JPS6159798B2 - - Google Patents

Info

Publication number
JPS6159798B2
JPS6159798B2 JP54158472A JP15847279A JPS6159798B2 JP S6159798 B2 JPS6159798 B2 JP S6159798B2 JP 54158472 A JP54158472 A JP 54158472A JP 15847279 A JP15847279 A JP 15847279A JP S6159798 B2 JPS6159798 B2 JP S6159798B2
Authority
JP
Japan
Prior art keywords
treatment
aeration tank
biological treatment
human waste
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54158472A
Other languages
Japanese (ja)
Other versions
JPS5681190A (en
Inventor
Katsuyuki Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP15847279A priority Critical patent/JPS5681190A/en
Publication of JPS5681190A publication Critical patent/JPS5681190A/en
Publication of JPS6159798B2 publication Critical patent/JPS6159798B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、し尿など濃厚有機性廃液の革新的な
処理方法に関するものである。 一般にし尿系汚水の処理方法としては、種々の
生物学的処理方法、例えば活性汚泥法および散水
床法、回転円板法、チユーブ接触酸化法などの
生物膜処理法が採用されており、これら処理法に
ついて種々の面から検討が重ねられるかなりの技
術的進歩が見られる。 しかしながらこれら生物学的処理方法は、し尿
などの濃厚な有機性廃液に対しては充分満足な処
理を遂行することは困難である。 すなわち従来のし尿処理プロセスにおける重大
な問題点は、 活性汚泥法などの生物処理工程においては、
し尿に対し5〜20倍量の多量の希釈水を要する
ので、希釈水源の確保に難点のあるし尿処理場
では、希釈水不足に悩まされている。 このように、多量の希釈水で希釈されている
ので、たとえ、最終放流水のBOD濃度を低く
するための少量の廃水処理は容易となつても処
理するべき廃水の負荷の総量は以前として変わ
らず、全廃水量を処理するのは容易ではないの
で、希釈しないでも従来のように予め、希釈さ
れた廃水を処理する場合と同等の放流水が得ら
れることが望まれている。 活性汚泥法が広く採用されているが、汚泥返
送、汚泥引抜き量のコントロール、SVIの測
定、最終沈殿池におけるスカム発生など、維持
管理上多くの問題点がある。 一方、散水床法、回転円板法、チユーブ接
触酸化法などの生物膜プロセスは、維持管理は
容易なもののし尿など高濃度のBODを含む廃
水に対して無希釈もしくは5倍以下の希釈倍率
では、生物膜の過剰な発生による接触媒体の閉
塞、酸素供給量に限界があることによる処理の
嫌気化、処理水質の不良および必要な処理槽の
〓〓〓〓〓
容積の膨大化など、多くの難点があり、上記条
件の生物膜プロセスは採用不可能と認識されて
おり実施された例も見当らない。 本発明は、このような従来のし尿系汚水の処理
方法の幾多の重大な欠点を解決した新規且つ合理
的、効果的な生物学的処理方法を提供することを
目的とするものである。 本発明者は、前記のような従来のし尿処理方法
の欠点を解決することを目的とする検討の過程に
おいて曝気槽内に砂、活性炭、ゼオライトなどの
任意の粒状固体を懸濁させ、この粒状固体の表面
に微生物を付着させて生物処理する方法が、従来
下水などBOD100〜300mg/程度の希薄有機性
廃水についてのみ検討され、し尿など濃厚有機性
廃水については研究例、実施例が皆無であるとい
う事実を知見した。 本発明者はこの事実にもとづいて、粒状固体懸
濁生物処理法をし尿処理に適用することに着眼
し、そのためにはどのようなプロセスが最も合理
的、効率的であるかを追求した結果、し尿のよう
な高濃度の有機性廃水を粒状固体懸濁法で、無希
釈で処理すると、希釈する場合よりも極めて、効
果的に、粒状固体に微生物が付着繁殖し、かつ、
曝気による発泡も、ほとんど生じないことを見出
し本発明に到達したものである。 すなわち本発明は、し尿などの濃厚有機性廃水
を、無希釈のまま、又は予め5倍以下の希釈倍率
で希釈した後、微生物が付着した粒状固体を懸濁
流動させている曝気槽に導入して粒状固体懸濁生
物処理を行い、前記曝気槽からの流出スラリーに
少なくともカチオン性高分子凝集剤を添加し、得
られる凝集反応液を機械脱水することを特徴とす
るし尿系汚水の処理方法である。 次に本発明の実施態様を図面を参照しつつ説明
する。 まず、原水(生し尿)1は、スクリーン(図示
せず)などで、夾雑物を除去されたのち、希釈水
で希釈することなく、粒径0.2〜0.3mmの硅砂を数
10%(容積比)懸濁流動させた曝気槽2に流入さ
れ、所定滞留時間、生物処理を受ける。曝気槽2
内にはエアリフトチユーブ3が配備され、その下
部に空気4が供給される。硅砂の流動化と硅砂へ
の酸素供給はエアリフトチユーブ3内を上昇する
空気泡によつて行われる。 次に硅砂は媒体分離部5で沈降分離され、原水
中SSおよび増殖微生物によるSSと、生物処理水
との混合液である流出スラリー6が媒体分離部5
から流出してゆく。 曝気槽2からの前記流出スラリー6は、従来法
とは異なり重力沈殿池(最終沈殿池)を経由せず
に一旦貯槽7に貯留された後、ポンプ8により凝
集反応槽9へ送液され、ここでカチオン性高分子
凝集剤10が添加、混合され凝集反応が行なわれ
る。凝集反応液12は脱水機13へ供給され脱水
ケーキ14と脱水分離液15に分離される。なお
11は撹拌機である。 脱水分離液15はそのまま放流されるか、さら
に高度な処理を必要とする場合は、硫酸バンド、
塩化第2鉄などの無機凝集剤によつて凝集沈殿処
理される。 本発明においては、原水を無希釈もしくは希釈
倍率5倍以下の希釈条件が好ましいが、このよう
な限定の意義は次のとおりである。すなわち、本
発明においては、原水を無希釈で処理するのが最
も合理的なのであるが、5倍以下の希釈倍率まで
なら、本発明の効果は本質的に失われるものでな
い。これは5倍をこえて希釈すると処理効率が低
下し粒状媒体懸濁曝気槽の所要容積が増加した
り、また脱水機への流入水量が増加し、脱水機の
規模、消費動力の著しい増加を招き、イニシヤル
コスト、ランニングコストの面で非常に不利なり
本発明の目的達成が困難となるためである。 また曝気槽2における被処理水の滞留時間(前
記曝気槽内の処理水量を希釈前の原水流入量で除
したもの)は、0.2日以上が好ましい。これは滞
留日数0.2日未満では、処理水質(とくにBOD)
が著しく悪化するためである。 本発明において適用される生物処理としては、
生物学的硝化脱窒素法、生物学的脱リン工程をも
つ活性汚泥法など、公知の任意の生物処理方法が
含まれる。 また曝気槽における粒状固体懸濁生物処理工程
と脱水工程の間に、回転円板法、単純曝気法、接
触酸化法など任意の生物処理工程を介在させて多
段処理を行つてもよいことは勿論である。例え
ば、介在させる生物処理工程として生物学的硝化
脱窒素処理工程を採用すれば、極めて効果的な処
理が可能となる。 〓〓〓〓〓
このように生物処理を多段に行えば、万一硅砂
などの粒状固体が粒状固体懸濁生物処理工程から
流出しても2段目の生物処理工程で沈降し脱水工
程に流入することはなくなり、また浮遊固形物質
(SS分)の凝集性が向上し、カチオン性高分子凝
集剤の添加量が小量ですむ利点がある。 なお、粒状固体懸濁生物処理工程を多段にする
ことも可能である。 以上の如く、従来の無希釈の活性汚泥処理で
は、著しい発泡が生じ、消泡剤もしくは消泡機を
使用しないと処理不能になることが少なくなかつ
たのに対し、本発明によれば発泡は殆ど生ずるこ
となく、極めて効果的に処理を行うことができ、
しかも、希釈しないため処理水量が少なくてすみ
前記媒体分離部の分離面積が著しく小さくてすむ
という副次的効果も得られ、また、高濃度BOD
除去の際、発生する発酵熱によつて、曝気槽内水
温が冬期においても30〜35℃に、外部熱源を要す
ることなく維持できる。 以上のような現象の相乗効果によつて、前記曝
気槽における被処理水の所要滞留時間は0.2日〜
1日で充分となるものであり、0.2日の曝気槽滞
留時間で、BODが90%以上除去できるという事
実は、従来全く予想されなかつた点である。 また特に、微生物フロツクを分離するための最
終沈殿池を省略して、粒状媒体懸濁生物処理工程
と機械脱水工程とを結合したことは、本発明にお
ける最重要ポイントの一つであり、従来法にその
例をみないものである。 以上のように本発明は、し尿などの濃厚有機性
廃水を、無希釈のまま、又は予め5倍以下の希釈
倍率で希釈した後、微生物が付着した粒状固体を
懸濁流動させている曝気槽に導入して粒状固体懸
濁生物処理を行い、前記曝気槽からの流出スラリ
ーに少なくともカチオン性高分子凝集剤を添加
し、得られる凝集反応液を機械脱水することによ
り、生し尿などBOD10000mg/以上という高濃
度有機性廃水を希釈水の添加を要することなく、
しかも、極めて小容量の装置で効率の良い、安定
した処理を遂行することを可能にし、生物処理工
程において従来不可欠とされていた最終沈殿池を
不要とするのみならず汚泥返送操作も不必要と
し、かつ粒状固体懸濁曝気槽流出液を直接脱水機
で固液分離するため、微生物の沈降性に無関係に
確実に固液分離でき、維持管理も極めて容易にな
るなど実用上大きな利点を有するものである。 次に、本発明によるし尿の無希釈処理の実施例
について説明する。 第1表の水質を有する神奈川県F市のし尿処理
場から採取した生し尿を0.1〜3Kl/日の流入量
で無希釈処理実験を行つた。
The present invention relates to an innovative method for treating concentrated organic waste liquids such as human waste. In general, various biological treatment methods are used to treat night soil wastewater, such as activated sludge method, trickling bed method, rotating disk method, tube catalytic oxidation method, and other biofilm treatment methods. Considerable technological advances have been made that have led to the examination of various aspects of the law. However, it is difficult for these biological treatment methods to fully and satisfactorily treat concentrated organic waste liquids such as human waste. In other words, the major problem with conventional human waste treatment processes is that biological treatment processes such as the activated sludge method
Since a large amount of dilution water is required, which is 5 to 20 times the amount of human waste, human waste treatment plants, which have difficulty securing a dilution water source, are suffering from a shortage of dilution water. In this way, since it is diluted with a large amount of dilution water, even if it becomes easy to treat a small amount of wastewater to lower the BOD concentration of the final effluent, the total amount of wastewater to be treated will remain unchanged. First, it is not easy to treat the entire amount of wastewater, so it is desirable to be able to obtain effluent water that is equivalent to the conventional treatment of diluted wastewater without dilution. Although the activated sludge method has been widely adopted, there are many problems in maintenance and management, such as sludge return, control of the amount of sludge removed, SVI measurement, and scum generation in the final settling tank. On the other hand, biofilm processes such as the sprinkled bed method, rotating disk method, and tube contact oxidation method are easy to maintain and manage, but they cannot be used without dilution or at a dilution rate of 5 times or less for wastewater containing high concentrations of BOD such as human waste. , clogging of the contact medium due to excessive biofilm formation, anaerobic treatment due to limited oxygen supply, poor quality of treated water and lack of necessary treatment tanks.
There are many drawbacks such as the large volume, and it is recognized that the biofilm process under the above conditions cannot be adopted, and there are no examples of it being implemented. The object of the present invention is to provide a novel, rational, and effective biological treatment method that overcomes the many serious drawbacks of the conventional human waste wastewater treatment methods. In the course of research aimed at solving the drawbacks of the conventional human waste treatment methods as described above, the present inventor suspended arbitrary granular solids such as sand, activated carbon, and zeolite in an aeration tank, and Conventionally, methods for biological treatment by attaching microorganisms to the surface of solids have been studied only for dilute organic wastewater such as sewage with a BOD of 100 to 300 mg/kg, and there are no research examples or examples for concentrated organic wastewater such as human waste. I discovered this fact. Based on this fact, the present inventor focused on applying the granular solid suspension biological treatment method to human waste treatment, and as a result of pursuing what kind of process would be the most rational and efficient for that purpose, When highly concentrated organic wastewater such as human waste is treated without dilution using the granular solid suspension method, microorganisms adhere to and propagate on the granular solids much more effectively than when diluting.
The present invention was achieved by discovering that foaming due to aeration hardly occurs. That is, in the present invention, concentrated organic wastewater such as human waste is introduced into an aeration tank in which granular solids with attached microorganisms are suspended and fluidized after being undiluted or diluted in advance at a dilution ratio of 5 times or less. A method for treating night soil wastewater, characterized in that the slurry discharged from the aeration tank is subjected to a granular solid suspension biological treatment, at least a cationic polymer flocculant is added to the slurry flowing out from the aeration tank, and the resulting flocculation reaction liquid is mechanically dehydrated. be. Next, embodiments of the present invention will be described with reference to the drawings. First, raw water (raw human waste) 1 is filtered with impurities using a screen (not shown), etc., and then several silica sand particles with a particle size of 0.2 to 0.3 mm are added to it without diluting it with dilution water.
It flows into the aeration tank 2 with 10% (volume ratio) suspension and fluidization, and undergoes biological treatment for a predetermined residence time. Aeration tank 2
An air lift tube 3 is provided inside, and air 4 is supplied to the lower part of the tube. Fluidization of the silica sand and supply of oxygen to the silica sand are performed by air bubbles rising inside the air lift tube 3. Next, the silica sand is separated by sedimentation in the media separation section 5, and an effluent slurry 6, which is a mixed liquid of raw water SS, SS caused by proliferating microorganisms, and biologically treated water, is produced in the media separation section 5.
It flows out from. The slurry 6 discharged from the aeration tank 2 is temporarily stored in a storage tank 7 without passing through a gravity settling tank (final settling tank), unlike the conventional method, and then sent to a flocculation reaction tank 9 by a pump 8. Here, the cationic polymer flocculant 10 is added and mixed, and a flocculation reaction is carried out. The agglomerated reaction liquid 12 is supplied to a dehydrator 13 and separated into a dehydrated cake 14 and a dehydrated separated liquid 15. Note that 11 is a stirrer. The dehydrated separated liquid 15 can be discharged as is, or if more advanced treatment is required, it can be treated with sulfuric acid band,
It is coagulated and precipitated using an inorganic flocculant such as ferric chloride. In the present invention, it is preferable that the raw water is not diluted or diluted at a dilution rate of 5 times or less, but the significance of such limitations is as follows. That is, in the present invention, it is most rational to treat the raw water without dilution, but the effects of the present invention are not essentially lost as long as the dilution ratio is 5 times or less. If this is diluted more than 5 times, the treatment efficiency will decrease, the required volume of the granular media suspension aeration tank will increase, and the amount of water flowing into the dehydrator will increase, resulting in a significant increase in the size and power consumption of the dehydrator. This is because it is very disadvantageous in terms of initial costs and running costs, making it difficult to achieve the object of the present invention. Further, the residence time of the water to be treated in the aeration tank 2 (the amount of treated water in the aeration tank divided by the amount of inflow of raw water before dilution) is preferably 0.2 days or more. This is due to the quality of treated water (especially BOD) when the retention period is less than 0.2 days.
This is because the condition deteriorates significantly. The biological treatment applied in the present invention includes:
Any known biological treatment method is included, such as a biological nitrification denitrification method and an activated sludge method with a biological dephosphorization process. It goes without saying that any biological treatment process such as a rotating disk method, simple aeration method, or catalytic oxidation method may be interposed between the particulate solid suspended biological treatment process in the aeration tank and the dehydration process to perform multi-stage treatment. It is. For example, if a biological nitrification and denitrification treatment process is employed as the intervening biological treatment process, extremely effective treatment becomes possible. 〓〓〓〓〓
If biological treatment is performed in multiple stages in this way, even if granular solids such as silica sand flow out from the granular solid suspension biological treatment process, they will settle in the second biological treatment process and will not flow into the dewatering process. It also has the advantage of improving the flocculation of suspended solids (SS) and requiring only a small amount of cationic polymer flocculant. Note that it is also possible to perform the granular solid suspension biological treatment process in multiple stages. As described above, in the conventional activated sludge treatment without dilution, significant foaming occurs and treatment is often impossible without the use of an antifoaming agent or an antifoaming machine.However, according to the present invention, foaming is prevented. The treatment can be carried out extremely effectively with almost no generation.
Moreover, since there is no dilution, the amount of water to be treated is small, and the separation area of the medium separation section is extremely small.
During removal, the fermentation heat generated allows the water temperature in the aeration tank to be maintained at 30 to 35°C even in winter without requiring an external heat source. Due to the synergistic effect of the above-mentioned phenomena, the required residence time of the water to be treated in the aeration tank is 0.2 days or more.
One day is sufficient, and the fact that more than 90% of BOD can be removed with a residence time in the aeration tank of 0.2 days is something that was completely unexpected. In particular, one of the most important points of the present invention is that the final sedimentation tank for separating microbial flocs is omitted and the granular media suspended biological treatment process and mechanical dehydration process are combined, and the conventional method There is no other example of this. As described above, the present invention provides an aeration tank in which concentrated organic wastewater such as human waste is diluted undiluted or diluted at a dilution ratio of 5 times or less in advance, and granular solids with attached microorganisms are suspended and fluidized. By introducing at least a cationic polymer flocculant into the slurry flowing out from the aeration tank and mechanically dehydrating the resulting flocculation reaction liquid, BOD of 10,000 mg/or more of BOD such as human waste can be obtained. The highly concentrated organic wastewater can be processed without adding dilution water.
Furthermore, it is possible to carry out highly efficient and stable treatment with extremely small capacity equipment, eliminating not only the need for a final sedimentation tank, which was previously considered indispensable in the biological treatment process, but also eliminating the need for sludge return operations. , and the granular solid suspension aeration tank effluent is directly separated into solid and liquid using a dehydrator, so solid-liquid separation can be achieved reliably regardless of the sedimentation properties of microorganisms, and maintenance and management are also extremely easy. It is. Next, an example of the non-dilution treatment of human waste according to the present invention will be described. A undiluted treatment experiment was conducted on raw human waste collected from a human waste treatment plant in F City, Kanagawa Prefecture, which has the water quality shown in Table 1, at an inflow rate of 0.1 to 3 Kl/day.

【表】 ことを表わす。
実験装置のフローシートは図面に示したとおり
であつて、実験条件は次のとおりである。曝気槽
容積は0.5m3で粒状固体としては粒径0.2〜0.3mmの
硅砂を使用し、硅砂の投入量は曝気槽容積に対し
30%(容積比)とした。酸素供給は空気を図面に
示したエアリフトチユーブに吹込む方法によつ
た。カチオン性高分子凝集剤としてはフローナツ
ク(商品名)を採用し、注入率SSに対し2.0%に
設定した。脱水機としてはT社製スクリユーデカ
ンタを使用した。 曝気槽における処理水の滞留時間0.1〜10日の
範囲に設定し、滞留時間に対する処理水としての
脱水分離液のBODおよびCOD―Mnの変化を調べ
た。その結果は第2表のとおりである。なお脱水
ケーキの含水率は80〜83%であつた。 〓〓〓〓〓
[Table] represents something.
The flow sheet of the experimental apparatus is as shown in the drawing, and the experimental conditions are as follows. The volume of the aeration tank is 0.5 m3 , and silica sand with a particle size of 0.2 to 0.3 mm is used as the granular solid, and the amount of silica sand input is proportional to the volume of the aeration tank.
30% (volume ratio). Oxygen was supplied by blowing air into the air lift tube shown in the drawing. Flownac (trade name) was used as the cationic polymer flocculant, and the injection rate was set to 2.0% with respect to SS. A screw decanter manufactured by T Company was used as a dehydrator. The residence time of the treated water in the aeration tank was set in the range of 0.1 to 10 days, and the changes in BOD and COD-Mn of the dehydrated separated liquid as treated water with respect to the residence time were investigated. The results are shown in Table 2. The moisture content of the dehydrated cake was 80 to 83%. 〓〓〓〓〓

【表】 この実験において粒状固体懸濁曝気槽内の
MLVSSは、25000〜30000mg/であり、粒状粉
体を分離した媒体分離部からの流出液中のSSは
10000〜12000mg/であつた。 第2表に示したように、本発明によれば90%以
上のBOD除去率を得るには、滞留日数は0.2日以
上で充分であり、COD―Mnは、滞留日数2日以
上では、逆に増加した。これはNO2―Nの生成に
起因するものである。このようなNO2―Nの生成
を防ぐには、公知の生物学的硝化脱窒素処理を採
用すればよいことは言うまでもない。 次に、第2表に記載の滞留日数1日における脱
水分離液を硫酸バンドを1000〜2000mg/の注入
率(対SS)で注入して凝集沈殿処理した場合の
処理水質は第3表のようになつた。
[Table] In this experiment, the granular solid suspension in the aeration tank was
The MLVSS is 25,000 to 30,000 mg/, and the SS in the effluent from the media separation section that separated the granular powder is
It was 10000-12000mg/. As shown in Table 2, according to the present invention, in order to obtain a BOD removal rate of 90% or more, a retention period of 0.2 days or more is sufficient, and COD-Mn is increased to This is due to the generation of NO 2 -N. It goes without saying that in order to prevent the production of NO 2 -N, a known biological nitrification and denitrification treatment may be employed. Next, when the dehydrated separated liquid with a retention period of 1 day listed in Table 2 is subjected to coagulation and sedimentation treatment by injecting sulfuric acid band at an injection rate of 1000 to 2000 mg/SS (vs. SS), the treated water quality is as shown in Table 3. It became.

【表】 第1表と第3表のデータを比較することによ
り、BODについては、凝集沈殿処理水を2倍希
釈すれば現在のし尿処理放流水質基準に充分合致
できること、原水(生し尿)と滞留日数1日にお
ける脱水分離液の凝集沈殿処理水のBODがそれ
ぞれ10500及び40〜55であることから、従来法に
おいて20倍希釈原水のBODを約90%除去したの
と同等の処理効果が得られたことがわかる。
[Table] By comparing the data in Tables 1 and 3, it was found that BOD can sufficiently meet the current quality standards for wastewater treatment effluent if coagulation and sedimentation treated water is diluted 2 times, and that raw water (raw human waste) and Since the BOD of the coagulation-sedimentation treated water of the dehydrated separated liquid after one day of retention is 10,500 and 40-55, respectively, the treatment effect is equivalent to that of removing approximately 90% of the BOD of the 20-fold diluted raw water using the conventional method. I can see that it was done.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を示す系統説明図であ
る。 1…原水、2…曝気槽、3…エアリフトチユー
ブ、4…空気、3…媒体分離部、6…流出スラリ
ー、7…貯槽、8…ポンプ、9…凝集反応槽、1
0…カチオン性高分子凝集剤、11…脱水機。 〓〓〓〓〓
The drawings are system explanatory diagrams showing embodiments of the present invention. 1... Raw water, 2... Aeration tank, 3... Air lift tube, 4... Air, 3... Media separation section, 6... Outflow slurry, 7... Storage tank, 8... Pump, 9... Coagulation reaction tank, 1
0...Cationic polymer flocculant, 11...Dehydrator. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】 1 し尿などの濃厚有機性廃水を、無希釈のま
ま、又は予め5倍以下の希釈倍率で希釈した後、
微生物が付着した粒状固体を懸濁流動させている
曝気槽に導入して粒状固体懸濁生物処理を行い、
前記曝気槽からの流出スラリーに少なくともカチ
オン性高分子凝集剤を添加し、得られる凝集反応
液を機械脱水することを特徴とするし尿系汚水の
処理方法。 2 前記凝集剤添加工程が、前記曝気槽からの流
出スラリーをさらに前記粒状固体懸濁生物処理と
は別の生物学的処理によつて処理した後に行われ
るのである特許請求の範囲第1項記載の処理方
法。 3 前記生物学的処理工程が、生物学的硝化脱窒
素処理工程である特許請求の範囲第2項記載の処
理方法。
[Claims] 1. Concentrated organic wastewater such as human waste, either undiluted or after being diluted in advance at a dilution ratio of 5 times or less,
Particulate solids with attached microorganisms are introduced into an aeration tank where they are suspended and fluidized to perform particulate solid suspension biological treatment.
A method for treating night soil wastewater, which comprises adding at least a cationic polymer flocculant to the slurry flowing out from the aeration tank, and mechanically dewatering the resulting flocculation reaction liquid. 2. According to claim 1, the flocculant addition step is performed after the slurry flowing out from the aeration tank is further treated by a biological treatment different from the granular solid suspension biological treatment. processing method. 3. The treatment method according to claim 2, wherein the biological treatment step is a biological nitrification and denitrification treatment step.
JP15847279A 1979-12-06 1979-12-06 Decomposition of sewage such as night soil Granted JPS5681190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15847279A JPS5681190A (en) 1979-12-06 1979-12-06 Decomposition of sewage such as night soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15847279A JPS5681190A (en) 1979-12-06 1979-12-06 Decomposition of sewage such as night soil

Publications (2)

Publication Number Publication Date
JPS5681190A JPS5681190A (en) 1981-07-02
JPS6159798B2 true JPS6159798B2 (en) 1986-12-18

Family

ID=15672485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15847279A Granted JPS5681190A (en) 1979-12-06 1979-12-06 Decomposition of sewage such as night soil

Country Status (1)

Country Link
JP (1) JPS5681190A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139798A (en) * 1982-02-12 1983-08-19 Ebara Infilco Co Ltd Treatment of organic waste liquid
KR100352243B1 (en) * 1999-12-10 2002-09-16 에스아이비(주) A Treatment Method for Livestock Wastewater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376547A (en) * 1976-12-20 1978-07-07 Ataka Kensetsu Kougiyou Kk Device for treating waste water
JPS543365A (en) * 1977-06-09 1979-01-11 Hitachi Zosen Corp Disposal of raw sewage
JPS544469A (en) * 1977-06-11 1979-01-13 Kubota Ltd Mathod of treating raw system organic waste water at high efficiency
JPS5412150A (en) * 1977-06-29 1979-01-29 Kurita Water Ind Ltd Flow bed type filthy water treating device
JPS5413665A (en) * 1977-07-04 1979-02-01 Ebara Infilco Co Ltd Process for treating organic waste water
JPS54136746A (en) * 1978-04-14 1979-10-24 Nippon Kentetsu Co Ltd Waste water disposal process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376547A (en) * 1976-12-20 1978-07-07 Ataka Kensetsu Kougiyou Kk Device for treating waste water
JPS543365A (en) * 1977-06-09 1979-01-11 Hitachi Zosen Corp Disposal of raw sewage
JPS544469A (en) * 1977-06-11 1979-01-13 Kubota Ltd Mathod of treating raw system organic waste water at high efficiency
JPS5412150A (en) * 1977-06-29 1979-01-29 Kurita Water Ind Ltd Flow bed type filthy water treating device
JPS5413665A (en) * 1977-07-04 1979-02-01 Ebara Infilco Co Ltd Process for treating organic waste water
JPS54136746A (en) * 1978-04-14 1979-10-24 Nippon Kentetsu Co Ltd Waste water disposal process

Also Published As

Publication number Publication date
JPS5681190A (en) 1981-07-02

Similar Documents

Publication Publication Date Title
FI953642A0 (en) Wastewater treatment method and equipment
CN207512019U (en) A kind of sanitary sewage, technique waste water, stripper Wastewater Concentrated device
JP2004501739A (en) Wastewater treatment method with additional sludge treatment by ozone treatment and plant thereof
JPS6159798B2 (en)
JP3843540B2 (en) Biological treatment method of effluent containing organic solids
JPS6320600B2 (en)
JPS595037B2 (en) How to treat organic wastewater
JPS60896A (en) Treating process for night soil
JPH0218918B2 (en)
JP2001070999A (en) Method and apparatus for treating wastewater
JPH0352699A (en) Treatment of sewage of night soil system
JPH04334593A (en) Advanced water treatment system and method for starting up the same
JPH03275197A (en) Treatment of night soil type sewage
JPH0565239B2 (en)
JPH0649197B2 (en) Organic wastewater treatment method
JPS58139798A (en) Treatment of organic waste liquid
JPS61287494A (en) Method for continuously filtering water
JPS63252591A (en) Treatment of sewage
JPS6316099A (en) Treatment of organic waste water
JPS6238295A (en) Treatment of organic sewage
JPH0218910B2 (en)
JPS5996000A (en) Dehydrating method of sludge
JPH0218917B2 (en)
JP2873968B2 (en) Wastewater treatment method
JPH05123700A (en) Method for treating sludge from organic waste water and apparatus therefor