application of thermal energy, the recording liquid in the heat acting portion 9 reaches at least the internal gas generation temperature (internal gas generation temperature), and bubbles are instantaneously generated in the heat acting portion of the wall 11. , its volume increases rapidly. Due to the rapid increase in volume of the bubbles, the recording liquid receives a pressure higher than the surface tension at the ejection port from the heat acting portion 9 side, and the recording liquid is ejected from the ejection port 7 in the form of droplets. On the other hand, the heating resistor 12 stops generating heat at the same time as the pulse voltage ends. On the other hand, the bubbles formed shrink their volume and disappear, and the heat-active part 9 is filled with the subsequent recording liquid. Similarly, by successively applying pulse voltages generated by the drive circuit 18 between the electrodes 13 and 14, the heat acting portion 9 follows the pulse voltages.
Inside, bubbles are repeatedly generated and disappeared, and droplets can be ejected from the ejection port 7 each time. An electrothermal transducer 10 like the recording head 6 shown in FIG.
In the case of a structure in which the electrothermal converter is fixedly installed in the liquid path 17, a plurality of electrothermal converters may be provided on the outer surface of the liquid path 17 so that the area on which thermal energy is applied can be changed. Furthermore, the heating resistor 12 is divided into a large number of parts as necessary.
By having a configuration in which a large number of lead electrodes are provided in the lead electrodes, at least two necessary lead electrodes are selected from these lead electrodes and are then connected to the heating resistor 1.
By energizing 2, it is possible to divide and set the heat generating capacity to an appropriate value, and not only can the size and position of the area of action of thermal energy be variously changed, but also the heat generating capacity can be changed. Further, in FIG. 2, the electrothermal converter 10 is provided only on one side of the liquid path 17, but it may be provided on both sides, or it may be provided over the entire area along the outer periphery of the liquid path 17. Also good. The material constituting the liquid path 17 is made of a material that efficiently transmits thermal energy to the recording liquid 21 in the liquid path 17 without undergoing irreversible deformation due to the thermal energy generated from the electrothermal converter 10. As long as it is possible, most of them are preferably adopted. Typical examples of such materials include ceramics, glass, metals, heat-resistant plastics, and the like. In particular, glass is easy to process, has appropriate heat resistance, coefficient of thermal expansion,
It is one of the preferred materials because it has thermal conductivity. When the coefficient of thermal expansion of the material constituting the liquid path 17 is relatively small, droplets of the recording liquid can be ejected more effectively from the liquid path 7. In the example, the liquid path 17 has an inner diameter of 100μ and a wall thickness of 10μ.
Although the experiment was carried out using a cylindrical glass fiber, it does not necessarily have to be cylindrical as will be described later. In addition, the discharge port 7 is formed by thermally melting the discharge port 7 with the liquid path 17, but as another implementation method, the discharge port 7 is formed separately from the liquid path 17, and then, for example, it is formed on a glass plate. It is also possible to form a hole by electron beam machining, laser machining, etc. and integrate it with the liquid path 17. Such a method is particularly effective when manufacturing heads with multiple heat-acting parts and multiple discharge ports. If the recording liquid is water-based, the outer surface around the ejection port 7 of the liquid path 17, especially the outer surface around the ejection port 7, should be repelled to prevent the recording liquid from leaking and going around to the outside of the liquid path 17. If the recording liquid is non-aqueous, it is better to perform water treatment or oil-repellent treatment. It is necessary to select and use various processing agents for such processing depending on the material of the members constituting the liquid path and the type of recording liquid, and such processing agents are usually not commercially available. Most of them are valid. Specifically, for example, 3M's FC-
721, FC-706, etc. In addition, in the embodiment, the supply port 8 at the rear end is not specially treated, but has a length of 10 mm from the center of the heating resistor, and is connected to the conduit 20 as a supply tube for supplying the liquid 21 from the liquid storage tank 19. Although connected, the cross-sectional area may be narrower than the cross-sectional area of the heat acting portion 9 in consideration of backward pressure transmission to the supply side. The recording head 6 shown in FIG. 2 prepared as described above is assembled into the apparatus shown in the block diagram in FIG. When recording was carried out by applying a voltage in pulses to the electric/thermal converter according to the image signal while supplying the recording liquid under pressure, a clear image was obtained. Referring to FIG. 8, which shows a block diagram of the apparatus at that time, numeral 37 is a known optical input photo sensor section for reading consisting of a photodiode or the like. The image signal is processed by a processing circuit 38 consisting of a circuit such as a comparator, and is input to a drive circuit 39. The drive circuit 39 controls the recording head 6 in accordance with the input signal, such as pulse width, pulse amplitude, repetition frequency, etc. drive. For example, in the simplest recording, the input image signal is discriminated between black and white in the processing circuit 38 and then input to the drive circuit 39 . In the drive circuit 39, the pulse width and pulse amplitude for obtaining a suitable droplet diameter and the repetition frequency for obtaining a desired recording droplet density are converted into controlled signals to drive the recording head 6. In addition, as another recording method that takes gradation into consideration, one is to perform recording by changing the droplet diameter, and the other is to perform recording by changing the number of recording droplets as follows. You can also do it. First, in the recording method for changing the droplet diameter, the image signal inputted by the optical input photo sensor section 37 is converted into a driving signal of pulse width and pulse amplitude of each level determined to obtain the desired droplet diameter. The processing circuit 38 determines which level of the signal of the tribe circuit 39, which has a plurality of output circuits, should be used to perform the processing. In addition, in the method of changing the number of recording droplets, the input signal to the optical input photo sensor section 37 is inputted to the processing circuit 38 by A-
According to the D-converted and output signal, the drive circuit 39 outputs a signal for driving the recording head 6 so that recording is performed by changing the number of ejected droplets per one input signal. Alternatively, a similar device may be used to supply the recording liquid 21 to the recording head 6 at a pressure higher than that at which the recording liquid 21 overflows from the ejection port 7 while the heating resistor 12 does not generate heat. When recording was performed by applying a voltage to the electrothermal transducer 10 in continuous repeated pulses, it was confirmed that the number of droplets corresponding to the applied frequency was stably ejected and jetted with a uniform diameter. From this point of view, it has been found that the recording head 6 shown in FIG. 2 is extremely effectively applied to continuous ejection at high frequencies. Further, since the recording head, which is the main part of the present invention as shown in FIG. 2, is minute, a plurality of recording heads can be easily arranged, and a high-density multi-orifice recording head is possible. In this case, the recording liquid can be supplied by a common supply means instead of individually provided supply means. Next, another example of a preferred embodiment of the recording head, which is the main part of the present invention, will be explained. FIG. 3 is a schematic perspective view showing the structure of a recording head 22 having a plurality of ejection ports, which is the main part of the present invention. 4 is a schematic front view of the recording head shown in FIG. 3, and FIG. 5 is a diagram showing the lines shown in FIG. 3 to explain the internal structure of the recording head shown in FIG.
FIG. 6 is a partial cross-sectional view taken at X 1 Y 1 , and is shown in FIG. 5 to explain the planar structure of the electric/thermal converter included in the recording head shown in FIG. 2 is a partial cross-sectional view taken along line X 2 Y 2 . Note that the recording head 22 shown in FIG. 3 is a multi-orifice type having seven ejection ports 7 to simplify the explanation, but the number is not limited to this number. The number can be arbitrarily designed from one to any desired number as desired. Further, in the case of a multi-orifice type, the discharge ports are arranged in a single array in FIG. 3, but may be arranged in a multi-array. The recording head 22 shown in FIG.
By fixing a groove lid 25 having seven grooves to the tip of the substrate 24 with the grooved side facing the substrate 24, the substrate 24 and the groove lid 25 can be connected to each other.
It has a structure in which seven liquid paths and seven corresponding discharge ports 23 are formed at the tips thereof. Reference numeral 26 denotes a supply chamber lid, which together with the groove lid 25 forms a common supply chamber 36 for supplying liquid as a recording medium to each of the seven liquid paths. is provided with a conduit 27 for supplying liquid to the chamber from an external liquid storage tank. On the surface of the rear end of the substrate 24, the lead portions of the common electrode 28 and the selection electrode 29 of the electrothermal converter provided in each of the seven liquid paths are electrically connected to external electrical means. They are located in isolated locations. The heat sink 30 attached to the back surface of the substrate 24 is provided to prevent the entire liquid in the channel from becoming high temperature and to improve the recording characteristics of the recording head. This is not necessarily necessary if the device is configured with a device that also has these functions. FIG. 4 is a front view of the recording head 22 shown in FIG. 3, and particularly the arrangement structure of the ejection ports 23 is made easy to understand. In the recording head 22, the ejection opening 23 is illustrated as having a substantially semi-elliptical shape, but it is not necessarily limited to such a shape, and may also be angular, round, etc. A shape that is easy to process in practice is selected, such as a circular shape. In the processing of the recording head, which is the main part of the present invention, it is possible to introduce ultra-fine processing technology due to its structural superiority. Exit 23
Since the size of can be reduced, high-density multi-orifice construction can be achieved extremely easily. Therefore, the recorded image can be of high resolution, and a recording head with a desired resolution can be easily manufactured. Incidentally, in some of the manufactured recording heads of the present invention,
10 line pairs/mm has been achieved. In order to explain the internal structure of the recording head 22, especially the structure of the electric/thermal converter 31 and the liquid flow path, FIG . Shown in partial cut-away view. The electric/thermal converter 31 is deposited on the substrate 24 by vapor deposition,
A heat storage layer 32 provided by a method such as plating, a heating resistor 33 provided on the heat storage layer 32, a common electrode 28 and a selection electrode 29, which are electrodes for supplying electricity to the heating resistor 33. , to prevent leakage between the electrodes due to the liquid 35, and/or to prevent the liquid 35 from leaking between the electrodes.
An insulating protective layer 34 is provided to prevent the electrodes 28, 29 and the heat generating resistor 33 from being contaminated by the heat generating resistor 5 and/or to prevent the heat generating resistor 33 from being oxidized. The supply chamber 36 is formed as a space surrounded by the groove cover 25, the supply chamber cover 26, and the substrate 24, and communicates with each of the seven liquid paths formed by the substrate 24 and the groove cover 25. On the other hand, it also communicates with a conduit 27, so that liquid supplied from the outside through the conduit 27 is supplied into each liquid path. In addition, the supply chamber 36 has a problem in that the back waves generated in the heat acting portion Δl of each liquid path are not completely absorbed within the liquid path, and the supply chamber 36
6. The volume and shape of each liquid path should be such that sufficient impedance is provided between each liquid path so that the back waves do not interfere with the jetting of liquid from each liquid path when the liquid is propagated inward. can be determined. In the case of the recording head 22, the supply chamber 36 is a space surrounded by the groove cover 25, the supply chamber cover 26, and the substrate 24;
The space surrounded by the supply chamber cover 26 and the substrate 24 may be used as the supply chamber, or the space surrounded only by the supply chamber lid 26 may be used as the supply chamber. However, ease of microfabrication and ease of assembly;
From the viewpoint of processing accuracy, etc., the recording head 22 having the structure shown in FIG. 3 is the best. FIG. 6 shows the electrical and electrical equipment included in the recording head 22.
In order to explain the planar structural arrangement of the heat converter 31, a partial cross-sectional view taken along the line X 2 Y 2 shown in FIG. 5 is shown. Seven electrical/thermal converters 31-1 are placed at predetermined positions and with predetermined dimensions and shapes, corresponding to each of the seven liquid paths.
32-2, 33-7 are provided on the substrate 24, and a part of the common electrode 28 is located on the discharge port 23 side, and seven heating resistors 33-1, 33-7 are provided on the substrate 24.
2, ...... 33-7 is provided in electrical contact with one end of each, and a lead is provided to the outside surrounding seven parallel liquid paths so that it can be connected to an external electric circuit. It is arranged in a shape with a section. On the other hand, each of the seven heating resistors 33 has selection electrodes 29-1, 29-2, . . . along the liquid flow path.
......29-7 is provided. In the recording head 22, an electric/thermal converter 3
1 is provided on the substrate 24, but in addition,
It may also be provided on the groove cover 25 side. Further, in the recording head 22, the lid 25 is provided with a predetermined number of grooves for forming liquid paths, but such grooves may be provided on the substrate 24 side, or may be provided on both the lid 25 and the substrate 24. Also good. When a groove for forming a liquid path is provided on the substrate 24 side, it is convenient to provide the electric/thermal converter on the lid 25 side from the viewpoint of manufacturing simplicity. In FIG. 5, when a pulse voltage is now applied between the electrode 28 and the electrode 29, the heating resistor 33 starts generating heat, and the generated heat is transmitted through the protective layer 34 to the liquid in the heat acting part Δl. Given. This thermal energy causes the liquid to reach at least a temperature for generating internal gas, and bubbles are generated by film boiling in the heat acting portion Δl. Due to this instantaneous volume increase of the bubbles, the liquid on the ejection port side receives pressure from the heat action chamber portion △l side that is higher than the surface tension at the ejection port 23, and the surface tension is overcome and the liquid drops form the ejection port 23. It is ejected in a flying manner. On the other hand, the heating resistor 33 stops generating heat at the same time as the pulse voltage ends.
On the other hand, the formed bubbles attenuate their volume and disappear, and the ejected liquid is replenished by subsequent liquid. Similarly, pulse voltage is applied to electrode 28 and electrode 2 one after another.
9, bubbles are repeatedly generated and disappeared in the heat acting portion Δl following the pulse voltage, and droplets can be ejected from the ejection port 23 each time. In this way, the temperature of the internal gas generation (E in Figure 7)
For example, in the case of water, it is about 100℃ higher than the boiling point, at which film boiling first occurs (details will be described later), that is, the thermal action that forms part of the liquid channel wall until the temperature at which film boiling occurs. By repeatedly heating the recording liquid on the surface (heat transfer surface) rapidly, the series of processes from the generation of bubbles, the increase in the volume of the bubbles, the contraction of the volume of the bubbles, and the disappearance of the bubbles can be controlled by heating. It can be controlled quickly and accurately depending on the repetition. A more detailed explanation of this point will be given later with reference to FIG. In the protective layer 34, the electrical resistance of the liquid 35 is significantly larger than that of the heating resistor 33, and
In the case where no electrical leakage phenomenon occurs due to the presence of the liquid 35 between the electrodes 28 and 29, insulating properties are not necessarily required, and even if the other required characteristics are satisfied. It is a good thing to do. The most important characteristic required of the protective layer 34 is to prevent the heat generated by the heating resistor 33 from being effectively transferred to the liquid in the heat-acting portion Δl as much as possible. It has the property of further protecting the heating resistor. In addition to this property, the materials and layer thicknesses are selected in such a way that they provide properties that are sufficient to perform the functions described above. Useful materials for forming the protective layer 34 include, for example, silicon oxide, magnesium oxide, aluminum oxide, tantalum oxide, zirconium oxide, etc., which can be formed by layer forming methods such as electron beam evaporation and sputtering. layered. Furthermore, the layers of the above materials may have a multilayer structure in which two or more layers are combined. The layer thickness depends on the material used, the material constituting the heating resistor 33, its shape and dimensions, the material of the substrate 24, etc., and the heating resistor 3.
3 to the thermal response to the liquid present in the thermally active part △l,
Preventing oxidation of heating resistor 33, liquid heating resistor 3
The lower and upper limits shall be determined as appropriate from the viewpoint of preventing penetration into 3, electrical insulation, etc.
The thickness is usually 0.01 to 10μ, preferably 0.1 to 5μ, and most preferably 0.1 to 3μ. The heating resistor 33 is placed in the liquid in the heat acting part △l.
The thermal energy generated by the heat generating element 33 can be applied more effectively to further improve responsiveness, and the liquid can be continuously discharged stably for a long time, and even when the heating resistor 33 is driven at a high driving frequency, the liquid can be discharged sufficiently. In order to be able to follow this, it is desirable to further improve the characteristics of the heating resistor 33 by configuring the heat storage layer 32 and the substrate 24 as follows. Before describing the configuration of the heat storage layer 32 and the substrate 24,
The recording method of the present invention will be explained from a physical point of view with reference to FIG. If the horizontal axis is the temperature difference △T between the temperature T R on the surface of the heating resistor and the boiling point T b of the liquid, and the vertical axis is the thermal energy E T transferred from the heating resistor to the liquid, then A curve (boiling curve) with the shape shown in Figure 7 is obtained (for example, from the well-known and generally known "Introduction to Heat Transfer" by Yoshiro Koto, Yokendo edition, pages 295 to (See page 299). Note that the horizontal axis, vertical axis, and scale in FIG. 7 are for the case where the liquid is water. In the boiling curve shown in Figure 7, beyond the AB region where heat transfer by ordinary natural convection is dominant, a rapid boiling effect appears, so-called.
Nucleate boiling region (BCD region) and film boiling region (EFG
area) is realized. It is clearly stated in the above-mentioned "Overview of Heat Transfer" that the boiling phenomena in these two regions are physically significantly different. To explain this point from the perspective of the present invention, as is clear from FIG . The energy transfer to increases. On the other hand, the boiling point of water T
In a temperature range approximately 100°C higher than b (near E), bubbles are quickly formed between the heating resistor and the water, so excess heat is not transferred to the liquid. Therefore, in order to improve discharge efficiency, responsiveness, and frequency characteristics, the surface temperature of the heating resistor must be rapidly raised to a temperature that causes film boiling of the liquid in the heat-acting part (near point E: in the case of water). About 100℃ below the boiling point
It is preferable to cause film boiling by increasing the temperature (the process from A→B→C→D→E in FIG. 6). When film boiling occurs, the heating resistor surface (thermal action surface)
A film-like bubble is quickly formed on the top. As a result, due to the adiabatic effect of the formed bubbles, no excessive heating of the heat-active portion or the liquid around it occurs. Then, when a bubble grows in a region of the liquid that has not been heated excessively and reaches its maximum volume, the bubble is already surrounded by liquid at a considerably lower temperature, and the pressure inside the bubble has already decreased. Because of this, the bubbles contract rapidly (self-contraction). If unstable spherical bubbles with a small contact area with the heating resistor surface are generated (nucleate boiling: process of B→C→D in Figure 7), a large amount of thermal energy is transferred to the liquid. As a result, excessive heating of the heat-acting part and the liquid around it occurs, and the bubbles do not shrink quickly, resulting in a decrease in the promptness and reliability of the thermal response, which may result in continuous repeated dispensing. It becomes impossible. Therefore, in order to improve discharge efficiency, responsiveness, and frequency characteristics, it is necessary to transfer energy instantaneously and efficiently to the liquid in the surface area of the heating resistor, and to transfer energy to the liquid in other areas substantially. It is better to make the heat generation time in the temperature range shown by the curve ABCDE as short as possible so that the heat is not transmitted.
Further, it is preferable that when the heat generation is stopped, the temperature returns to the original temperature instantly. From this consideration, the heat storage layer 32 is
When the heat generated in 3 is required, the substrate 24
This prevents the heat from being diffused to the side and ends up being effectively transferred to the liquid on the thermally active surface of the heat-active part Δl, and conversely when it is unnecessary. It is assumed that the material has a function of dissipating it to the substrate 24 side, and the material and layer thickness are determined in order to have such a function. Effective materials for forming the heat storage layer 32 include, for example, silicon oxide, zirconium oxide, tantalum oxide, magnesium oxide, aluminum oxide, and the like. The layer is formed using the layer forming method. The layer thickness is determined based on the materials used, the substrate 24, and the heating resistor 33, so that the above-mentioned function can be fully achieved.
It is determined appropriately depending on the material etc., but usually 0.01 ~
It is desirable that the thickness be 50μ, preferably 0.1 to 30μ, most preferably 0.5 to 10μ. The substrate 24 is made of a material with good thermal conductivity, such as metal, in order to dissipate unnecessary heat generated by the heating resistor 33. Specific examples of metals that can serve as such a substrate include Al, Cu, and stainless steel, with Al being particularly preferred. The material constituting the groove cover 25 and the supply chamber cover 26 should be one whose shape is not affected by heat, or whose shape is hardly affected by the heat during the working or use environment of the recording head. As long as micro precision machining can be easily applied, the surface accuracy can be easily achieved as desired, and furthermore, it can be processed so that the liquid can flow smoothly in the liquid path formed by them. , most of them are valid. Typical examples of such materials include:
Preferred examples include ceramics, glass, metals, and plastics. In particular, glass and plastic are suitable materials because they are easy to process and have appropriate heat resistance, coefficient of thermal expansion, and thermal conductivity. Next, an embodiment of the recording head 23 shown in FIG. 3 which gives good results will be described. SiO 2 was sputtered to a thickness of 3μ as a heat storage layer 32 on a 0.6 mm Al 2 O 3 substrate 24, ZrB 2 was sputtered to a thickness of 800 Å as a heating resistor 33, and Al was 5000 Å thick as an electrode. After lamination, seven approximately 400Ω heating resistors each having a width of 50μ and a length of 300μ were formed at a pitch of 250μ by selective photoetching. Subsequently, an insulating protective layer 34 was formed by sputtering SiO 2 to a thickness of 1 μm, and the electric/thermal converter portion was completed. Next, a glass plate is cut into a width of 60 mm using a fine cutting machine.
Groove plate 2 with grooves of μ depth 60μ and pitch 250μ
5 and the supply chamber lid 26, which is also made of glass, are adhered to the substrate 24 on which the electricity/transducer section is provided in the manner described above, and then Al is coated on the opposite side from the adhesive surface.
A heat sink 30 was attached. In this embodiment, since the discharge port 23 is sufficiently small, no special treatment such as providing a separate member at the tip of the formed nozzle to form a discharge port of a desired diameter was performed, but the inner diameter of the formed nozzle is large or
If you want to improve the ejection characteristics or make the ejected droplet shape as desired, you may add a new ejection port plate having ejection ports of the desired shape and size to the nozzle tip. . Next, a control mechanism when the recording head 22 shown in FIG. 3 is incorporated into a recording apparatus to actually perform recording will be explained with reference to FIGS. 9 to 16. First, in FIGS. 9 to 12, each electric/thermal converter 31-1, 31-2, . . .
... 31-7 at the same time to control each discharge port 33-1,
33-2, . . . 33-7, an example of a control mechanism for simultaneously discharging liquid according to external signals will be explained. FIG. 9 shows a block diagram of the entire device. In FIG. 9, input signals from a computer keyboard are input from an interface circuit 41 to a data generator 42. In FIG. Next, a desired character in the character generator 43 is selected, and the data signals are arranged in the data generator 42 in a form that is easy to print. In the data generator 42, the arranged data is once stored in a buffer circuit 44, and is sequentially sent to a driver circuit 45 to drive each converter 31-1, 31-2, 31-7. , ejects a droplet. The control circuit 46 is a circuit that controls the input/output timing of each circuit and outputs a signal instructing the operation of each circuit. FIG. 10 shows the buffer circuit 4 shown in FIG.
4 is a timing chart explaining the operation of step 4.
The buffer circuit 44 is connected to the data signal S1 arranged by the data generator 42 as shown in FIG.
02 is input at the same timing as the character clock S101 generated by the character generator, and output signals are sequentially given to the drive circuit 45 at the other timing. In the example of FIG. 9, one buffer circuit performs input/output, but control may be performed using a plurality of buffer circuits, so-called double buffering. That is, when one buffer circuit is inputting, the other buffer circuit outputs, and at the next timing, each buffer circuit performs the opposite operation. When double buffering is used, droplets can be ejected continuously. In this way, seven converters 31-1, 31-
2, 31-7 are controlled simultaneously according to the droplet ejection timing chart as shown in FIG. 11, and as a result, the print as shown in FIG. This can be done by discharging drops. Note that each of the signals S111 to S117 is
7 converters 31-1, 31-2, 31
-7, respectively. Next, in FIGS. 13 to 16, an example of a control mechanism will be described in which each electric/thermal converter is sequentially controlled in accordance with an external signal, and droplets are sequentially ejected from each ejection port. FIG. 13 shows a block diagram of the entire device. In FIG. 13, external signals S130 pass through an interface circuit 47 and are arranged by a data generator 48 in an order convenient for printing. In the example shown in FIG. 13, in which data is printed column by column, data is read out from the character generator 49 for each column and temporarily stored in the column buffer circuit 50. Then, at the timing when the column data is read from the character generator 49 and inputted to the column buffer circuit 50-2, another data is output from the column buffer circuit 50-1, and the drive circuit 51 is operated. FIG. 14 shows a timing chart explaining the operation of the buffer circuit 50. The column data signal output from the drive circuit 51 is controlled by the gate circuit 53 and sent to each converter 31-1, 31.
-2, . . . 31-7 are sequentially driven. The timing chart at that time is shown in FIG. In the figure, S141 is a character clock;
42 is an input signal to the column buffer circuit 50-1, S143 is an input signal to the column buffer circuit 50-2, and S144 is an input signal to the column buffer circuit 50-1.
A signal output from column buffer circuit 50-2 and S145 indicate a signal output from column buffer circuit 50-2. As a result, for example, droplets are sequentially ejected from the seven ejection ports according to the droplet ejection timing as shown in FIG. 15, and characters as shown in FIG. 16 are printed. Note that each of the signals S151 to S157 is 7
Transformers 31-1, 31-2, 31-
7 shows the signals applied to each of 7. Although the control mechanism has been explained using an example of character printing, the same method is used when obtaining a copy image or the like. Further, although this example uses a recording head having seven ejection ports, it is also possible to perform recording in a similar manner when a full-line multi-orifice type recording head is used. Next, an example will be shown in which actual recording was performed using the recording head manufactured as described above (a recording head having seven ejection ports shown in FIG. 3). The recording head manufactured as described above is assembled into a device having a liquid ejection control circuit, and the heating resistor 33 is installed.
While the recording liquid is supplied through the conduit 20 at a pressure such that the recording liquid will not be ejected from the ejection port 7 in a state where no heat is generated, a voltage is applied in pulses to the seven electric/thermal converters in accordance with the image signal. When recording was performed, a clear image was obtained. The recording conditions at this time are shown in Table 1 below.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高密度マルチオリフイス化記
録法を容易に実現し得るので超高速記録が可能で
あつて、信号応答性が格段に良く、高い駆動周波
数にも充分追従し得、液滴形成が安定しており、
吐出効率が高く、液吐出エネルギーの使用効率が
高いサテライトドツトの発生がなく、カブリのな
い鮮明で良質の記録画像が得られるばかりか、階
調性に優れ品位の高い画像が得られ、また、その
記録法を具体化する装置は、構造上極めてシンプ
ルであつて、微細加工が容易に出来るためにその
主要部である記録ヘツド自体を従来に較べて格段
に小型化し得、また、その構造状のシンプルさと
加工上の容易さから高速記録には下可欠な高密度
マルチオリフイス化が極めて容易に実現し得、さ
らに加わうればマルチオリフイス化に於いて、そ
の記録ヘツドの吐出口のアレー(array)構造を
所望に従つて任意に設計し得、従つて、記録ヘツ
ドをバー状(full line)とすることも極めて容易
に成し得る。
According to the present invention, a high-density multi-orifice recording method can be easily realized, so ultra-high-speed recording is possible, the signal response is extremely good, it can sufficiently follow high driving frequencies, and droplet formation is possible. is stable;
It has high ejection efficiency and high efficiency in the use of liquid ejection energy.There is no generation of satellite dots, and not only can clear and high-quality recorded images with no fogging be obtained, but also images with excellent gradation and high quality can be obtained. The device that embodies this recording method has an extremely simple structure, and because it can be easily microfabricated, the recording head itself, which is the main part, can be made much smaller than before, and its structure is Due to the simplicity and ease of processing, high-density multi-orifice formation, which is essential for high-speed recording, can be realized very easily. The array structure can be arbitrarily designed as desired, and it is therefore very easy to make the recording head a full line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の基本原理を説明する為の説
明図、第2図は、本発明の装置の好適な一実施態
様を説明する為の模式的説明図、第3図は本発明
の主要部である記録ヘツドの好適な一実施態様を
説明する為の模式的斜視図、第4図は、模式的正
面図、第5図は、第3図で示される記録ヘツドの
内部構造を説明する為に第3図に示す様X1Y1
切断した場合の部分切断面図、第6図は第5図に
示す線X2Y2で切断した場合の部分切断面図、第
7図は、発熱体の表面温度と液体の沸点との差△
Tとエネルギー伝達との関係を示した図、第8図
は、第2図に示す記録ヘツドを使用して記録する
場合の制御機構の一例を示すブロツク図、第9図
は、第3図に示す記録ヘツドを使用して実際に記
録を行なう場合の制御機構の一例を示すブロツク
図、第10図は、第9図中に示されるバツフア回
路のバツフア動作を説明する為のタイムングチヤ
ート、第11図は、第9図の場合における各電
気・熱変換体に印加される信号のタイミングの一
例を示すタイミングチヤート、第12図は、その
場合の印字例を示す説明図、第13図は、第3図
に示す記録ヘツドを使用して記録を行なう場合の
制御機構のもう1つの例を示すブロツク図、第1
4図は、第13図中に示されるコラムバツフア回
路のバツフア動作を説明する為のタイミングチヤ
ート、第15図は、第13図の場合における各電
気・熱変換体に印加される信号のタイミングの一
例を示すタイミングチヤート、第16図は、その
場合の印字例を示す説明図である。 1……ノズル状の液路、2,23……吐出口、
3……記録液体、4……記録部材、5……液滴、
6,22……記録ヘツド、10,31……電気熱
変換体、18……駆動回路、20……導管、21
……液体貯蔵槽、37……光学的入力センサー
部、38……処理回路、39,45,51……ド
ライヴ回路、41,47……インターフエース回
路、42,48……データージエネレーター、4
3,49……キヤラクタジエネレーター、44…
…バツフア回路、46,52……制御回路、50
……コラムバツフア回路、53……ゲート回路。
Fig. 1 is an explanatory diagram for explaining the basic principle of the present invention, Fig. 2 is a schematic explanatory diagram for explaining a preferred embodiment of the device of the present invention, and Fig. 3 is an explanatory diagram for explaining a preferred embodiment of the device of the present invention. FIG. 4 is a schematic perspective view for explaining a preferred embodiment of the recording head, which is the main part, and FIG. 5 is a schematic front view for explaining the internal structure of the recording head shown in FIG. 3. In order to _ is the difference between the surface temperature of the heating element and the boiling point of the liquid △
8 is a block diagram showing an example of a control mechanism when recording using the recording head shown in FIG. 2, and FIG. 9 is a diagram showing the relationship between T and energy transfer. FIG. 10 is a block diagram showing an example of a control mechanism when recording is actually performed using the recording head shown in FIG. 9, and a timing chart for explaining the buffer operation of the buffer circuit shown in FIG. The figure is a timing chart showing an example of the timing of the signal applied to each electric/thermal converter in the case of Fig. 9, Fig. 12 is an explanatory diagram showing an example of printing in that case, and Fig. 3 is a block diagram showing another example of a control mechanism when recording is performed using the recording head shown in FIG.
4 is a timing chart for explaining the buffer operation of the column buffer circuit shown in FIG. 13, and FIG. 15 is an example of the timing of signals applied to each electric/thermal converter in the case of FIG. 13. The timing chart shown in FIG. 16 is an explanatory diagram showing an example of printing in that case. 1... Nozzle-shaped liquid path, 2, 23... Discharge port,
3...Recording liquid, 4...Recording member, 5...Droplet,
6, 22... Recording head, 10, 31... Electrothermal converter, 18... Drive circuit, 20... Conduit, 21
... Liquid storage tank, 37 ... Optical input sensor section, 38 ... Processing circuit, 39, 45, 51 ... Drive circuit, 41, 47 ... Interface circuit, 42, 48 ... Data generator, 4
3,49... Character generator, 44...
... Buffer circuit, 46, 52 ... Control circuit, 50
...Column buffer circuit, 53...Gate circuit.

Claims (1)

【特許請求の範囲】 1 液体を所定の方向に吐出する為の吐出口に連
通する液路中の液体の一部を熱して膜沸騰を生起
させることにより前記吐出口より吐出される液体
の飛翔的液滴を形成し、該液滴を記録部材に付着
させて記録する事を特徴とする液体噴射記録法。 2 熱エネルギーを時間的に連続して作用させて
前記液路中の液体の一部を熱し前記膜沸騰を生起
させる特許請求の範囲第1項に記載の液体噴射記
録法。 3 熱エネルギーをパルス的に作用させて前記液
路中の液体の一部を熱し前記膜沸騰を生起させる
特許請求の範囲第1項に記載の液体噴射記録法。 4 前記熱エネルギーの作用に記録情報が担わさ
れている特許請求の範囲第3項に記載の液体噴射
記録法。 5 前記膜沸騰の生起により前記液体中に気泡を
発生させ、次いで消滅させる特許請求の範囲第1
項に記載の液体噴射記録法。 6 前記液路中の液体の一部を該液体の沸点より
少なくとも100℃高い温度に熱する特許請求の範
囲第3項に記載の液体噴射記録法。 7 液体を吐出するための吐出口と液体を供給す
るための流入口とを有する液路の複数と、該液路
毎に設けられた電気熱変換体とを有する記録ヘツ
ドを使用する液体噴射記録法において、前記各々
の電気熱変換体に、記録情報信号に基づいて信号
処理手段により出力される信号を選択的に供給
し、選択された電気熱変換体より発生される熱エ
ネルギーを対応する液路中の液体の一部に作用さ
せて膜沸騰を生起させることにより、対応する前
記吐出口より吐出される液体の飛翔的液滴を形成
し、該液滴を記録部材に付着させて記録する事を
特徴とする液体噴射記録法。 8 液体を所定の方向に吐出するための吐出口と
液体を供給するための流入口とを有する液路、該
液路中に供給された液体の一部を熱する位置に設
けられた電気熱変換体、前記液路に前記流入口を
通じて液体を供給するための液体供給手段、 該電気熱変換体が前記液路中にある液体の一部
を熱して膜沸騰を生起させることにより前記吐出
口より吐出される液体の飛翔的液滴を形成するた
めの熱エネルギーを発生する信号を前記電気熱変
換体に与えるための信号付与手段、 とを有する液体噴射記録装置。 9 前記電気熱変換体は、前記液路の前記熱する
位置の内壁面を構成している特許請求の範囲第8
項に記載の液体噴射記録装置。 10 前記電気熱変換体は、前記液路の前記熱す
る位置に外接されている特許請求の範囲第8項に
記載の液体噴射記録装置。
[Scope of Claims] 1. Flying of the liquid discharged from the discharge port by heating a part of the liquid in a liquid path communicating with the discharge port for discharging the liquid in a predetermined direction to cause film boiling. A liquid jet recording method characterized by forming target droplets and attaching the droplets to a recording member for recording. 2. The liquid jet recording method according to claim 1, wherein thermal energy is applied continuously over time to heat a part of the liquid in the liquid path to cause the film boiling. 3. The liquid jet recording method according to claim 1, wherein thermal energy is applied in pulses to heat a part of the liquid in the liquid path to cause the film boiling. 4. The liquid jet recording method according to claim 3, wherein recorded information is affected by the action of the thermal energy. 5. Claim 1, in which bubbles are generated in the liquid by the occurrence of the film boiling and then disappear.
Liquid jet recording method described in Section. 6. The liquid jet recording method according to claim 3, wherein a portion of the liquid in the liquid path is heated to a temperature at least 100° C. higher than the boiling point of the liquid. 7. Liquid jet recording using a recording head having a plurality of liquid paths each having an ejection port for ejecting liquid and an inlet for supplying liquid, and an electrothermal converter provided for each liquid path. In the method, a signal output by a signal processing means is selectively supplied to each of the electrothermal transducers based on the recorded information signal, and thermal energy generated by the selected electrothermal transducer is transferred to a corresponding liquid. By acting on a part of the liquid in the path to cause film boiling, flying droplets of liquid are ejected from the corresponding ejection ports, and the droplets are attached to a recording member for recording. A liquid jet recording method characterized by: 8 A liquid path having a discharge port for discharging liquid in a predetermined direction and an inlet for supplying the liquid, and an electric heater provided in a position to heat a part of the liquid supplied to the liquid path. a converter, a liquid supply means for supplying liquid to the liquid path through the inlet; the electrothermal converter heats a part of the liquid in the liquid path to cause film boiling to cause film boiling to occur at the discharge port; a signal providing means for providing a signal to the electrothermal transducer for generating thermal energy for forming flying droplets of liquid to be ejected from the electrothermal transducer; 9. Claim 8, wherein the electrothermal converter constitutes an inner wall surface of the heating position of the liquid path.
The liquid jet recording device described in 2. 10. The liquid jet recording device according to claim 8, wherein the electrothermal converter is circumscribed at the heating position of the liquid path.
JP10118978A 1977-10-03 1978-08-18 Liquid injection recording method and its device Granted JPS5527282A (en)

Priority Applications (24)

Application Number Priority Date Filing Date Title
JP10118978A JPS5527282A (en) 1978-08-18 1978-08-18 Liquid injection recording method and its device
CA312,280A CA1127227A (en) 1977-10-03 1978-09-28 Liquid jet recording process and apparatus therefor
GB8034375A GB2060498B (en) 1977-10-03 1978-10-02 Liquid jet recording process and apparatus therefor
GB8034377A GB2060500B (en) 1977-10-03 1978-10-02 Liquid jet recording process and apparatus therefor
GB7838899A GB2007162B (en) 1977-10-03 1978-10-02 Liquid jet recording process and apparatus therefor
GB8034376A GB2060499B (en) 1977-10-03 1978-10-02 Liquid jet recording process and apparatus therefor
FR7828134A FR2404531B1 (en) 1977-10-03 1978-10-02 INK DROPLET RECORDING METHOD AND APPARATUS
DE2858824A DE2858824C2 (en) 1977-10-03 1978-10-03 A liquid jet recording apparatus
DE2858825A DE2858825C2 (en) 1977-10-03 1978-10-03 Liquid jet recording device with electrothermal heat generation resistor
DE19782843064 DE2843064A1 (en) 1977-10-03 1978-10-03 METHOD AND DEVICE FOR LIQUID JET RECORDING
AU40348/78A AU525509B2 (en) 1977-10-03 1978-10-03 Inkjet printing
DE2858823A DE2858823C2 (en) 1977-10-03 1978-10-03 Method and device for liquid jet recording
DE2858822A DE2858822C2 (en) 1977-10-03 1978-10-03 Ink jet printer with nozzle chamber heater
US06/827,489 US4723129A (en) 1977-10-03 1986-02-06 Bubble jet recording method and apparatus in which a heating element generates bubbles in a liquid flow path to project droplets
US06/827,490 US4740796A (en) 1977-10-03 1986-02-06 Bubble jet recording method and apparatus in which a heating element generates bubbles in multiple liquid flow paths to project droplets
HK896/87A HK89687A (en) 1977-10-03 1987-12-03 Liquid jet recording process and apparatus therefor
HK898/87A HK89887A (en) 1977-10-03 1987-12-03 Liquid jet recording process and apparatus therefor
HK897/87A HK89787A (en) 1977-10-03 1987-12-03 Liquid jet recording process and apparatus therefor
HK899/87A HK89987A (en) 1977-10-03 1987-12-03 Liquid jet recording process and apparatus therefor
US07/151,281 US4849774A (en) 1977-10-03 1988-02-01 Bubble jet recording apparatus which projects droplets of liquid through generation of bubbles in a liquid flow path by using heating means responsive to recording signals
US07/579,270 US5122814A (en) 1977-10-03 1990-09-07 Bubble jet recording apparatus actuated by interface means
US07/769,751 US5159349A (en) 1977-10-03 1991-10-03 Recording apparatus which projects droplets of liquid through generation of bubbles in a liquid flow path in response to signals received from a photosensor
US08/180,831 US5521621A (en) 1977-10-03 1994-01-12 Bubble jet recording apparatus with processing circuit for tone gradation recording
US08/484,335 US5754194A (en) 1977-10-03 1995-06-07 Bubble jet recording with selectively driven electrothermal transducers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10118978A JPS5527282A (en) 1978-08-18 1978-08-18 Liquid injection recording method and its device

Publications (2)

Publication Number Publication Date
JPS5527282A JPS5527282A (en) 1980-02-27
JPS6159914B2 true JPS6159914B2 (en) 1986-12-18

Family

ID=14294012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10118978A Granted JPS5527282A (en) 1977-10-03 1978-08-18 Liquid injection recording method and its device

Country Status (1)

Country Link
JP (1) JPS5527282A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243516A (en) * 1987-03-30 1988-10-11 後藤 治樹 Nut
EP0714733A1 (en) 1994-12-03 1996-06-05 ERNST WINTER & SOHN Diamantwerkzeuge GmbH & Co. Method for manufacturing conical guiding wheels, especially dressing wheels
EP0882592A2 (en) 1997-06-06 1998-12-09 Canon Kabushiki Kaisha Method for discharge of liquid and liquid discharge head
EP0894625A2 (en) 1997-07-31 1999-02-03 Canon Kabushiki Kaisha A liquid discharge method and a liquid discharge apparatus
EP0967079A2 (en) 1998-06-22 1999-12-29 Canon Kabushiki Kaisha Liquid discharging head and liquid discharging apparatus
US6186611B1 (en) 1995-08-18 2001-02-13 Matsushita Electric Industrial Co., Ltd. Gradation record control apparatus for ink jet printer
US6719420B2 (en) 2001-05-10 2004-04-13 Canon Kabushiki Kaisha Liquid composition, ink set, method for forming colored portion on recording medium, and ink-jet recording apparatus
US6729718B2 (en) 2001-05-09 2004-05-04 Canon Kabushiki Kaisha Recording method, recording apparatus, method for manufacturing recorded article, and recorded article
US6790878B2 (en) 1998-04-01 2004-09-14 Canon Kabushiki Kaisha Ink, ink set, ink cartridge, recording unit, image recording process and image recording apparatus
US6830709B2 (en) 2000-10-06 2004-12-14 Canon Kabushiki Kaisha Method of measuring liquid composition, liquid composition, ink set, method for forming colored portion on recording medium, and ink-jet recording apparatus
US6843839B2 (en) 2000-06-12 2005-01-18 Canon Kabushiki Kaisha Ink, recording method, recording unit, ink cartridge, ink set, and recording apparatus
US6863391B2 (en) 2001-05-10 2005-03-08 Canon Kabushiki Kaisha Liquid composition, ink set, method of forming a colored section on recording medium and ink-jet recording apparatus
US6893114B2 (en) 2002-07-03 2005-05-17 Canon Kabushiki Kaisha Ink jet printing apparatus, image processing method and control program
US7125111B2 (en) 2003-05-02 2006-10-24 Canon Kabushiki Kaisha Ink and ink jet recording method using the ink
US7198837B1 (en) 1999-11-12 2007-04-03 Canon Kabushiki Kaisha Image forming process, ink set, image by ink-jet recording, recorded article, surface-treated article and surface treating process
US7449056B2 (en) 2004-12-08 2008-11-11 Canon Kabushiki Kaisha Ink-jet recording ink, recording method and recording apparatus
US7544237B2 (en) 2005-03-24 2009-06-09 Canon Kabushiki Kaisha Ink-jet recording ink, ink-jet recording process, and ink-jet recording apparatus
US7901500B2 (en) 2005-03-11 2011-03-08 Canon Kabushiki Kaisha Ink set, ink jet recording method, ink cartridge, recording unit, ink jet recording apparatus, and image forming method
US8496311B2 (en) 2010-07-16 2013-07-30 Canon Kabushiki Kaisha Inkjet recording apparatus and inkjet recording method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811170A (en) * 1981-07-14 1983-01-21 Canon Inc Liquid-injection recording method
JPS60159062A (en) * 1984-01-31 1985-08-20 Canon Inc Liquid jet recording head
DE69024890T2 (en) * 1989-09-18 1996-08-01 Canon Kk Recorder
JP2925702B2 (en) * 1990-10-03 1999-07-28 キヤノン株式会社 Ink jet recording device
JP3179834B2 (en) * 1991-07-19 2001-06-25 株式会社リコー Liquid flight recorder
JP2925368B2 (en) * 1991-07-25 1999-07-28 キヤノン株式会社 Sheet feeding apparatus and image forming apparatus
US5980024A (en) * 1993-10-29 1999-11-09 Hitachi Koki Co, Ltd. Ink jet print head and a method of driving ink therefrom
JP2605976B2 (en) * 1994-07-07 1997-04-30 セイコーエプソン株式会社 Ink jet recording device
JP3290056B2 (en) * 1995-07-18 2002-06-10 ブラザー工業株式会社 Ink ejecting apparatus and driving method thereof
JP3294756B2 (en) * 1995-08-09 2002-06-24 ブラザー工業株式会社 Ink jet device
JP2764562B2 (en) * 1995-10-30 1998-06-11 キヤノン株式会社 Recording device
JPH1016228A (en) 1996-07-02 1998-01-20 Canon Inc Ink jet printer and method for heat-insulating control of printing head therefor
JPH1044419A (en) * 1996-07-31 1998-02-17 Canon Inc Liquid jet head, manufacture thereof, liquid jet unit, and recorder
JPH11227210A (en) 1997-12-05 1999-08-24 Canon Inc Liquid jet head, manufacture thereof, head cartridge and liquid jet unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451837A (en) * 1977-09-30 1979-04-24 Ricoh Co Ltd Ink jet head device
JPS5459139A (en) * 1977-10-19 1979-05-12 Canon Inc Recording head
JPS5459936A (en) * 1977-10-03 1979-05-15 Canon Inc Recording method and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451837A (en) * 1977-09-30 1979-04-24 Ricoh Co Ltd Ink jet head device
JPS5459936A (en) * 1977-10-03 1979-05-15 Canon Inc Recording method and device therefor
JPS5459139A (en) * 1977-10-19 1979-05-12 Canon Inc Recording head

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243516A (en) * 1987-03-30 1988-10-11 後藤 治樹 Nut
EP0714733A1 (en) 1994-12-03 1996-06-05 ERNST WINTER & SOHN Diamantwerkzeuge GmbH & Co. Method for manufacturing conical guiding wheels, especially dressing wheels
US6186611B1 (en) 1995-08-18 2001-02-13 Matsushita Electric Industrial Co., Ltd. Gradation record control apparatus for ink jet printer
EP0882592A2 (en) 1997-06-06 1998-12-09 Canon Kabushiki Kaisha Method for discharge of liquid and liquid discharge head
EP0894625A2 (en) 1997-07-31 1999-02-03 Canon Kabushiki Kaisha A liquid discharge method and a liquid discharge apparatus
US6790878B2 (en) 1998-04-01 2004-09-14 Canon Kabushiki Kaisha Ink, ink set, ink cartridge, recording unit, image recording process and image recording apparatus
EP0967079A2 (en) 1998-06-22 1999-12-29 Canon Kabushiki Kaisha Liquid discharging head and liquid discharging apparatus
US7198837B1 (en) 1999-11-12 2007-04-03 Canon Kabushiki Kaisha Image forming process, ink set, image by ink-jet recording, recorded article, surface-treated article and surface treating process
US6843839B2 (en) 2000-06-12 2005-01-18 Canon Kabushiki Kaisha Ink, recording method, recording unit, ink cartridge, ink set, and recording apparatus
US6830709B2 (en) 2000-10-06 2004-12-14 Canon Kabushiki Kaisha Method of measuring liquid composition, liquid composition, ink set, method for forming colored portion on recording medium, and ink-jet recording apparatus
US6729718B2 (en) 2001-05-09 2004-05-04 Canon Kabushiki Kaisha Recording method, recording apparatus, method for manufacturing recorded article, and recorded article
US6719420B2 (en) 2001-05-10 2004-04-13 Canon Kabushiki Kaisha Liquid composition, ink set, method for forming colored portion on recording medium, and ink-jet recording apparatus
US6863391B2 (en) 2001-05-10 2005-03-08 Canon Kabushiki Kaisha Liquid composition, ink set, method of forming a colored section on recording medium and ink-jet recording apparatus
US6893114B2 (en) 2002-07-03 2005-05-17 Canon Kabushiki Kaisha Ink jet printing apparatus, image processing method and control program
US7125111B2 (en) 2003-05-02 2006-10-24 Canon Kabushiki Kaisha Ink and ink jet recording method using the ink
US7449056B2 (en) 2004-12-08 2008-11-11 Canon Kabushiki Kaisha Ink-jet recording ink, recording method and recording apparatus
US7901500B2 (en) 2005-03-11 2011-03-08 Canon Kabushiki Kaisha Ink set, ink jet recording method, ink cartridge, recording unit, ink jet recording apparatus, and image forming method
US7544237B2 (en) 2005-03-24 2009-06-09 Canon Kabushiki Kaisha Ink-jet recording ink, ink-jet recording process, and ink-jet recording apparatus
US8496311B2 (en) 2010-07-16 2013-07-30 Canon Kabushiki Kaisha Inkjet recording apparatus and inkjet recording method

Also Published As

Publication number Publication date
JPS5527282A (en) 1980-02-27

Similar Documents

Publication Publication Date Title
JPS6159914B2 (en)
JP3054450B2 (en) Base for liquid jet recording head and liquid jet recording head
JPS6159912B2 (en)
JP3071869B2 (en) Liquid jet recording apparatus and recording method
JPS6159913B2 (en)
JPS635271B2 (en)
JPH04255357A (en) Ink jet recording apparatus
JPH0530630B2 (en)
JP2698418B2 (en) Liquid jet recording head
JP2790844B2 (en) Liquid jet recording head
JP3054174B2 (en) Liquid jet recording apparatus and method
JP3120996B2 (en) Liquid jet recording device
JPH0234786B2 (en)
JP2782690B2 (en) Liquid jet recording head
JP2957676B2 (en) Liquid jet recording apparatus and method
JPS6246359B2 (en)
JPS6246358B2 (en)
JPH0311902B2 (en)
JPH01210353A (en) Liquid jet recording head
JP2664220B2 (en) Liquid jet recording head
JPH021314A (en) Liquid jet recording head
JPH04152142A (en) Liquid jet recording method
JPH0550612A (en) Liquid jet recording method
JPH01196352A (en) Liquid jet-recording head
JPH02137932A (en) Liquid jet recorder