JPS6159243B2 - - Google Patents

Info

Publication number
JPS6159243B2
JPS6159243B2 JP56140778A JP14077881A JPS6159243B2 JP S6159243 B2 JPS6159243 B2 JP S6159243B2 JP 56140778 A JP56140778 A JP 56140778A JP 14077881 A JP14077881 A JP 14077881A JP S6159243 B2 JPS6159243 B2 JP S6159243B2
Authority
JP
Japan
Prior art keywords
boron nitride
sio
cao
ammonia
showed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56140778A
Other languages
Japanese (ja)
Other versions
JPS5841706A (en
Inventor
Kenichiro Myahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain TM KK
Original Assignee
Toshiba Monofrax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Monofrax Co Ltd filed Critical Toshiba Monofrax Co Ltd
Priority to JP56140778A priority Critical patent/JPS5841706A/en
Publication of JPS5841706A publication Critical patent/JPS5841706A/en
Publication of JPS6159243B2 publication Critical patent/JPS6159243B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は窒化硼素(BN)を含むセラミツク物
質の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing ceramic materials containing boron nitride (BN).

周知の如く、窒化硼素は耐火性・耐蝕性等の優
れたセラミツク物質である。かかる窒化硼素の製
造方法としては、従来、硼酸又は硼酸塩とアンモ
ニアガスとの反応による方法、或いは三塩化硼素
とアンモニアガスとの反応による方法が知られて
いる。しかしながら、これら方法にあつては、
得られた窒化硼素の含有窒素量は低く(化学純度
の低い)、無定形、乱層構造のものとなり易く純
度や結晶化度を高めるために1800〜2000℃で再熱
処理を施す必要がある副生物中に耐火性の低い
物質が生成され、そのままでは窒化硼素を含む耐
火性セラミツク物質としては使用できない等の欠
点があつた。
As is well known, boron nitride is a ceramic material with excellent fire resistance and corrosion resistance. Conventionally known methods for producing boron nitride include a reaction between boric acid or a borate and ammonia gas, or a reaction between boron trichloride and ammonia gas. However, with these methods,
The resulting boron nitride has a low nitrogen content (low chemical purity), tends to be amorphous and has a turbostratic structure, and requires reheat treatment at 1800 to 2000°C to increase purity and crystallinity. There were drawbacks such as the formation of substances with low fire resistance in living organisms, which could not be used as is as a fire-resistant ceramic material containing boron nitride.

このようなことから、本発明は鋭意研究を重ね
た結果、自然に産するコレマナイト鉱を高温度下
でアンモニアと反応させることによつて、結晶化
度が高い窒化硼素を多量含むセラミツク物質を容
易に製造し得る方法を見い出した。
Therefore, as a result of extensive research, the present invention was developed to easily produce ceramic materials containing a large amount of boron nitride with a high degree of crystallinity by reacting naturally occurring colemanite ore with ammonia at high temperatures. We have discovered a method that can be manufactured.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

まず、コレマナイト鉱(一般的な組成を挙げる
と、B2O3;40〜46%、CaO;25〜27%、SiO2
3〜5%、MgO;1%以下、Fe2O3;0.5%以
下、Na2O+K2O;0.3%以下、A2O3;1%以
下、Ig、Loss;22〜26%、付着水;1〜2%か
らなる)のCaOに対するSiO2のモル比が0.5≦
SiO2/CaO≦1.0の範囲となるようにシリカ分を
調整したものを原料として用意する。こうした原
料の調整は、主に珪石やフラツタリーサンド等の
SiO2を主成分とする粉末を添加することにより
なされる。
First, colemanite (general compositions are B2O3 ; 40-46% , CaO; 25-27%, SiO2 ;
3 to 5%, MgO; 1% or less, Fe 2 O 3 ; 0.5% or less, Na 2 O + K 2 O; 0.3% or less, A 2 O 3 ; 1% or less, Ig, Loss; 22 to 26%, attached water The molar ratio of SiO 2 to CaO (consisting of 1 to 2%) is 0.5≦
A raw material with a silica content adjusted so that SiO 2 /CaO≦1.0 is prepared. The adjustment of these raw materials is mainly done using silica stone, flattery sand, etc.
This is done by adding powder whose main component is SiO2 .

次いで、前記原料を所定温度で脱水処理して多
孔質の軽石状物を作る。つづいて、この軽石状物
を適当な大きさに粉砕して1000℃以上の温度下で
アンモニアと反応させる。こうした反応により窒
化硼素、α−珪酸−カルシウム(α−CaO・
SiO2)、α′−珪酸二カルシウム(α′−2CaO・
SiO2)が生成され、窒化硼素を含むセラミツク物
質が得られる。
Next, the raw material is dehydrated at a predetermined temperature to produce a porous pumice-like material. Next, this pumice-like material is crushed into an appropriate size and reacted with ammonia at a temperature of 1000°C or higher. These reactions produce boron nitride, α-calcium silicate (α-CaO・
SiO 2 ), α′-dicalcium silicate (α′-2CaO・
SiO 2 ) is produced and a ceramic material containing boron nitride is obtained.

前記コレマナイト鉱のSiO2/CaOモル比を上
記範囲に限定した理由は、そのモル比を0.5未満
にすると、アンモニアとの反応時に窒化硼素、
α′−珪酸二カルシウムの他に硼酸三カルシウム
(3CaO・B2O3)が生成され、窒化されない硼素成
分が増大してセラミツク物質中の窒化硼素量が低
下する。一方、前記SiO2/CaOのモル比が1を
越えると、アンモニアとの反応時に窒化硼素、α
−ケイ酸−カルシウムの他に酸洗浄での溶出が困
難なシリカが残留し、アンモニウムの反応後のセ
ラミツク物質から窒化硼素のみを得る場合の障害
となる。なお、これらの窒化硼素、α′−珪酸二
カルシウム、硼酸三カルシウム、α−ケイ酸−カ
ルシウムはX線回折図形により同定される。
The reason why the SiO 2 /CaO molar ratio of the colemanite ore is limited to the above range is that if the molar ratio is less than 0.5, boron nitride,
In addition to α'-dicalcium silicate, tricalcium borate (3CaO.B 2 O 3 ) is produced, and the unnitrided boron component increases, reducing the amount of boron nitride in the ceramic material. On the other hand, if the molar ratio of SiO 2 /CaO exceeds 1, boron nitride, α
- Silicate - In addition to calcium, silica, which is difficult to be eluted by acid washing, remains and becomes an obstacle when only boron nitride is obtained from the ceramic material after the ammonium reaction. Note that these boron nitride, α'-dicalcium silicate, tricalcium borate, and α-calcium silicate are identified by X-ray diffraction patterns.

前記アンモニアの反応温度を限定した理由は、
その温度を1000℃未満にすると窒化硼素の他の硼
酸二カルシウム(2CaO・B2O3)、硼酸−カルシ
ウム(CaO・B2O3)が生成して得られたセラミツ
ク物質中の窒化硼素の含有量が低下するからであ
る。反応させるアンモニアは、必ずしもアンモニ
ア単独にしなくてもよく、不活性ガスで希釈され
たアンモニアを使用してもよい。
The reason for limiting the ammonia reaction temperature is as follows:
When the temperature is lower than 1000°C, dicalcium borate (2CaO・B 2 O 3 ) and calcium borate (CaO・B 2 O 3 ) other than boron nitride are formed, and boron nitride in the ceramic material obtained is This is because the content decreases. The ammonia to be reacted does not necessarily need to be ammonia alone, and ammonia diluted with an inert gas may be used.

この様にして得られたセラミツク物質を微粉砕
して酸洗滌後、濾過水洗を繰りかえすとα′−珪
酸二カルシウム、α−珪酸一カルシウム、その他
の微量不純物は溶出され純度の高い窒化硼素が得
られる。しかしながら酸洗滌では遊離シリカは溶
出除去できないので窒化硼素だけを得る場合は
SiO2/CaOのモル比を1.0以下にする必要があ
る。
After pulverizing the ceramic material thus obtained and washing with acid, repeated filtration and washing with water dissolves α'-dicalcium silicate, α-monosilicate, and other trace impurities, yielding highly pure boron nitride. It will be done. However, free silica cannot be eluted and removed by pickling, so if only boron nitride is obtained,
The molar ratio of SiO 2 /CaO needs to be 1.0 or less.

しかして、本発明によれば以下に示す種々の効
果を発揮できる。
According to the present invention, various effects shown below can be achieved.

(イ) 原料(コレマナイト鉱)中の硼素分をほぼ完
全に窒化することができる。
(a) The boron content in the raw material (colemanite ore) can be almost completely nitrided.

(ロ) 高温再処理を行なわずに結晶化度の高い窒化
硼素を含むセラミツク物質を得ることができ
る。このものはそのまま耐火性セラミツク材料
として使用できる。
(b) A ceramic material containing boron nitride with a high degree of crystallinity can be obtained without performing high-temperature reprocessing. This product can be used as is as a refractory ceramic material.

(ハ) 簡単な酸溶出処理により純粋な窒化硼素を得
ることができる。
(c) Pure boron nitride can be obtained by simple acid elution treatment.

(ニ) 自然に産するコレマナイト鉱を原料とするた
め、窒化硼素を含むセラミツク物質の製造コス
トを大巾に低減できる。
(d) Since naturally occurring colemanite ore is used as a raw material, the manufacturing cost of ceramic materials containing boron nitride can be greatly reduced.

次に、本発明の実施例を説明する。 Next, examples of the present invention will be described.

実施例 1 B2O341.6%、CaO26.76%、SiO24.00%、
MgO0.89%、Fe2O30.04%、Na2O0.05%、
K2O0.003%、A2O30.09%、IgLoss24.29%、付
着水1.37%を含むコレマナイト鉱200gに
SiO299.9%を含むフラツタリーサンド18.8gを加
え、容量1のポリエチレン製ポツトミル中で4
時間乾式混合した。この混合粉末を760℃で30分
間加熱乾燥して多孔性軽石状物167.8gを作つ
た。この軽石状物を粒状物に粉砕した後、このう
ちの99.4gをカーボン板に載せ、内径95mmのムラ
イト管に装填した。つづいて、管内雰囲気をアン
モニアガスで置換し、同管内にアンモニアガスを
0.53/minの流量で供給しながら、300℃/min
の昇温速度で1160℃まで昇温し、1時間保持した
後、直ちにアンモニアガスの供給を停止し、代わ
りにアルゴンガスを供給しながら自然放冷して反
応生成物84.4gを得た。
Example 1 B2O3 41.6 %, CaO26.76%, SiO2 4.00%,
MgO0.89%, Fe2O30.04 %, Na2O0.05 % ,
200 g of colemanite ore containing 0.003% K 2 O, 0.09% A 2 O 3 , 24.29% IgLoss, and 1.37% attached water.
Add 18.8 g of flattery sand containing 99.9% SiO 2 and mix in a polyethylene pot mill with a capacity of 4.
Dry mixed for an hour. This mixed powder was dried by heating at 760° C. for 30 minutes to produce 167.8 g of porous pumice. After pulverizing this pumice-like material into granules, 99.4 g of the granules were placed on a carbon plate and loaded into a mullite tube with an inner diameter of 95 mm. Next, replace the atmosphere inside the tube with ammonia gas, and add ammonia gas into the tube.
300℃/min while supplying at a flow rate of 0.53/min
The temperature was raised to 1160° C. at a heating rate of 1,160° C. and held for 1 hour, and then the supply of ammonia gas was immediately stopped, and instead, argon gas was supplied while allowing the mixture to cool naturally to obtain 84.4 g of a reaction product.

得られた生成物を粉末X線回折法にて分析した
ところ、BNとα′−2CaO・SiO2だけの回折ピー
クを示した。生成物のうち6.2gをカーボンルツ
ボに取り、窒素気流中で1800℃の温度下で加熱し
たが、溶融した形態もなく、かつその回折結果も
BNとα′−2CaO・SiO2のピークを示し高い耐火
性を付することが確認された。
When the obtained product was analyzed by powder X-ray diffraction, it showed diffraction peaks of only BN and α'-2CaO.SiO 2 . 6.2g of the product was placed in a carbon crucible and heated at 1800℃ in a nitrogen stream, but no molten form was found, and the diffraction results also showed that
The peaks of BN and α′-2CaO・SiO 2 were observed, and it was confirmed that the material had high fire resistance.

また、残りの生成物78.2gを振動ミルで微粉砕
し、4NのHC360c.c.に入れて充分酸溶出した
後、吸引濾過、水洗を6回繰り返し、更に80℃で
1日夜乾燥して白色粉末を得た。この白色粉末を
X線回折で分析したところ窒化硼素のみのピーク
を示した。また、白色粉末の重量は32.0gでBN
の理論生成量(32.25g)の99.2%にあたり、良
好な生成収率を示した。また、Warrenの式;0.9
×λ/Bcos〔但し、λはCuKα線の波長(1.542
Å)、Bは半値巾の補正値B2√M S ここ
でBMは窒化硼素(002)の半値巾、BSはシリコ
ン(111)の半値巾、は窒化硼素の回折角を示
す〕より結晶子のC軸方向の厚みLCを測定した
結果、460Åであり、かなりの結晶化が進んでい
ることが確認された。
In addition, 78.2 g of the remaining product was finely pulverized with a vibrating mill, put into 4N HC360c.c., and thoroughly eluted with acid, followed by suction filtration and washing with water 6 times, and then dried at 80℃ for 1 day and night to produce a white color. A powder was obtained. When this white powder was analyzed by X-ray diffraction, it showed only a peak of boron nitride. Also, the weight of the white powder is 32.0g and BN
This was 99.2% of the theoretical production amount (32.25 g), indicating a good production yield. Also, Warren's equation; 0.9
×λ/Bcos [However, λ is the wavelength of CuKα ray (1.542
Å), B is the half-width correction value B2√ M 2S 2 where B M is the half-width of boron nitride (002), B S is the half-width of silicon (111), and B is the diffraction angle of boron nitride. ], the thickness L C of the crystallite in the C-axis direction was measured to be 460 Å, confirming that crystallization had progressed considerably.

実施例 2 実施例1で作つた多孔性軽石状物の残り68.4g
をカーボン板に載せ、内径95mmのムライト管に装
填した。つづいて、管内雰囲気をアンモニアガス
で置換し、同管内にアンモニアガスを0.53/
minの流量で供給しながら、300℃/minの昇温速
度で1160℃まで昇温し、1時間保持した後、直ち
にアンモニアガスの供給を停止し、代わりに窒素
ガスを0.03/min供給しながら1250℃に上げ4
時間保持し、その後窒素ガスを流しながら自然放
冷して反応生成物57.7gを得た。得られた生成物
は粉末X線回折法で分析したところBNとα′−
2CaO・SiO2だけの回折ピークを示した。この生
成物を実施例1と同様に粉砕、酸溶出濾過、水
洗、乾燥をして白色粉末を得た。この白色粉末は
X線回折でBNだけのピークを示した。また白色
粉末の重量は23.5gでBNの理論生成量(23.8
g)の98.7%に当たり良好な生成収率を示した。
またLC(002)は1029.9Åで非常に高い結晶化度
を有している事が確認された。
Example 2 Remaining porous pumice material made in Example 1: 68.4g
was placed on a carbon plate and loaded into a mullite tube with an inner diameter of 95 mm. Next, the atmosphere inside the tube was replaced with ammonia gas, and the ammonia gas was added to the tube at 0.53%
The temperature was raised to 1160°C at a rate of 300°C/min while supplying at a flow rate of 0.03 min, and after holding for 1 hour, the supply of ammonia gas was immediately stopped, and nitrogen gas was supplied at 0.03/min instead. Raise to 1250℃ 4
The mixture was maintained for a certain period of time, and then allowed to cool naturally while flowing nitrogen gas to obtain 57.7 g of a reaction product. The obtained product was analyzed by powder X-ray diffraction and was found to be BN and α′-
It showed a diffraction peak only for 2CaO・SiO 2 . This product was pulverized, filtered with acid elution, washed with water, and dried in the same manner as in Example 1 to obtain a white powder. This white powder showed only a BN peak in X-ray diffraction. The weight of the white powder is 23.5g, and the theoretical production amount of BN (23.8
g) showed a good production yield of 98.7%.
Furthermore, it was confirmed that L C (002) had a very high degree of crystallinity at 1029.9 Å.

実施例 3 まず、B2O345.58%、CaO25.42%、SiO23.66
%、MgO0.88%、Fe2O30.49%、Na2O0.06%、
K2O0.21%、A2O30.88%、IgLoss22.8%及び付
着水1.29%を含むコレマナイト鉱を用意し、これ
をポツトミルにて粉砕した。つづいて、この粉砕
コレマナイト鉱200gとSiO299.9%を含むフラツ
タリーサンド47.2gとを混合した後、760℃、30
分間加熱乾燥して多孔性軽石状物200.8gを作つ
た。このうちの100gを取りアンモニアとの反応
温度を1240℃に変えた他は実施例1と同一条件で
処理して反応生成物85.6gを得た。
Example 3 First, B 2 O 3 45.58%, CaO2 5.42%, SiO 2 3.66
%, MgO0.88%, Fe 2 O 3 0.49%, Na 2 O 0.06%,
Colemanite ore containing 0.21% K 2 O, 0.88% A 2 O 3 , 22.8% IgLoss and 1.29% attached water was prepared and ground in a pot mill. Next, 200 g of this crushed colemanite ore and 47.2 g of flattery sand containing 99.9% SiO 2 were mixed and heated at 760°C for 30 minutes.
The mixture was heated and dried for 200.8 g of porous pumice. 100g of this was taken and treated under the same conditions as in Example 1 except that the reaction temperature with ammonia was changed to 1240°C to obtain 85.6g of a reaction product.

得られた生成物を粉末X線回折で分析したとこ
ろ、BNとα−CaO・SiO2だけのピークを示し
た。この生成物を実施例1と同条件で粉砕、酸溶
出、乾燥を行なつたところ白色粉末を得た。この
白色粉末をX線回折で分析したところ、BNだけ
の回折ピークを示した。白色粉末の重量は29.5g
でBNの理論生成量(32.4g)の91.0%に相当し
た。また、LC(002)の測定値は370Åで結晶化
がかなり進んでいることが確認された。
When the obtained product was analyzed by powder X-ray diffraction, it showed only peaks of BN and α-CaO·SiO 2 . This product was pulverized, acid eluted and dried under the same conditions as in Example 1 to obtain a white powder. When this white powder was analyzed by X-ray diffraction, it showed a diffraction peak only for BN. The weight of the white powder is 29.5g
This corresponded to 91.0% of the theoretical production amount of BN (32.4 g). Furthermore, the measured value of L C (002) was 370 Å, which confirmed that crystallization had progressed considerably.

実施例 4 実施例3で作つた多孔性軽石状物の残り100.8
gを取りアンモニアとの反応を1240℃、1時間に
変えた他は実施例2と同一条件で反応、熱処理し
反応生成物86.1gを得た。
Example 4 Remaining porous pumice material made in Example 3 100.8
86.1 g of a reaction product was obtained by reaction and heat treatment under the same conditions as in Example 2, except that the reaction with ammonia was changed to 1240° C. for 1 hour.

得られた生成物はBNとα−CaO・SiO2だけの
X線回折ピークを示した。この生成物を実施例1
と同一条件で粉砕、酸溶出、濾過、水洗、乾燥を
行なつたところ白色粉末を得た。この粉末はBN
だけのX線回折ピークを示した。白色粉末の重量
は30.3gでBNの理論生成量(32.6g)の92.8%に
相当した。またLC(002)の測定値は712.1Åで
結晶化がかなり進んでいる事が確認された。
The obtained product showed X-ray diffraction peaks of only BN and α-CaO·SiO 2 . This product was prepared in Example 1.
After pulverization, acid elution, filtration, washing with water, and drying under the same conditions as above, a white powder was obtained. This powder is BN
showed only one X-ray diffraction peak. The weight of the white powder was 30.3 g, which corresponded to 92.8% of the theoretical production amount of BN (32.6 g). Furthermore, the measured value of L C (002) was 712.1 Å, which confirmed that crystallization had progressed considerably.

Claims (1)

【特許請求の範囲】[Claims] 1 自然に産するコレマナイト鉱のCaOに対する
SiO2のモル比が0.5≦SiO2/CaO≦1.0となるよう
にシリカ分を調整したものを原料とし、この原料
を1000℃以上の温度下でアンモニアと反応させる
ことを特徴とする窒化硼素を含むセラミツク物質
の製造方法。
1 Regarding CaO of naturally occurring colemanite ore
Boron nitride is produced by using a raw material whose silica content is adjusted so that the molar ratio of SiO 2 is 0.5≦SiO 2 /CaO≦1.0, and reacting this raw material with ammonia at a temperature of 1000°C or higher. A method of manufacturing a ceramic material comprising:
JP56140778A 1981-09-07 1981-09-07 Preparation of ceramic substance containing boron nitride Granted JPS5841706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56140778A JPS5841706A (en) 1981-09-07 1981-09-07 Preparation of ceramic substance containing boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56140778A JPS5841706A (en) 1981-09-07 1981-09-07 Preparation of ceramic substance containing boron nitride

Publications (2)

Publication Number Publication Date
JPS5841706A JPS5841706A (en) 1983-03-11
JPS6159243B2 true JPS6159243B2 (en) 1986-12-15

Family

ID=15276522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56140778A Granted JPS5841706A (en) 1981-09-07 1981-09-07 Preparation of ceramic substance containing boron nitride

Country Status (1)

Country Link
JP (1) JPS5841706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526939U (en) * 1991-09-17 1993-04-06 村田機械株式会社 Roll paper storage device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256307A (en) * 1985-09-05 1987-03-12 Tokuyama Soda Co Ltd Production of powder mixed with boron nitride
FR2817855B1 (en) * 2000-12-11 2003-09-05 Saint Gobain Ct Recherches BORON NITRIDE POWDER AND PROCESS FOR ITS PREPARATION
US7297317B2 (en) 2004-12-28 2007-11-20 Momentive Performance Materials Inc. Process for producing boron nitride
DE112013007154B4 (en) * 2013-06-14 2018-10-31 Yeditepe Universitesi Production process for boron nitride nanotubes
JP6516594B2 (en) * 2015-07-01 2019-05-22 株式会社トクヤマ Hexagonal boron nitride particles and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526939U (en) * 1991-09-17 1993-04-06 村田機械株式会社 Roll paper storage device

Also Published As

Publication number Publication date
JPS5841706A (en) 1983-03-11

Similar Documents

Publication Publication Date Title
Schnick et al. High temperature syntheses of novel nitrido-and oxonitrido-silicates and sialons using rf furnaces
US4241037A (en) Process for purifying silicon
US3356513A (en) Production of silicon oxynitride
Sugano et al. Hydrothermal synthesis of zeolite A using blast furnace slag
US3080242A (en) Fibrous aluminum borate and its preparation
JPS6159243B2 (en)
JP2003522702A (en) Preparation method of amorphous silica
JPS5953214B2 (en) Method for producing zeolite whose main component is coal ash rich in alumina
US3586479A (en) Production of synthetic faujasite
JP3624244B2 (en) Rare earth borosilicate and method for producing the same
US5258170A (en) Process for producing silicon carbide platelets
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
JPH0151443B2 (en)
JPS60260419A (en) Manufacture of silane
RU2026814C1 (en) Method of high-pure silicon preparing
JP3852790B2 (en) Method for producing oxide ceramics
JPS6025384B2 (en) Manufacturing method of high-density magnesia sintered body
RU2197440C2 (en) Raw material concentrate for production of glass and ceramics and method of production of such material
JPS638043B2 (en)
JPH0321485B2 (en)
JPS5854120B2 (en) Method for manufacturing silicon nitride whiskers
JP2683397B2 (en) Method for manufacturing SiC whiskers
JPH0764533B2 (en) Method for producing fine silicon carbide powder
JPS60259627A (en) Production of potassium hexatitanate fiber or its composite fiber
Durham et al. Process parameters for the production of silicon nitride by carbothermal reduction