JPS6159424A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPS6159424A
JPS6159424A JP18048184A JP18048184A JPS6159424A JP S6159424 A JPS6159424 A JP S6159424A JP 18048184 A JP18048184 A JP 18048184A JP 18048184 A JP18048184 A JP 18048184A JP S6159424 A JPS6159424 A JP S6159424A
Authority
JP
Japan
Prior art keywords
electrodes
liquid crystal
row electrodes
display element
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18048184A
Other languages
Japanese (ja)
Inventor
Fumitaka Kan
簡 文隆
Naoji Hayakawa
早川 直司
Masanori Takenouchi
竹之内 雅典
Ichiro Nomura
一郎 野村
Mitsuru Yamamoto
満 山本
Toshiaki Majima
間島 敏彰
Hidetoshi Suzuki
英俊 鱸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18048184A priority Critical patent/JPS6159424A/en
Publication of JPS6159424A publication Critical patent/JPS6159424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To decrease the number of driving circuits for scanning electrodes, and to reduce the size of a device and simplify wiring by connecting plural row electrodes of a display element electrically in parallel. CONSTITUTION:A heat write type display element has a row electrode group and a column electrode group formed on and under a liquid crystal layer which shows thermo-optic effect greatly so that they cross each other nearly at right angles; row electrodes X1-Xn are connected in couples, for example, electrically in parallel and applied with signal pulses for liquid crystal heating from scanning electrodes L1-Ln. Further, resistances R are connected to odd-numbered row electrodes and reduce currents flowing the odd-numbered row electrodes as compared with those of even-numbered row electrodes, thereby suppressing a temperature rise. Liquid-crystal elements are arranged at intersections of row electrodes X1-Xn and column electrodes Y1-Yn.

Description

【発明の詳細な説明】 ゛ [産業上の利用分野] 本発明は液晶素子を用いた画像表示装置に関するもので
、さらに詳しくは、スメクチック液晶等を用いた熱書込
み形の液晶表示装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an image display device using a liquid crystal element, and more specifically to a thermal writing type liquid crystal display device using a smectic liquid crystal or the like. be.

[従来の技術1 本発明に係わる熱書込み形表示方式の動作原理を以下に
説明する。第2図は、液晶層をはさみ込む二枚の基板上
の電極パターンを示す図で、一方の基板(X)には行電
極群(走査電極)X+〜Xnが設けられており、もう一
方の基板(Y)には、前記行電極群x1〜Xnと直交す
る列電極群(信号電極)Y+〜Ynが設けられている。
[Prior Art 1] The operating principle of the thermal writing type display system according to the present invention will be explained below. Figure 2 is a diagram showing the electrode patterns on two substrates sandwiching a liquid crystal layer.One substrate (X) is provided with row electrode groups (scanning electrodes) X+ to Xn, and the other substrate (X) is provided with row electrode groups (scanning electrodes) X+ to Xn. The substrate (Y) is provided with column electrode groups (signal electrodes) Y+ to Yn orthogonal to the row electrode groups x1 to Xn.

このような電極構成において、前記行電極群に電圧パル
スを印加すると液晶層が加熱され等方性液相の状態にな
る。その後電圧パルスの移動と共に、液晶層は順次冷却
され、その過程で液晶層は、等方性液相の状態からネマ
チック相、スメクチック相へと変化し、スメクチック相
でその配向状態が安定化する。液晶層内の状態がネマチ
ック相を通過する際に、列電極を通じて電圧を印加する
と、液晶の徐冷による作用と共に、電界による配向効果
によって液晶層内の分子配列が垂直配向状態となり、光
学的に透明な状態となる。一方冷却過程において、電圧
を印加しない場合には液晶層内の分子配列が等方性液相
のランダムな状態のまま急冷され、光学的に白濁の状態
になる。すなわち、液晶層内の状態が等方性液相からネ
マチック液相を通過する間に、信号電圧を印加したか否
かによって「透明」及び「白濁」の各表示状態の選択を
行うもので、次の電圧パルスによる加熱があるまでは、
その安定状態を維持させることが出来る。この様な電気
熱書込み形表示方式では、いわゆるクロストークの問題
がないので高表示容量の薄型表示装置が得られる。
In such an electrode configuration, when a voltage pulse is applied to the row electrode group, the liquid crystal layer is heated and enters an isotropic liquid phase state. Thereafter, as the voltage pulse moves, the liquid crystal layer is sequentially cooled, and in the process, the liquid crystal layer changes from an isotropic liquid phase state to a nematic phase and a smectic phase, and its alignment state is stabilized in the smectic phase. When the state in the liquid crystal layer passes through the nematic phase, when a voltage is applied through the column electrodes, the molecular alignment in the liquid crystal layer becomes vertically aligned due to the effect of slow cooling of the liquid crystal and the alignment effect caused by the electric field, resulting in an optically It becomes transparent. On the other hand, in the cooling process, if no voltage is applied, the molecular arrangement within the liquid crystal layer is rapidly cooled while remaining in a random state of an isotropic liquid phase, resulting in an optically cloudy state. That is, the display state of "transparent" and "cloudy" is selected depending on whether or not a signal voltage is applied while the state in the liquid crystal layer passes from an isotropic liquid phase to a nematic liquid phase. Until the next voltage pulse heats up.
This stable state can be maintained. In such an electrothermal writing type display system, there is no problem of so-called crosstalk, so a thin display device with a high display capacity can be obtained.

[発明が解決しようとする問題点] しかしながら、信号パルスによる電極加熱においては、
瞬間的に高電圧、大電流を必要とし、このような目的に
使用するトランジスターはTPT技術や薄膜IC技術に
より作成することは著しく困難であるため、従来、走査
電極の各々に、駆動用のトランジスター−個−個を、配
線する必要があった。このために装置の大型化及び配線
の繁雑化による信頼性の低下を招いていた。本発明はこ
のような従来の問題点を解決するためになされたもので
、簡単かつ実施容易な方法により、走査電極の駆動回路
数を半減あるいはそれ以下にする液晶表示装置を提供す
ることを目的としている。
[Problems to be solved by the invention] However, in electrode heating using signal pulses,
Transistors used for such purposes require instantaneous high voltage and large current, and it is extremely difficult to create them using TPT technology or thin film IC technology. - It was necessary to wire - pieces. This has led to a decrease in reliability due to an increase in the size of the device and complicated wiring. The present invention has been made to solve these conventional problems, and an object of the present invention is to provide a liquid crystal display device in which the number of drive circuits for scanning electrodes is reduced by half or less by a simple and easy-to-implement method. It is said that

[問題点を解決するための手段コ 本発明の技術的手段の一例を第1図に示す。すなわち第
1図において、X、〜Xnは行電極(走査電極)で、こ
の例では二本を一組として電気的に並列に接続させてい
るが、理論的には1本の同時加熱駆動が可能で、この場
合、行電極駆動の回路は1/n木とすることが出来る。
[Means for Solving the Problems] An example of the technical means of the present invention is shown in FIG. In other words, in Fig. 1, X and ~Xn are row electrodes (scanning electrodes), and in this example, two electrodes are electrically connected in parallel as a set, but theoretically, one simultaneous heating drive is possible. It is possible, and in this case, the row electrode driving circuit can be a 1/n tree.

また走査電極前される。Yl−Ynは列電極を表わし、
Rは奇数番目の行電極に接続される抵抗で、この抵抗R
により奇数番目の行電極は偶数番目の行電極に比べ、流
れる電流が小さくなり、温度上昇が抑えらレル。なお、
x1〜Xn、Y1〜Ynの各電極の交点には、液晶素子
が配置されている。
Also, the scanning electrodes are placed in front of each other. Yl-Yn represents column electrodes;
R is a resistance connected to the odd-numbered row electrode, and this resistance R
Therefore, the current flowing through the odd-numbered row electrodes is smaller than that of the even-numbered row electrodes, and the temperature rise is suppressed. In addition,
A liquid crystal element is arranged at the intersection of each of the electrodes x1 to Xn and Y1 to Yn.

[作 用] 第3図は、行電極X、、X2と列電極YInY2の交点
に対応する画素の座標を示したもので、第4図は、時間
の推移と共に変化する液晶層内の配向状態と、それに対
応する電気信号の波形を相対的に表わしたものである。
[Function] Figure 3 shows the coordinates of the pixel corresponding to the intersection of the row electrodes X, X2 and the column electrode YInY2, and Figure 4 shows the alignment state in the liquid crystal layer that changes over time. This is a relative representation of the waveform of the electrical signal and the corresponding electrical signal.

今、画素XI Y +  、XI  Y2  、X2 
 Y2  を5四に、画素X’、Y、をb民にする場合
、まず時間t0〜t1においてLlに加熱パルスを印加
すると、行電極X、、X2に対応する液晶層は、温度T
NI以上に加熱され1等方性液相の状態になる。この時
、奇数番目の行電極(この場合X+)には、抵抗Rが接
続されているため、電極x2に比べ温度上昇が小さい。
Now, pixels XI Y + , XI Y2 , X2
When Y2 is set to 54 and pixels X', Y, are set to b, first, when a heating pulse is applied to Ll from time t0 to t1, the liquid crystal layer corresponding to row electrodes
It is heated to a temperature higher than NI and becomes a monoisotropic liquid phase. At this time, since the resistor R is connected to the odd-numbered row electrode (X+ in this case), the temperature rise is smaller than that of the electrode x2.

したがって、加熱が終わり冷却する過程でxIはX2よ
りも早くネマチック相の状態になる。(第4図参照)こ
こでxlの温度がTNIからTSNまで下がる間(ネマ
チック相を通過する間)に列電極Y、、Y2に交流電圧
を印加すると、時間t1〜t2において、行電極xlと
対応する画素x1y、、x、y2は、透明状態となる。
Therefore, in the process of cooling after heating, xI enters the nematic phase state earlier than X2. (See Figure 4) If an AC voltage is applied to the column electrodes Y, Y2 while the temperature of xl falls from TNI to TSN (while passing through the nematic phase), then from time t1 to t2, The corresponding pixels x1y, , x, y2 become transparent.

さらに時間t2〜t3では、x2がネマチック相を通過
する。この時、列電極に印加される交流電圧は、Y2の
みとなるため、行電極X2と対応する画素x2Y2はt
5状態となるが、電圧が印加されない列電極Y1と対応
する画素X2Y、は51モ状態となる。その後者液晶層
は、時間t3〜t。
Further, during time t2-t3, x2 passes through the nematic phase. At this time, the AC voltage applied to the column electrode is only Y2, so the pixel x2Y2 corresponding to the row electrode
However, the pixel X2Y corresponding to the column electrode Y1 to which no voltage is applied is in the 51st state. The latter liquid crystal layer is formed from time t3 to time t.

でスメクチック相になり、表示状態を安定させる。becomes a smectic phase and stabilizes the display state.

以上、時間t。−t4の各動作によって、第5図に示さ
れる所望の表示パターンが完成する。
That's it for time t. -t4 completes the desired display pattern shown in FIG.

なお、第5図において、斜線は「白濁」を示し、白色は
「透明」を示す。
In FIG. 5, diagonal lines indicate "cloudy" and white indicates "transparent".

[実施例J 本実施例においては、行電極としてガラス基板上にIT
O(Indium−Tin 0xide)電極を蒸着し
たものを用い、ITOの幅は各行電極同一の0.2mm
とした。一方偶数番目のITOの長さは20mm、奇数
番目は30+n+nとし、各々の電極と外部の駆動回路
との間の接続端子間は、低抵抗のアルミニウム蒸着膜に
より配線した。また、偶数番目の行電極の抵抗値は50
0Ω、奇数番目の行電極の抵抗値は750Ωとした。実
際の駆動には、第1図において工性づつ対になった行電
極に順次90Vの直流パルス(バルス幅5 m5ec)
を印加することにより行電極を加熱する。このとき偶数
番目の行電極には、奇数番目の行電極に対し、単位面積
当り2.25倍のエネルギーが供給されるため、第4図
に示されるように、液晶層内の温度は各々異った値とな
る。加熱のための直流パルス印加後0〜5IISeCの
間に、列電極群のうち透明に表示したい画素と行電極と
の間にI KHz 、 30Vの交流電圧を印加するこ
とにより、奇数番目の行電極における各列の画素への書
込みが行なわれる。また5〜10m5ecの間に列電極
群に交流電圧を印加することにより、偶数番目の行電極
における各列の画素への書込みが行なわれる。
[Example J In this example, IT was placed on a glass substrate as a row electrode.
O (Indium-Tin Oxide) electrodes are used, and the ITO width is 0.2 mm, which is the same for each row electrode.
And so. On the other hand, the length of the even-numbered ITO was 20 mm, and the length of the odd-numbered ITO was 30+n+n, and the connection terminals between each electrode and an external drive circuit were interconnected with a low-resistance aluminum vapor-deposited film. In addition, the resistance value of the even-numbered row electrode is 50
The resistance value of the odd-numbered row electrode was 0Ω, and the resistance value of the odd-numbered row electrode was 750Ω. For actual driving, a 90V DC pulse (pulse width 5 m5ec) is applied to each pair of row electrodes in Fig. 1.
The row electrodes are heated by applying . At this time, the even-numbered row electrodes are supplied with 2.25 times as much energy per unit area as the odd-numbered row electrodes, so the temperature within the liquid crystal layer is different from each other, as shown in Figure 4. will be the value. After applying a DC pulse for heating, between 0 and 5IISeC, an AC voltage of I KHz and 30V is applied between the row electrode and the pixel that is desired to be displayed transparently among the column electrode group. Writing to pixels in each column is performed. Further, by applying an alternating current voltage to the column electrode group for a period of 5 to 10 m5ec, writing to the pixels in each column in the even-numbered row electrodes is performed.

本実施例で用いた液晶は、常温でスメクチック相を示し
、高温で狭い範囲のネマチック相とそれに続く、等方性
液相を有したものであり、具体的にはオクチルシアノビ
フェニールや、英国BDH社より混合液晶として市販さ
れているSt −95等が望ましいものと言える。また
、本実施例では「透明]と「白濁」の二つの状態による
画像表示を行ったが、これらは投影型ディスプレイにも
応用が可能で、更に液晶を二色性色素と混合したり、カ
ラーフィルターを併用することによりカラー表示をする
ことも出来る。
The liquid crystal used in this example exhibits a smectic phase at room temperature, and a narrow nematic phase at high temperatures, followed by an isotropic liquid phase. It is preferable to use St-95, which is commercially available as a mixed liquid crystal from Co., Ltd., as a mixed liquid crystal. In addition, in this example, images were displayed in two states, "transparent" and "cloudy", but these can also be applied to projection displays. It is also possible to display in color by using a filter.

なお、行電極と列電極に印加する信号パルスは交流・直
流のどちらでも良い。また本発明ではITOの長さによ
り一組の電極の抵抗値を変えているが、その他の抵抗体
を蒸着等により用いることもできるし、またはITO等
の透明電極の膜厚を変化させても良い。
Note that the signal pulses applied to the row electrodes and column electrodes may be either alternating current or direct current. Further, in the present invention, the resistance value of a set of electrodes is changed depending on the length of ITO, but other resistors can be used by vapor deposition, or the thickness of transparent electrodes such as ITO can be changed. good.

「効 果1 以」―の説明で明らかなように、本発明においては複数
の行電極を電気的に並列に接続することにより、走査電
極の駆動回路数を半減あるいはそれ以下にする事が出来
るため、装置の小型化、配線の簡素化が可能である。し
たがって液晶表示装置として高い信頼性を得ることがで
きる。
As is clear from the explanation of "Effect 1 and later", in the present invention, by electrically connecting a plurality of row electrodes in parallel, the number of drive circuits for scanning electrodes can be halved or less. Therefore, it is possible to downsize the device and simplify wiring. Therefore, high reliability can be obtained as a liquid crystal display device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の基本概念を表わす回路構成図。第2
図は、従来の熱書込み形表示装置の説明図。第3図は、
対応画素の座標を示す説明図。第4図は、液晶層内の配
向状態とそれに対応する電気信号波形の説明図。第5図
は、対応画素の表示例を示す説明図。 x1〜xn :行電極(走査電極) Y1〜Yn :列電極(信号電極) R:抵抗
FIG. 1 is a circuit diagram showing the basic concept of the present invention. Second
The figure is an explanatory diagram of a conventional thermal writing type display device. Figure 3 shows
An explanatory diagram showing the coordinates of corresponding pixels. FIG. 4 is an explanatory diagram of the alignment state in the liquid crystal layer and the corresponding electric signal waveform. FIG. 5 is an explanatory diagram showing a display example of corresponding pixels. x1~xn: Row electrode (scanning electrode) Y1~Yn: Column electrode (signal electrode) R: Resistor

Claims (1)

【特許請求の範囲】 1、熱光学効果を顕著に示す液晶層の、上下に配置され
た行電極群及び列電極群が、各々略直交するように形成
された熱書込み形表示素子において、該行電極群の複数
本を電気的に並列に接続して一組とし、かつ複数の組か
ら構成されることを特徴とする液晶表示素子。 2、上記、複数本の行電極において、各々の電極に流れ
る電流が異なる値となるようにしたことを特徴とする特
許請求の範囲第一項記載の液晶表示素子。
[Claims] 1. A thermal writing type display element in which row electrode groups and column electrode groups arranged above and below of a liquid crystal layer exhibiting a remarkable thermo-optic effect are formed so as to be substantially perpendicular to each other. 1. A liquid crystal display element characterized in that a plurality of row electrode groups are electrically connected in parallel to form one set, and is composed of a plurality of sets. 2. The liquid crystal display element according to claim 1, wherein the current flowing through each of the plurality of row electrodes has a different value.
JP18048184A 1984-08-31 1984-08-31 Liquid crystal display element Pending JPS6159424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18048184A JPS6159424A (en) 1984-08-31 1984-08-31 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18048184A JPS6159424A (en) 1984-08-31 1984-08-31 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPS6159424A true JPS6159424A (en) 1986-03-26

Family

ID=16083975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18048184A Pending JPS6159424A (en) 1984-08-31 1984-08-31 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPS6159424A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452621A (en) * 1990-06-21 1992-02-20 Matsushita Electric Ind Co Ltd Liquid crystal panel and its manufacture
JPH0455824A (en) * 1990-06-25 1992-02-24 Matsushita Electric Ind Co Ltd Liquid crystal element and production thereof
US5212573A (en) * 1988-11-18 1993-05-18 Seiko Instruments Inc. Input protection circuit of electro-optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212573A (en) * 1988-11-18 1993-05-18 Seiko Instruments Inc. Input protection circuit of electro-optical device
JPH0452621A (en) * 1990-06-21 1992-02-20 Matsushita Electric Ind Co Ltd Liquid crystal panel and its manufacture
JPH0455824A (en) * 1990-06-25 1992-02-24 Matsushita Electric Ind Co Ltd Liquid crystal element and production thereof

Similar Documents

Publication Publication Date Title
JP2609690B2 (en) Driving circuit and driving method for liquid crystal display device
US4818078A (en) Ferroelectric liquid crystal optical modulation device and driving method therefor for gray scale display
US4815823A (en) Electro-optical device with plural low resistive portions on each high resistive electrode
US4525708A (en) Thermoelectric effect display device
JPS6159424A (en) Liquid crystal display element
JPH0247751B2 (en)
JPS60150094A (en) Control of matrix access type display device
JPS63316024A (en) Optical modulating element
JPH0621907B2 (en) Driving method for liquid crystal display
JPS6159425A (en) Liquid crystal display element
JPS61166595A (en) Liquid crystal display unit
JPS62134691A (en) Liquid crystal unit
JPS62238533A (en) Driving method for optical modulation element
JPS6159426A (en) Liquid crystal display element
JPS5934517A (en) Liquid crystal display device
JPH0448366B2 (en)
JPS6377030A (en) Display device
JPH1054976A (en) Liquid crystal display device, circuit and method for driving it
JPS61245139A (en) Scanning system for optical modulating element
JPH01189634A (en) Liquid crystal display device
JPS58198092A (en) Liquid crystal display
JPS61143788A (en) Liquid crystal display panel for active matrix system
JPS6057822A (en) Liquid crystal display device
JPS59137982A (en) Liquid crystal display
JPH0310223A (en) Liquid crystal display device