JPS6158958B2 - - Google Patents

Info

Publication number
JPS6158958B2
JPS6158958B2 JP8678975A JP8678975A JPS6158958B2 JP S6158958 B2 JPS6158958 B2 JP S6158958B2 JP 8678975 A JP8678975 A JP 8678975A JP 8678975 A JP8678975 A JP 8678975A JP S6158958 B2 JPS6158958 B2 JP S6158958B2
Authority
JP
Japan
Prior art keywords
preheating
voltage
discharge lamp
circuit
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8678975A
Other languages
Japanese (ja)
Other versions
JPS5211668A (en
Inventor
Koichiro Tanikawa
Seigo Takahashi
Kuninori Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP8678975A priority Critical patent/JPS5211668A/en
Publication of JPS5211668A publication Critical patent/JPS5211668A/en
Publication of JPS6158958B2 publication Critical patent/JPS6158958B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、フイラメント予熱型の放電灯を点灯
する放電灯始動装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a discharge lamp starting device for lighting a filament preheating type discharge lamp.

〔背景技術〕[Background technology]

従来、この種の放電灯始動装置は、第5図に示
すように、電源1に電源スイツチ13及び安定器
2を介してフイラメント予熱型の放電灯3を接続
し、この放電灯3のフイラメント4,4′非電源
側端子間に始動用高圧を発生するパルス発生回路
5と、フイラメント予熱を制御する予熱通電用ス
イツチ回路6と、予熱通電用スイツチ回路6を制
御する予熱制御回路9とを接続し、放電灯始動時
には、負の半サイクルにおいて始動用高圧パルス
を印加しつつ、正の半サイクルにおいて予熱電流
を流して点灯へと移行させ、放電灯点灯中は、放
電灯3の両端電圧の低下等を検知して始動用高圧
パルスの発生を停止するとともに、予熱制御回路
9により予熱電流を遮断している。しかしなが
ら、このような従来例にあつては、放電灯3が寿
命のためにフイラメント4,4′が放電不良とな
つたり、放電灯3のガラス管の破損等により管内
真空度が異常に低下して放電灯3が正常点灯不能
状態なると、放電灯両端電圧に基いてフイラメン
ト予熱を制御している予熱制御回路9は、フイラ
メント4,4′に予熱電流を流し続けるようにな
つていた。
Conventionally, this type of discharge lamp starting device connects a filament preheating type discharge lamp 3 to a power source 1 via a power switch 13 and a ballast 2, as shown in FIG. , 4' A pulse generation circuit 5 that generates a high voltage for starting between the non-power supply side terminals, a preheating energization switch circuit 6 that controls filament preheating, and a preheating control circuit 9 that controls the preheating energization switch circuit 6 are connected. When starting the discharge lamp, a high-voltage pulse for starting is applied in the negative half cycle, and a preheating current is passed in the positive half cycle to shift to lighting. The generation of the high voltage pulse for starting is stopped upon detecting the drop, etc., and the preheating control circuit 9 cuts off the preheating current. However, in such a conventional example, the filaments 4 and 4' may fail to discharge due to the life of the discharge lamp 3, or the degree of vacuum inside the tube may drop abnormally due to breakage of the glass tube of the discharge lamp 3, etc. When the discharge lamp 3 becomes unable to be lit normally, the preheating control circuit 9, which controls filament preheating based on the voltage across the discharge lamp, continues to flow preheating current to the filaments 4, 4'.

この場合、予熱通電用スイツチ素子等の電子回
路部品及び安定器2には、異常電流が流れ続ける
ことになり、温度上昇して発煙、劣化等が生じる
と共に、始動機能を失う故障状態に陥る恐れがあ
つた。また、不要な電力損失も大きくなり、しか
も、温度上昇を防止するために放熱フイン等を付
加する必要が生じ、始動装置の全体形状が大きく
なるという問題があつた。また、周囲温度が低い
場合において、負の半サイクルにおいて高圧パル
スの印加により微放電を行つているにも拘わら
ず、次の正の半サイクルで予熱を行うために放電
灯3に印加される電圧が低くなつて放電が持続せ
ず、正常点灯に移行できない場合があるという問
題があつた。
In this case, abnormal current will continue to flow through the electronic circuit components such as the preheating switch element and the ballast 2, causing temperature rise, smoke generation, deterioration, etc., and the possibility of a failure state in which the starting function will be lost. It was hot. In addition, unnecessary power loss increases, and it becomes necessary to add heat dissipation fins or the like to prevent temperature rise, resulting in a problem that the overall shape of the starter device becomes larger. Furthermore, when the ambient temperature is low, the voltage applied to the discharge lamp 3 is applied to perform preheating in the next positive half cycle, even though a slight discharge is performed by applying a high voltage pulse in the negative half cycle. There was a problem in that there were cases where the light became low and the discharge was not sustained, making it impossible to switch to normal lighting.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みて為されたものであ
り、その目的とするところは、放電灯の寿命、管
内真空度の低下等による異常点灯時に、フイラメ
ントの予熱電流が流れ続けて電子回路部品、安定
器等の温度上昇による発煙や破損を防ぐことがで
きるとともに不要な電力消費を防止することがで
き、さらにまた、周囲温度が低い場合における始
動特性を改善することができる放電灯始動装置を
提供することにある。
The present invention has been made in view of the above points, and its purpose is to prevent the filament's preheating current from continuing to flow during abnormal lighting due to the lifetime of the discharge lamp or a decrease in the degree of vacuum inside the tube, thereby preventing electronic circuit components. We have developed a discharge lamp starting device that can prevent smoke and damage caused by temperature rises in ballasts, etc., as well as prevent unnecessary power consumption, and also improve starting characteristics when the ambient temperature is low. It is about providing.

〔発明の開示〕[Disclosure of the invention]

(実施例) 第1図は本発明一実施例を示すもので、1は商
用周波の電源で、この電源1に電源スイツチ13
及びチヨークコイルのような安定器2を介して放
電灯3のフイラメント4,4′の一端を接続す
る。この放電灯3のフイラメント4,4′の非電
源側端子には、始動用高圧パルスを発生するパル
ス発生回路5が接続されており、このパルス発生
回路5は、前記電源1の負の半サイクル期間に順
方向となる3端子サイリスタ14と、抵抗16が
並列接続されたコンデンサ15との直列回路及び
抵抗17,18の直列回路をフイラメント4,
4′の非電源側端子間に接続し、抵抗17,18
の接続点をサイリスタ14のゲート端子に接続し
て形成されている。また、このパルス発生回路5
と並列に、電源1の正の半サイクル期間に順方向
となる方向に予熱通電用スイツチ素子たる予熱通
電用サイリスタ6aとダイオード19の直列回路
が接続されている。
(Embodiment) Fig. 1 shows an embodiment of the present invention, in which 1 is a commercial frequency power supply, and a power switch 13 is connected to this power supply 1.
and one ends of the filaments 4, 4' of the discharge lamp 3 are connected via a ballast 2 such as a chiyoke coil. A pulse generation circuit 5 that generates a high voltage pulse for starting is connected to the non-power supply side terminals of the filaments 4 and 4' of this discharge lamp 3. A series circuit of a three-terminal thyristor 14 which is in the forward direction during a period, a capacitor 15 with a resistor 16 connected in parallel, and a series circuit of resistors 17 and 18 are connected to the filament 4,
Connect between the non-power side terminals of 4' and resistors 17 and 18.
The connection point of the thyristor 14 is connected to the gate terminal of the thyristor 14. In addition, this pulse generation circuit 5
In parallel with this, a series circuit of a preheating energizing thyristor 6a, which is a preheating energizing switch element, and a diode 19 is connected in the forward direction during the positive half cycle period of the power supply 1.

さらにまた、上記パルス発生回路5と並列に、
放電灯両端電圧を整流して分圧平滑した分圧電圧
を形成する分圧平滑回路7と、上記分圧電圧と基
準電圧とを比較して該分圧電圧が基準電圧より高
いときに予熱通電用スイツチを導通させると共に
該分圧電圧が基準電圧よりも低いときに予熱通電
用スイツチ素子を遮断させる予熱制御信号を出力
する比較スイツチ回路8と、該予熱制御信号によ
り予熱通電用サイリスタ6aを制御するスイツチ
制御回路9aとよりなる予熱制御回路9が接続さ
れている。
Furthermore, in parallel with the pulse generating circuit 5,
A voltage dividing smoothing circuit 7 forms a divided voltage by rectifying the voltage across the discharge lamp and smoothing the voltage, and compares the divided voltage with a reference voltage, and performs preheating energization when the divided voltage is higher than the reference voltage. a comparison switch circuit 8 that outputs a preheating control signal that turns on the preheating switch and cuts off the preheating energization switch element when the divided voltage is lower than the reference voltage; and the preheating energization thyristor 6a is controlled by the preheating control signal. A preheating control circuit 9 consisting of a switch control circuit 9a is connected thereto.

ここに、分圧平滑回路7は、電源1の負の半サ
イクルに順方向となるダイオード20と抵抗2
1、及び抵抗22の直列回路をフイラメント4,
4′の非電源側端子に接続し、抵抗22と並列に
コンデンサ23を接続して形成されている。
Here, the voltage dividing smoothing circuit 7 includes a diode 20 and a resistor 2 which are in the forward direction during the negative half cycle of the power supply 1.
1, and a series circuit of resistor 22 is connected to filament 4,
4', and a capacitor 23 is connected in parallel with the resistor 22.

また、比較スイツチ回路8は、分圧平滑回路7
の抵抗22の両端に、NPNトランジスタ24の
エミツタ、ベース端子とツエナーダイオード等の
定電圧素子25との直列回路を接続し、トランジ
スタ24のコレクタ端子と直列に、制御用スイツ
チ素子たるNPNトランジスタ10のエミツタ、
コレクタ端子を接続して形成されている。
The comparison switch circuit 8 also includes a voltage dividing smoothing circuit 7.
A series circuit consisting of the emitter and base terminals of the NPN transistor 24 and a constant voltage element 25 such as a Zener diode is connected to both ends of the resistor 22, and the NPN transistor 10, which is a control switch element, is connected in series with the collector terminal of the transistor 24. Emitsuta,
It is formed by connecting collector terminals.

また、スイツチ制御回路9aは、トランジスタ
10のコレクタ端子と共通端子e(予熱通電用サ
イリスタ6aのカソードに接続)との間に接続さ
れた抵抗28と、コンデンサ26と、ダイオード
27がベース、エミツタ端子間に逆並列接続され
るとともにコレクタ端子が抵抗31及びダイオー
ド32を介してフイラメント4の非電源側端子に
接続されたNPNトランジスタ29と、トランジ
スタ29のコレクタ、エミツタ端子にベース、エ
ミツタ端子がそれぞれ接続されるとともにコレク
タ端子が抵抗33及びダイオード19を介してフ
イラメント4の非電源側端子に接続されたトラン
ジスタ30とで形成されており、トランジスタ3
0のコレクタ端子が予熱通電用サイリスタ6aの
ゲートに接続されている。
The switch control circuit 9a includes a resistor 28 connected between the collector terminal of the transistor 10 and the common terminal e (connected to the cathode of the preheating thyristor 6a), a capacitor 26, a diode 27, and an emitter terminal. An NPN transistor 29 is connected in antiparallel between the transistors and the collector terminal is connected to the non-power supply side terminal of the filament 4 via a resistor 31 and a diode 32, and the base and emitter terminals are connected to the collector and emitter terminals of the transistor 29, respectively. and a transistor 30 whose collector terminal is connected to the non-power supply side terminal of the filament 4 via a resistor 33 and a diode 19.
The collector terminal of 0 is connected to the gate of the preheating thyristor 6a.

一方、電源投入から一定時間経過後に予熱遮断
信号を出力する限時スイツチ回路38は、分圧平
滑回路7の抵抗22と並列に接続されたコンデン
サ11及び抵抗12の直列回路よりなる時定数回
路と、抵抗22に並列接続されたトランジスタ3
4及び抵抗35の直列回路と、コンデンサ11及
び抵抗12の接続点とトランジスタ34のベース
端子との間に接続される抵抗36及び定電圧ダイ
オードのような定電圧素子37の直列回路とで形
成されており、予熱通電用サイリスタ6aの導通
用予熱制御信号の出力を停止させる制御用スイツ
チ素子たるトランジスタ10をトランジスタ34
のコレクタ出力として出力される予熱遮断信号に
て制御するようになつている。すなわち、トラン
ジスタ10のベース端子には、抵抗39,40,
22にて分圧されたトランジスタ34のコレクタ
電圧が印加されており、電源1が投入されてから
時定数回路及び定電圧素子37にて設定される一
定時間後にトランジスタ10を遮断するようにな
つている。また、この一定時間は、正常な放電灯
始動時の予熱時間よりも長く設定している。
On the other hand, the time limit switch circuit 38 that outputs a preheating cutoff signal after a certain period of time has elapsed from power-on has a time constant circuit consisting of a series circuit of a capacitor 11 and a resistor 12 connected in parallel with the resistor 22 of the voltage dividing smoothing circuit 7. Transistor 3 connected in parallel to resistor 22
4 and a resistor 35, and a series circuit of a resistor 36 and a constant voltage element 37 such as a constant voltage diode, which are connected between the connection point of the capacitor 11 and the resistor 12 and the base terminal of the transistor 34. The transistor 10, which is a control switch element for stopping the output of the preheating control signal for conduction of the preheating energizing thyristor 6a, is replaced by the transistor 34.
It is designed to be controlled by a preheating cutoff signal output as a collector output. That is, the base terminal of the transistor 10 is connected to the resistors 39, 40,
22 is applied to the collector voltage of the transistor 34, and the transistor 10 is cut off after a certain period of time set by the time constant circuit and the constant voltage element 37 after the power supply 1 is turned on. There is. Moreover, this certain period of time is set longer than the preheating time at the time of normal discharge lamp startup.

第2図は実施例の動作説明図であり、第2図イ
は電源1の電圧波形、同図ロは放電灯3の両フイ
ラメント4,4′の非電源側端子間の電圧波形、
同図ハは始動回路に流れる電流波形、同図ニは抵
抗22の両端の分圧電圧波形をそれぞれ示してい
る。
FIG. 2 is an explanatory diagram of the operation of the embodiment, in which FIG. 2A shows the voltage waveform of the power supply 1, FIG.
3C shows a current waveform flowing through the starting circuit, and FIG. 2D shows a divided voltage waveform across the resistor 22.

まず最初に、放電灯3が正常な場合において、
電源スイツチ13を閉成した直後の通常の始動動
作について説明する。いま、電源1の負の半サイ
クルにおいて、パルス発生回路5のコンデンサ1
5の両端電圧は抵抗16により放電されて0にな
つており、3端子スイツチ素子14は遮断状態に
なつている。次に、予熱通電サイリスタ6aを通
して流れていた予熱電流が時刻t2で0となると、
予熱通電用サイリスタ6aが遮断して放電灯3の
両端に第2図イのように既に負の波高値付近に達
している電源1から急激に負の電圧が加わる。こ
こに、抵抗18,17による分圧比をうまく選定
しておくことにより、抵抗18,17にて分圧さ
れた電圧により3端子スイツチ素子14のゲー
ト、カソード間にゲート電流が流れ、3端子スイ
ツチ素子14は直ぐにターンオンしてそのアノー
ド、カソード間が導通状態となり、電源1からフ
イラメント4′、3端子スイツチ素子14、コン
デンサ15、フイラメント4、安定器2、スイツ
チ13を通して電流が流れ、コンデンサ15の端
子電圧が3端子スイツチ素子14のカソード側が
正になる方向(図示した極性)に増大する。次
に、コンデンサ15の端子電圧の上昇に従い、コ
ンデンサ15から3端子スイツチ素子14のカソ
ード、ゲート、抵抗17を通る閉回路を通して3
端子スイツチ素子14のゲートに対し、逆方向に
電流が流れて増大してゆき、3端子スイツチ素子
14のアノードからカソードに流れる電流と、ゲ
ートに流れる逆電流との比が一定値となる時刻t3
にて3端子スイツチ素子14が遮断し、安定器2
のインダクタンスにより第2図ロの実線で示す如
き高圧パルス電圧Vpが発生する。この場合、電
源スイツチ13を閉成した直後においては、放電
灯3の両フイラメント4,4′は温度が低いため
に高圧パルスVpが印加されても放電灯3は点灯
せず、電源電圧波形が負の半サイクルから時刻t4
で正の半サイクルに移行するまでの間、放電灯3
の両端電圧波形も第2図ロの実線の如き波形とな
る。
First of all, when the discharge lamp 3 is normal,
A normal starting operation immediately after closing the power switch 13 will be described. Now, in the negative half cycle of the power supply 1, the capacitor 1 of the pulse generation circuit 5
The voltage across the terminal 5 is discharged by the resistor 16 and becomes 0, and the 3-terminal switch element 14 is in a cut-off state. Next, when the preheating current flowing through the preheating energizing thyristor 6a becomes 0 at time t2 ,
The preheating energizing thyristor 6a is cut off, and a negative voltage is suddenly applied to both ends of the discharge lamp 3 from the power source 1, which has already reached near the negative peak value, as shown in FIG. 2A. By carefully selecting the voltage division ratio of the resistors 18 and 17, a gate current flows between the gate and cathode of the 3-terminal switch element 14 due to the voltage divided by the resistors 18 and 17, and the 3-terminal switch The element 14 immediately turns on and becomes conductive between its anode and cathode, and a current flows from the power supply 1 through the filament 4', the three-terminal switch element 14, the capacitor 15, the filament 4, the ballast 2, and the switch 13. The terminal voltage increases in the direction in which the cathode side of the three-terminal switch element 14 becomes positive (the polarity shown). Next, as the terminal voltage of the capacitor 15 rises, the capacitor 15 passes through the closed circuit passing through the cathode, gate, and resistor 17 of the three-terminal switch element 14 to the three-terminal switch element 14.
A current flows in the opposite direction to the gate of the terminal switch element 14 and increases, and the time t when the ratio of the current flowing from the anode to the cathode of the three-terminal switch element 14 to the reverse current flowing to the gate becomes a constant value. 3
The three-terminal switch element 14 shuts off, and the ballast 2
Due to the inductance, a high voltage pulse voltage Vp as shown by the solid line in FIG. 2B is generated. In this case, immediately after the power switch 13 is closed, the temperature of both filaments 4 and 4' of the discharge lamp 3 is low, so even if the high voltage pulse Vp is applied, the discharge lamp 3 does not light up, and the power supply voltage waveform changes. Time t 4 from negative half cycle
Until the transition to the positive half cycle, the discharge lamp 3
The voltage waveform at both ends of the line also has a waveform as shown by the solid line in FIG. 2(b).

ところで、放電灯3の両端電圧は、分圧平滑回
路7のダイオード20にて整流されるとともに、
抵抗21,22により分圧され、コンデンサ23
により平滑されており、放電灯3が未点灯時に
は、第2図ニの実線で示す如き、充放電電圧波形
よりなる分圧電圧が発生する。
By the way, the voltage across the discharge lamp 3 is rectified by the diode 20 of the voltage dividing smoothing circuit 7, and
Voltage is divided by resistors 21 and 22, and capacitor 23
When the discharge lamp 3 is not lit, a divided voltage having a charging/discharging voltage waveform as shown by the solid line in FIG. 2D is generated.

比較スイツチ回路8のトランジスタ24及び定
電圧素子25により構成される回路は、定電圧素
子25にて設定される基準電圧と、分圧平滑回路
7から出力される分圧電圧の比較を行う回路であ
り、放電灯3の未点灯時には、抵抗22の両端電
圧が定電圧素子25で決まる電圧より大となり、
定電圧素子25を通してトランジスタ24のベー
ス、エミツタ端子間に電流が流れ、トランジスタ
24は導通して電源スイツチ13の投入後の短時
間の間は、予熱通電用サイリスタ6aを導通させ
る予熱制御信号が出力される。なお、この場合、
後述のようにトランジスタ10も電源投入から一
定時間の間導通しているので、予熱制御信号はそ
のまま出力され、スイツチ制御回路9aへ入力さ
れる。
The circuit constituted by the transistor 24 and the constant voltage element 25 of the comparison switch circuit 8 is a circuit that compares the reference voltage set by the constant voltage element 25 and the divided voltage output from the voltage dividing smoothing circuit 7. Yes, when the discharge lamp 3 is not lit, the voltage across the resistor 22 is higher than the voltage determined by the constant voltage element 25,
A current flows between the base and emitter terminals of the transistor 24 through the constant voltage element 25, the transistor 24 becomes conductive, and for a short time after the power switch 13 is turned on, a preheating control signal is output that makes the preheating energizing thyristor 6a conductive. be done. In this case,
As will be described later, since the transistor 10 is also conductive for a certain period of time after the power is turned on, the preheating control signal is output as is and input to the switch control circuit 9a.

このとき、スイツチ制御回路9aでは、ダイオ
ード27、コンデンサ26、トランジスタ10,
24を通して流れる電流によりコンデンサ26が
図示した極性に充電されている。ここに、時間が
経過して電源電圧波形が負の半サイクルから0点
(時刻t4)を経過して正の半サイクルに移行する
と、ダイオード32、抵抗31を通してトランジ
スタ29のコレクタ端子に正電圧が加わることに
なるので、コンデンサ26に蓄えられた電荷はト
ランジスタ29のベース、エミツタ端子間、抵抗
28の閉ループを介して放電されてトランジスタ
29が導通状態となり、ダイオード32、抵抗3
1を通してトランジスタ29のコレクタ、エミツ
タ端子間を流れ、コレクタ、エミツタ端子間電圧
が低下してトランジスタ30は遮断状態になる。
このため、ダイオード19を介して予熱通電用サ
イリスタ6aのアノード、カソード端子間に加わ
つた正電圧により抵抗33、予熱通電用サイリス
タ6aのゲート、カソード端子を通るトリガ電流
が流れ、時刻t5にて予熱通電用サイリスタ6aが
導通し、電源1から安定器2、放電灯3のフイラ
メント4、ダイオード19、予熱通電用サイリス
タ6a、フイラメント4′を通して予熱電流が第
2図ハの時刻t5〜t7に示す如く流れる。この予熱
電流は電源電圧波形が正の波高値を過ぎて低下
し、時刻t6にて正から負の半サイクルに移行した
後も、安定器2のインダクタンスにより流れ続
け、時刻t7で0となつて予熱通電用サイリスタ6
aが遮断する。
At this time, in the switch control circuit 9a, the diode 27, the capacitor 26, the transistor 10,
The current flowing through 24 charges capacitor 26 to the polarity shown. Here, as time passes and the power supply voltage waveform shifts from the negative half cycle to the positive half cycle after passing the 0 point (time t 4 ), a positive voltage is applied to the collector terminal of the transistor 29 through the diode 32 and the resistor 31. Therefore, the charge stored in the capacitor 26 is discharged between the base and emitter terminals of the transistor 29 and through the closed loop of the resistor 28, and the transistor 29 becomes conductive, and the diode 32 and the resistor 3
1 flows between the collector and emitter terminals of the transistor 29, the voltage between the collector and emitter terminals decreases, and the transistor 30 becomes cut off.
Therefore, due to the positive voltage applied between the anode and cathode terminals of the thyristor 6a for preheating energization through the diode 19, a trigger current flows through the resistor 33, the gate, and the cathode terminal of the thyristor 6a for preheating energization, and at time t5 . The preheating energizing thyristor 6a conducts, and the preheating current flows from the power source 1 through the ballast 2, the filament 4 of the discharge lamp 3, the diode 19, the preheating energizing thyristor 6a, and the filament 4' from time t5 to t7 in FIG. It flows as shown in. This preheating current continues to flow due to the inductance of the ballast 2 even after the power supply voltage waveform passes the positive peak value and decreases and shifts from positive to negative half cycle at time t6 , and reaches 0 at time t7 . Thyristor 6 for preheating energization
a blocks it.

以上の動作を繰り返すことにより放電灯3のフ
イラメント4,4′は正の半サイクルで予熱され
ることにより温度上昇し、負の半サイクルで高圧
パルスVpが印加され、予熱の進行に従つて点灯
状態に移行して負の半サイクルで第2図ロに破線
で示すような点灯波形となり、その波高値が低く
なる。この状態に移行すると、第1図の分圧平滑
回路7の分圧電圧は、第2図ニの破線にて示す如
く低下し、定電圧素子25により設定される基準
電圧以下となつてトランジスタ24のベース電流
が流れなくなり、トランジスタ24が遮断してコ
ンデンサ26が充電されなくなる。このコンデン
サ26の電荷が短時間後に放電すると、正の半サ
イクルでトランジスタ29が遮断状態となり、ダ
イオード32、抵抗31を通してトランジスタ3
0のベース、エミツタ端子間に電流が流れ、トラ
ンジスタ30が導通し、抵抗33を通して流れる
電流はトランジスタ30のコレクタ、エミツタ端
子間に流れ、トランジスタ30のコレクタ、エミ
ツタ端子間電圧が低下して、予熱通電用サイリス
タ6aのゲート電流が流れなくなり、予熱通電用
サイリスタ6aが遮断し、放電灯3は正方向にも
点灯して完全点灯となる。
By repeating the above operations, the filaments 4 and 4' of the discharge lamp 3 are preheated in the positive half cycle, and their temperature rises. A high voltage pulse Vp is applied in the negative half cycle, and as the preheating progresses, the filaments 4 and 4' are turned on. In the negative half cycle of the state, the lighting waveform becomes as shown by the broken line in FIG. 2B, and the peak value thereof becomes low. In this state, the divided voltage of the voltage dividing smoothing circuit 7 in FIG. 1 decreases as shown by the broken line in FIG. The base current stops flowing, transistor 24 is cut off, and capacitor 26 is no longer charged. When the charge of this capacitor 26 is discharged after a short time, the transistor 29 is cut off in the positive half cycle, and the transistor 3 is connected through the diode 32 and the resistor 31.
Current flows between the base and emitter terminals of the transistor 30, the transistor 30 becomes conductive, and the current that flows through the resistor 33 flows between the collector and emitter terminals of the transistor 30, and the voltage between the collector and emitter terminals of the transistor 30 decreases, causing preheating. The gate current of the energizing thyristor 6a stops flowing, the preheating energizing thyristor 6a is cut off, and the discharge lamp 3 lights up in the forward direction as well, becoming completely lit.

以上は放電灯3が正常な場合について述べたも
のであるが、放電灯3が寿命のため、放電不能と
なつたり、ガラス管の破損等により管内気圧が高
くなつたりした異常状態での始動動作について説
明する。
The above is a description of the case where the discharge lamp 3 is normal, but the startup operation is performed in an abnormal situation where the discharge lamp 3 has reached the end of its service life and is no longer able to discharge, or the pressure inside the tube has increased due to damage to the glass tube, etc. I will explain about it.

いま、電源スイツチ13を閉成すると、電源1
の負の半サイクルにて抵抗22の両端には第2図
ニの実線で示す電圧が生じ、限時スイツチ回路3
8のコンデンサ11は、図示した極性に充電され
る。ここに、放電灯3が異常により点灯しない場
合、コンデンサ11の両端電圧が抵抗12、コン
デンサ11の容量値で決まる充電時定数、及び定
電圧ダイオード37の電圧で決まる一定時間後
に、定電圧ダイオード37の基準電圧以上に達す
ると、トランジスタ34のベース電流が流れてト
ランジスタ34が導通状態になり、トランジスタ
34のコレクタ、エミツタ端子間電圧が低下して
予熱遮断信号が出力される。
Now, when power switch 13 is closed, power supply 1
In the negative half cycle of , a voltage shown by the solid line in FIG. 2D is generated across the resistor 22, and the time limit switch circuit
8 is charged to the polarity shown. Here, if the discharge lamp 3 does not light up due to an abnormality, the voltage across the capacitor 11 is changed to the voltage regulator diode 37 after a certain period of time determined by the charging time constant determined by the resistor 12, the capacitance value of the capacitor 11, and the voltage of the voltage regulator diode 37. When the reference voltage reaches the reference voltage or higher, the base current of the transistor 34 flows, the transistor 34 becomes conductive, the voltage between the collector and emitter terminals of the transistor 34 decreases, and a preheat cutoff signal is output.

このトランジスタ34のコレクタ、エミツタ端
子間電圧は、抵抗39,40,22にて分圧され
ているため、トランジスタ34のコレクタ、エミ
ツタ間電圧が高い場合には、抵抗35、抵抗39
を介してトランジスタ10のベース、エミツタ端
子間にベース電流が流れ、トランジスタ10は導
通状態であるが、トランジスタ34が導通してコ
レクタ、エミツタ端子間電圧が低くなつた時に
は、ベース電流が流れなくなつてトランジスタ1
0は遮断状態となる。したがつて、比較スイツチ
回路8から予熱通電用サイリスタ6aを導通させ
る予熱制御信号が出力されなくなり、スイツチ制
御回路9aのコンデンサ26が充電されなくなつ
て前述と同様にして予熱電流が遮断されて安定器
2及び始動回路の電子部品の温度上昇を未然に防
止するようになつている。
The voltage between the collector and emitter terminals of the transistor 34 is divided by the resistors 39, 40, and 22, so if the voltage between the collector and emitter of the transistor 34 is high, the resistor 35 and the resistor 39
A base current flows between the base and emitter terminals of the transistor 10 through the transistor 10, and the transistor 10 is in a conductive state, but when the transistor 34 is conductive and the voltage between the collector and emitter terminals becomes low, the base current stops flowing. transistor 1
0 is a cutoff state. Therefore, the preheating control signal that makes the preheating energizing thyristor 6a conductive is no longer output from the comparison switch circuit 8, the capacitor 26 of the switch control circuit 9a is no longer charged, and the preheating current is cut off and stabilized in the same manner as described above. This prevents the temperature of the electronic components of the starter 2 and the starting circuit from rising.

また、電源スイツチ13の投入後、予熱遮断用
の限時スイツチ回路38が動作し、予熱通電用サ
イリスタ6aが遮断して予熱電流が強制的に停止
される迄に要する予熱遮断時間は、コンデンサ1
1の容量値及び抵抗12の抵抗値を調整すること
により、正常な放電灯3の点灯に要する予熱時間
よりも長く設定しておくことにより、正常な放電
灯3の始動時には、トランジスタ10の遮断より
もトランジスタ24が先に遮断し、正常な放電灯
3の点灯には何等影響を与えない。
Further, after the power switch 13 is turned on, the time limit switch circuit 38 for preheating cutoff operates, the preheating energizing thyristor 6a is cut off, and the preheating current is forcibly stopped.
By adjusting the capacitance value of 1 and the resistance value of resistor 12, the preheating time required for normal lighting of the discharge lamp 3 is set to be longer than the preheating time required for normal lighting of the discharge lamp 3. The transistor 24 is cut off first, and the normal lighting of the discharge lamp 3 is not affected in any way.

ところで、周囲温度が低下した場合において、
電源スイツチ13の投入後に一定時間予熱して負
の半サイクルで放電が開始されても、周囲温度が
低く、しかも電源電圧が低い場合などの悪条件の
もとでは、放電灯3の両フイラメント4,4′間
の放電電流は、まだ十分に大きくなつておらず弱
い放電が行なわれているので、放電灯3の両端電
圧が十分に低減されない状態が持続している。従
つて、負の半サイクル側でパルス電圧が発生を続
けるか、もしくはパルス発生と消減を繰り返し、
また、分圧平滑回路7のコンデンサ23の両端電
圧もまだ高いので、トランジスタ24が導通し続
け、予熱通電用サイリスタ6aも導通状態を続け
て未点灯状態を持続することがある。
By the way, when the ambient temperature drops,
Even if discharge is started in the negative half cycle after preheating for a certain period of time after turning on the power switch 13, under adverse conditions such as low ambient temperature and low power supply voltage, both filaments 4 of the discharge lamp 3 . Therefore, on the negative half-cycle side, the pulse voltage continues to be generated, or the pulse voltage repeatedly occurs and disappears,
Furthermore, since the voltage across the capacitor 23 of the voltage dividing and smoothing circuit 7 is still high, the transistor 24 may continue to be conductive, and the preheating energizing thyristor 6a may also continue to be conductive, resulting in a non-lighting state.

このように、負の半サイクル側で放電が不完全
なために放電灯3の両端電圧が高くなつており、
予熱通電用サイリスタ6aを導通状態にする状況
であつても、本発明にあつては、限時スイツチ回
路38の時定数回路にて設定される一定時間後に
トランジスタ34が導通してトランジスタ10が
遮断し、予熱通電用サイリスタ6aが強制的に遮
断されるようになつているので、放電灯3を正常
点灯に移行させることができるようになつてい
る。すなわち、予熱通電用サイリスタ6aが強制
的に遮断されると、正の半サイクルに放電灯3の
両端に印加される電圧は、予熱通電用サイリスタ
6aが導通している場合の低い電圧(第2図ロの
時刻t4〜t5の実線)から予熱通電用サイリスタ6
aが遮断した場合の高い電圧(同図イの時刻t4
t6における、ほぼ電源電圧のピーク値に相当する
電圧)となるため、前の負の半サイクル側では不
完全ながらも放電が開始されていることも加わつ
て、この正の半サイクル側で放電点灯し、次の負
の半サイクルでは前の半サイクルで点灯したため
正、負のイオンが充分に放電管内に残つているた
め導電性が著しく良くなり、完全な放電へと移行
するようになつている。
In this way, since the discharge is incomplete on the negative half cycle side, the voltage across the discharge lamp 3 is high,
Even if the preheating energizing thyristor 6a is in a conductive state, in the present invention, the transistor 34 becomes conductive and the transistor 10 is cut off after a certain period of time set by the time constant circuit of the time limit switch circuit 38. Since the preheating energizing thyristor 6a is forcibly cut off, the discharge lamp 3 can be switched to normal lighting. That is, when the preheating energizing thyristor 6a is forcibly cut off, the voltage applied across the discharge lamp 3 during the positive half cycle is lower than the voltage applied when the preheating energizing thyristor 6a is conducting (the second The preheating energizing thyristor 6 starts from the solid line from time t4 to t5 in Figure B.
High voltage when a is cut off (from time t 4 to a in the figure)
(approximately corresponds to the peak value of the power supply voltage at t 6 ), so in addition to the fact that discharge had already started, albeit incompletely, on the previous negative half-cycle side, the discharge on this positive half-cycle side It lights up, and in the next negative half cycle, since it was lit in the previous half cycle, there are enough positive and negative ions remaining in the discharge tube, so the conductivity improves significantly, and a complete discharge begins. There is.

また、本発明は、多灯点灯回路にも同様に適用
でき、同様の効果が得られることは言うまでもな
く、しかも多灯点灯回路に用いた場合には、異常
状態の放電灯以外の正常な放電灯は全部点灯させ
ることができるので、実用価値を高めることがで
きる。
Furthermore, it goes without saying that the present invention can be similarly applied to a multiple lamp lighting circuit, and the same effect can be obtained. Since all the electric lights can be turned on, the practical value can be increased.

第3図は、他の実施例を示すもので、パルス発
生回路5としてSSS等の2端子サイリスタ41、
コンデンサ42、パルストランス43、ダイオー
ド46、抵抗47を利用した弛張発振回路を用
い、限時スイツチ回路38のスイツチ素子として
SCR等の3端子サイリスタ44を用い、比較ス
イツチ回路8の比較スイツチ用のトランジスタ2
4と、予熱遮断制御用のトランジスタ10の位置
を逆転し、予熱通電用サイリスタ6aのゲート、
カソード間に保護用抵抗45を挿入したもので、
第1図に示した実施例と全く同様の作用を行うこ
とができる。
FIG. 3 shows another embodiment, in which the pulse generating circuit 5 includes a two-terminal thyristor 41 such as SSS,
A relaxation oscillation circuit using a capacitor 42, a pulse transformer 43, a diode 46, and a resistor 47 is used as a switch element of the time limit switch circuit 38.
Using a 3-terminal thyristor 44 such as an SCR, the comparison switch transistor 2 of the comparison switch circuit 8 is used.
4, the position of the transistor 10 for preheating cutoff control is reversed, and the gate of the thyristor 6a for preheating energization,
A protective resistor 45 is inserted between the cathodes.
It is possible to perform exactly the same operation as the embodiment shown in FIG.

また、第4図は、第1図のパルス発生回路5の
ゲートトリガ用抵抗18の代わりに、コンデンサ
48を用いたもので、放電灯3の異常等により限
時スイツチ回路38が動作し、放電灯3の両端間
に電源電圧波形が現れると、電圧変化dv/dtが
小さくなつてゲートトリガ電流が低下し、パルス
発生素子が遮断することによりパルス発生をも停
止させるようにしたものであり、空中や電源線を
通して雑音が発生することによる通信障害も同時
になくすことができるようになつている。
In addition, in FIG. 4, a capacitor 48 is used in place of the gate trigger resistor 18 of the pulse generating circuit 5 in FIG. When the power supply voltage waveform appears between both terminals of 3, the voltage change dv/dt becomes small, the gate trigger current decreases, and the pulse generation element is cut off, thereby stopping pulse generation. At the same time, it has become possible to eliminate communication problems caused by noise generated through power lines and power lines.

〔発明の効果〕〔Effect of the invention〕

本発明は上述のように、電源に安定器を介して
フイラメント予熱型の放電灯を接続し、上記放電
灯のフイラメント端子の非電源側端子間に、始動
用高圧パルスを発生するパルス発生回路と、フイ
ラメントへの通電を制御する予熱通電用スイツチ
素子と、放電灯両端電圧波形に基いて予熱通電用
スイツチ素子を制御する予熱制御回路とを接続
し、上記予熱制御回路を、放電灯両端電圧を整流
して分圧平滑した分圧電圧と基準電圧とを比較し
て該分圧電圧が基準電圧より高いときに予熱通電
用スイツチを導通させると共に該分圧電圧が基準
電圧よりも低いときに予熱通電用スイツチ素子を
遮断させる予熱制御信号を出力する比較スイツチ
回路と、該予熱制御信号により予熱通電用スイツ
チ素止を制御するスイツチ制御回路とで形成して
成る放電灯始動装置において、電源投入から一定
時間経過後に予熱遮断信号を出力する限時スイツ
チ回路を設けるとともに、上記予熱遮断信号が出
力されたときに予熱通電用スイツチ素子の導通用
予熱制御信号の出力を停止させる制御用スイツチ
素子を比較スイツチ回路に設け、上記一定時間を
正常な放電灯始動時の予熱時間よりも長く設定し
たものであり、放電灯が正常に点灯しなかつた場
合には、電源投入から一定時間後に予熱が強制的
に停止されるようになつているので、放電灯の寿
命、管内真空度の低下等による異常点灯時に、フ
イラメントの予熱電流が流れ続けて電子回路部
品、安定器等の温度上昇による発煙や破損を防ぐ
ことができるとともに、不要な電力消費を防止す
ることができるという効果があり、また、周囲温
度が低下した際などの始動時において、高圧パル
スにより微放電が行なわれているにも拘わらず予
熱が行なわれる期間にその微放電が停止するため
に正常点灯に移行できない場合にあつても、限時
スイツチ回路により設定される一定時間後に予熱
が強制的に停止されたときに正常点灯へ移行させ
ることができ、周囲温度が低い場合の放電灯の始
動特性を改善できるという効果がある。
As described above, the present invention includes a pulse generation circuit that connects a filament preheating type discharge lamp to a power source via a ballast, and generates a high voltage pulse for starting between the filament terminals of the discharge lamp and the non-power supply side terminals. , a preheating energization switch element that controls energization to the filament is connected to a preheating control circuit that controls the preheating energization switch element based on the voltage waveform across the discharge lamp, and the preheating control circuit is connected to the voltage across the discharge lamp. The rectified and smoothed divided voltage is compared with the reference voltage, and when the divided voltage is higher than the reference voltage, the preheating energization switch is turned on, and when the divided voltage is lower than the reference voltage, the preheating is performed. In a discharge lamp starting device formed by a comparison switch circuit that outputs a preheating control signal to cut off the energizing switch element, and a switch control circuit that controls the preheating energizing switch deactivation based on the preheating control signal, A time limit switch circuit is provided that outputs a preheat cutoff signal after a certain period of time has elapsed, and a control switch element that stops outputting the preheating control signal for conduction of the preheating energization switch element when the preheating cutoff signal is output is provided. This is installed in the circuit, and the above fixed time is set to be longer than the preheating time when the discharge lamp normally starts.If the discharge lamp does not light up normally, preheating is forced after a certain period of time after the power is turned on. Since the lamp is designed to be turned off, the preheating current of the filament continues to flow in the event of abnormal lighting due to the life of the discharge lamp or a decrease in the degree of vacuum inside the tube, preventing smoke or damage due to temperature rise in electronic circuit parts, ballasts, etc. It also has the effect of preventing unnecessary power consumption, and also prevents preheating even though a slight discharge is generated by high-voltage pulses during startup when the ambient temperature has dropped. Even if it is not possible to switch to normal lighting because the slight discharge stops during the period when preheating is forcibly stopped after a certain period of time set by the time limit switch circuit, it is possible to switch to normal lighting. This has the effect of improving the starting characteristics of the discharge lamp when the ambient temperature is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例の回路図、第2図は同
上の動作説明図、第3図は他の実施例の回路図、
第4図はさらに他の実施例回路図、第5図は従来
例の回路図である。 1は電源、2は安定器、3は放電灯、4,4′
はフイラメント、5はパルス発生回路、6aは予
熱通電用サイリスタ、7は分圧平滑回路、8は比
較スイツチ回路、9aはスイツチ制御回路、9は
予熱制御回路、10は制御用スイツチ素子、13
は電源スイツチ、38は限時スイツチ回路であ
る。
Fig. 1 is a circuit diagram of one embodiment of the present invention, Fig. 2 is an explanatory diagram of the same operation as above, Fig. 3 is a circuit diagram of another embodiment,
FIG. 4 is a circuit diagram of still another embodiment, and FIG. 5 is a circuit diagram of a conventional example. 1 is the power supply, 2 is the ballast, 3 is the discharge lamp, 4, 4'
is a filament, 5 is a pulse generation circuit, 6a is a preheating energizing thyristor, 7 is a voltage division smoothing circuit, 8 is a comparison switch circuit, 9a is a switch control circuit, 9 is a preheating control circuit, 10 is a control switch element, 13
38 is a power switch, and 38 is a time limit switch circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 電源に安定器を介してフイラメント予熱型の
放電灯を接続し、上記放電灯のフイラメント端子
の非電源側端子間に、始動用高圧パルスを発生す
るパルス発生回路と、フイラメントへの通電を制
御する予熱通電用スイツチ素子と、放電灯両端電
圧波形に基いて予熱通電用スイツチ素子を制御す
る予熱制御回路とを接続し、上記予熱制御回路
を、放電灯両端電圧を整流して分圧平滑した分圧
電圧と基準電圧とを比較して該分圧電圧が基準電
圧より高いときに予熱通電用スイツチを導通させ
ると共に該分圧電圧が基準電圧よりも低いときに
予熱通電用スイツチ素子を遮断させる予熱制御信
号を出力する比較スイツチ回路と、該予熱制御信
号により予熱通電用スイツチ素子を制御するスイ
ツチ制御回路とで形成して成る放電灯始動装置に
おいて、電源投入から一定時間経過後に予熱遮断
信号を出力する限時スイツチ回路を設けるととも
に、上記予熱遮断信号が出力されたときに予熱通
電用スイツチ素子の導通用予熱制御信号の出力を
停止させる制御用スイツチ素子を比較スイツチ回
路に設け、上記一定時間を正常な放電灯始動時の
予熱時間よりも長く設定したことを特徴とする放
電灯始動装置。
1. A filament preheating discharge lamp is connected to the power supply via a ballast, and a pulse generation circuit that generates a high voltage pulse for starting is connected between the filament terminals of the discharge lamp and the non-power supply side terminals, and the energization to the filament is controlled. A preheating energization switch element is connected to a preheating control circuit that controls the preheating energization switch element based on the voltage waveform across the discharge lamp, and the preheating control circuit is configured to rectify the voltage across the discharge lamp to smooth the partial voltage. The divided voltage is compared with a reference voltage, and when the divided voltage is higher than the reference voltage, the preheating energization switch is turned on, and when the divided voltage is lower than the reference voltage, the preheating energization switch element is turned off. In a discharge lamp starting device formed by a comparison switch circuit that outputs a preheating control signal and a switch control circuit that controls a preheating energization switch element using the preheating control signal, a preheating cutoff signal is output after a certain period of time has elapsed from power-on. A time limit switch circuit is provided for outputting the output, and a control switch element is provided in the comparison switch circuit to stop the output of the preheating control signal for conduction of the preheating energizing switch element when the preheating cutoff signal is outputted, A discharge lamp starting device characterized in that the preheating time is set longer than the preheating time when normally starting a discharge lamp.
JP8678975A 1975-07-15 1975-07-15 Discharge lamp starting device Granted JPS5211668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8678975A JPS5211668A (en) 1975-07-15 1975-07-15 Discharge lamp starting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8678975A JPS5211668A (en) 1975-07-15 1975-07-15 Discharge lamp starting device

Publications (2)

Publication Number Publication Date
JPS5211668A JPS5211668A (en) 1977-01-28
JPS6158958B2 true JPS6158958B2 (en) 1986-12-13

Family

ID=13896520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8678975A Granted JPS5211668A (en) 1975-07-15 1975-07-15 Discharge lamp starting device

Country Status (1)

Country Link
JP (1) JPS5211668A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340414Y2 (en) * 1986-11-20 1991-08-26
JPH0636398B2 (en) * 1989-01-14 1994-05-11 松下電工株式会社 Discharge lamp starter

Also Published As

Publication number Publication date
JPS5211668A (en) 1977-01-28

Similar Documents

Publication Publication Date Title
US4464607A (en) Lighting unit
US4398130A (en) Arc lamp lighting unit with low and high light levels
US5252891A (en) Uninterruptible fluorescent lamp circuit available for emergency lighting
US5208515A (en) Protection circuit for stabilizer for discharge apparatus
JPS6158958B2 (en)
US3978369A (en) Solid state starter apparatus for a discharge lamp
JPH1055891A (en) Fluorescent lamp lighting device
GB2066596A (en) An arc lamp lighting unit with low and high light levels
JPH0519337A (en) Flash light emission device
JPS61151999A (en) Small ignition equipment for discharge lamp
JP2562816B2 (en) Discharge lamp lighting device
JP2754576B2 (en) Discharge lamp lighting device
JP2506966B2 (en) Discharge lamp lighting device
JPS5916718B2 (en) discharge lamp starting device
JP2512029B2 (en) Discharge lamp lighting device
JPH03252096A (en) Fluorescent lamp lighting device
JPH0374090A (en) Discharge lamp lighting device
JPS5812720B2 (en) Keikoutoushidosouchi
CA1153056A (en) Arc lamp lighting unit with low and high light levels
JP2930992B2 (en) Discharge lamp lighting device
JPS647479B2 (en)
JPH09190887A (en) Discharge lamp
JPS59167997A (en) Device for firing discharge lamp
JPS59201396A (en) Device for firing fluorescent lamp
JPH01167995A (en) Discharge lamp lighting device