JPS6158440B2 - - Google Patents

Info

Publication number
JPS6158440B2
JPS6158440B2 JP55012376A JP1237680A JPS6158440B2 JP S6158440 B2 JPS6158440 B2 JP S6158440B2 JP 55012376 A JP55012376 A JP 55012376A JP 1237680 A JP1237680 A JP 1237680A JP S6158440 B2 JPS6158440 B2 JP S6158440B2
Authority
JP
Japan
Prior art keywords
ignition
combustion
composition
motor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55012376A
Other languages
Japanese (ja)
Other versions
JPS56109889A (en
Inventor
Haruaki Shimizu
Haruki Maruizumi
Shinobu Matsuoka
Daishiro Yamashita
Akihiko Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1237680A priority Critical patent/JPS56109889A/en
Publication of JPS56109889A publication Critical patent/JPS56109889A/en
Publication of JPS6158440B2 publication Critical patent/JPS6158440B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、固体燃料のロケツトモータの点火に
用いる改良された点火モータ用組成物に関する。
更に詳しくは点火モータ用組成物において、特定
の酸化剤と特定の燃焼助剤とを組合せて含有させ
ることを特徴とする高発熱量、高燃速かつ低圧力
指数の点火モータ用組成物に関するものである。 従来、固体燃料のロケツトモータの点火装置は
例えば硼素、アルミニウムなどの燃料と硝酸カリ
ウムのような酸化剤とを約3:7の割合で混合し
少量のニトロセルロースなどのバインダーを加え
てペレツト状に成形した点火薬を点火用容器に収
納したものであつた。ところが、このような点火
器では、燃焼時間の調節に限界があり、また燃焼
時間の着火待ち時間が長いとか点火薬の被着火性
が不十分であるというような問題があり、特に大
型ロケツトや上段ロケツトでの使用上に制約があ
つた。そこで、前記のような問題を解決するもの
として、バインダー、酸化剤その他添加剤からな
る組成物を一体に成形した薬幹を点火用容器に収
納した点火モータが開発された。このような点火
モータにおける点火薬幹組成物はその被着火性が
良好で、燃焼時間の調節が容易であり、着火待ち
時間も短かいという点で満足されるものであつた
が、該組成物に要求される特性である発熱量、燃
焼速度および圧力指数において十分とはいえず、
ある点火用途によつては更に高い性能を有する点
火モータ用組成物が要望された。すなわち、従来
の点火モータ用組成物は、例えば、ヒドロキシル
化ポリブタジエン、カルボキシル化ポリブタジエ
ンなどの合成樹脂を主剤として硬化剤と可塑剤と
を加えてなるバインダー、過塩素酸カリウム、過
塩素酸アンモニウムなどの酸化剤、マグネシウ
ム、アルミニウムなどの燃焼助剤および酸化鉄、
銅―クロム酸化物などの燃焼触媒からなるもので
あるが、この点火モータ用組成物の発熱量は約
1250cal/g、燃焼速度は約20mm/sec、圧力指数
は約0.6というものであつた。これに対して、更
に高い性能を要求されるものは、発熱量が約
1400cal/g、燃焼速度が約22mm/sec以上、圧力
指数が約0.5以下という性能の点火モータ用組成
物である。ところが前記の従来の点火モータ用組
成物において、その配合比を調節することによつ
て燃焼速度を20mm/secから22mm/sec以上に速め
ようとすると、圧力指数が高くなり、要求性能を
満足し得ないという問題があつた。 一般に圧力指数はロケツトモータの推進薬や点
火モータ用組成物の燃焼圧力に対する感度を示す
値であり、燃焼圧力と圧力指数との関係式は、 Pc=CKo〓 (式中、PCは燃焼圧力、Cは定数、Koは燃焼表
面積(Ab)とノズルスロート面積(At)との比
(Ab/At)およびnは圧力指数を示す。)で表わ
される。この関係式によれば、例えば圧力指数n
が0.5の場合は燃焼圧力PcはKoの2乗に比例
し、また圧力指数nが0.75の場合は燃焼圧力Pc
はKoの4乗に比例する。従つて、点火モータの
ノズルスロート面積や燃焼表面積が微小に変化し
ても、燃焼圧力は大きく影響を受け、その燃焼圧
力が設計値以上になると点火モータは爆発する恐
れが出てくるので、点火モータ用組成物としてで
きるだけ圧力指数の低いものが要望される。とこ
ろが点火モータ用組成物において圧力指数を低下
させる手段は特に決つた法則は未だ見出されてお
らず、圧力指数を例えば0.1低下させるだけでも
非常に困難なことであつた。 本発明者等は前記のような困難な問題を解消
し、前記のような要求性能を満し得る点火モータ
用組成物について鋭意研究した結果、酸化剤とし
て過塩素酸アンモニウムを用い、燃焼助剤として
アルミニウムを用いる点火モータ用組成物系に、
更に燃焼助剤として硼素を含有させると、高発熱
量でかつ圧力指数を増大させることなく高い燃焼
速度が得られるという、公知技術からは予想し得
ない効果を見出し本発明を達成するに至つた。 すなわち、本発明はバインダー、酸化剤、燃焼
助剤および燃焼触媒からなる点火モータ用組成物
において、酸化剤として過塩素酸アンモニウムを
58〜82重量%、燃焼助剤として硼素を7〜3重量
%およびアルミニウムを7〜3重量%含有させた
ことを特徴とするものである。 前記の酸化剤として過塩素酸アンモニウムに限
定する理由は、例えば酸化剤として過塩素酸カリ
ウムを用い、これと硼素とを組合せて用いても、
燃焼速度は増大するが、圧力指数が0.5以上とな
るのに対して、過塩素酸アンモニウムと硼素との
組合せにおいては、燃焼速度を増大させかつ圧力
指数を0.5以下にすることができるからである。
また前記の燃焼助剤として硼素とアルミニウムと
を併用するのは、過塩素酸アンモニウムとの組合
せにおいてアルミニウムのみでは圧力指数を増大
させることなく燃焼速度を増大させることはでき
ず、一方硼素のみでは十分な発熱量が得られない
からである。 前記の過塩素酸アンモニウムの含有率は58重量
%未満では酸化剤としての効果が十分でなく、82
重量%を越えては、他の成分の含有率が相対的に
減少して点火モータ用組成物としての性能に影響
を与え、かつ該点火モータ用組成物の製造性が悪
くなる。過塩素酸アンモニウムの特に好ましい含
有率は60〜75重量%である。また過塩素酸アンモ
ニウムの平均粒径は通常10〜200μmのものが用
いられるが、特に1〜30μmという微粒のものが
好ましい。 前記の燃焼助剤の硼素およびアルミニウムの各
含有率は3重量%未満では、要求される燃焼性能
を満し得る効果を発揮することができず、また7
重量%を越えては原料合物が非流動性になり均一
な混和物が得られにくくなるという製造上の問題
を生じ、たとえ混和ができて薬幹の製造が可能と
しても、その燃焼性能上の効果の増大は得られな
い。硼素およびアルミニウムの特に好ましい含有
率は4〜6重量%である。また硼素およびアルミ
ニウムの各平均粒径は通常0.1〜10μmのものが
用いられる。 前記の燃焼触媒としては、一般に用いられる
鉄、銅、クロム等の金属酸化物があり、例えば、
酸化第二鉄、銅―クロム酸化物等が用いられる。
特に好ましい燃焼触媒は酸化第二鉄である。燃焼
触媒の平均粒径は微粒のものが好ましく、通常、
0.11〜10μmのものが用いられる。燃焼触媒の含
有率は、通常1〜8重量%であり、特に好ましく
は4〜7重量%である。 前記のバインダーは、点火モータ用組成物の結
合剤兼燃料として用いられるもので、硬化型合成
樹脂を主剤とし、それに硬化剤、可塑剤およびそ
の他必要に応じて加えられる添加剤からなるもの
である。バインダーは点火モータ用組成物におい
て通常10〜20重量%が用いられる。 前記の硬化型合成樹脂としては、例えば液状ポ
リサルフアイド、ジオール、トリオール、ヒドロ
キシル化ポリブタジエン、カルボキシル化ポリブ
タジエン等がある。前記の硬化剤としては、例え
ば前記液状ポリサルフアイドに対してはジオキシ
ム化合物が、ジオール、トリオール、ヒドロキシ
ポリブタジエンなどに対してはジ(またはトリ)
イソシアネート化合物と結合剤としてのイミン化
合物とが、またカルボキシル化ポリブタジエンに
対してはイミン化合物とエポキシ化合物が用いら
れる。また前記の可塑剤としては、例えばジオク
チルアジペート、ジブチルフタレート、ジオクチ
ルフタレート等がある。 以上のような本発明の点火モータ用組成物は、
その燃焼性能において、発熱量が約1400〜
1500cal/g、燃焼速度が約23〜27mm/sec、圧力
指数が0.40〜0.49という高性能を示す。 また、点火モータ用組成物は、例えば、原料の
計量、配合および混和の工程を経て得られた混和
物を所定の形状に成形、すなわち注型(又は鋳
造)、硬化、離型、仕上げ等の成形工程を経て、
一体の薬幹として製造される。前記の混和工程に
おいて、混和物の粘度が高いと混和機および混和
物への負荷が大きくなり、それだけ発火や爆発の
危険性が大きくなる。また前記の成形工程におい
ても、混和物の粘度が高いと、成形工程中で混和
物に抱き込まれた気泡が抜けにくくなり、成形さ
れた薬幹中に気泡が残存する可能性が極めて高く
なる。このような薬幹中に気泡を含有た場合、そ
の薬幹を点火モータとして燃焼させた時、燃焼面
積が所期の設計値より過大となつて燃焼圧力が前
記の関係式Pc−CKo〓に従つて急激に増大し、
かつ、関係式Vb−aP (Vbは燃焼速度およびa
は定数)に従つて、燃焼圧力Pcが増大すると燃
焼速度Vbが大となり、燃焼圧力は相乗的に急激
に上昇し、点火モータが爆発する恐れがある。従
つて、前記のような製造上の危険性がなく、気泡
を含有しない信頼性の高い薬幹を製造するために
は、前記混和物は適度な粘度を有する必要があ
る。一般に微粒粉体を多量に配合した従来の点火
モータ用組成物は極端に粘度が高くなる傾向にあ
つたが、本発明の点火モータ用組成物では、前述
したようなグレードの原料微粒粉体の配合によ
り、点火モータ用組成物として要求される前記の
燃焼諸性能を満足すると共に、混和工程および成
形工程での安全性、作業性、再現性等を向上させ
得るような粘性すなわち混和終了時の混和物の粘
度が約100キロポイズ(KPS)以下のものが得ら
れるという効果が得られた。また得られた薬幹の
機械的強度は十分な実用性を有している。 更に、点火モータ用組成物の薬幹は、一次点火
器を装着した点火モータに装填され、その点火モ
ータを固体燃料のロケツトモータの点火部に装着
して用いられるが、本発明における点火モータ用
組成物の薬幹は、一次点火器による被着火性が良
好で、前記ロケツトモータに対する着火性も着火
待ち時間が約30msec以下と短かく良好である。
従つて、このような着火待ち時間が短縮されるこ
とにより、前記ロケツトモータへの着火の信頼性
が高くなると同時に複数個のロケツトモータへの
同時着火性も改善される。更に着火待ち時間が短
縮されることにより、点火モータの薬幹の重量を
減らすことも可能になることと、圧力指数が小さ
いので、点火モータケースの耐圧に対する安全率
も下げ得ることから、全体として点火モータの重
量減が期待でき、上段ロケツトモータに特に厳し
く要求されるマスフラクシヨン(推進薬重量/ロ
ケツトモータ全体の重量)の向上にもつながると
いう効果も得られる。 次に本発明の点火モータ用組成物を実施例およ
び比較例によつて具体的に説明する。なお各例中
の部数および%はすべて重量基準である。 実施例 1 第1表に示すような配合組成で本発明の点火モ
ータ用組成物の薬幹を次のようにして成形した。 すなわち、バインダー主剤としてのカルボキシ
ル化ポリブタジエン1200部、硬化剤としてのトリ
スー〔1−(2−メチル)アジリジニル〕ホスフ
インオキサイド(以下MAPOと略記する)40部
と3,4―エポキシシクロヘキシルメチル―3,
4―エポキシシクロヘキサンカルボキシレート
(以下EMECと略記する)10部、および可塑剤と
してのジオクチルアジペート(以下DOAと略記
する)30部を混和機に仕込み十分に混合してバイ
ンダー(A)を得た。次にこのバインダー(A)の中にア
ルミニウム(平均粒径8μm)400部、硼素(平
均粒径1μm)400部および酸化第2鉄(平均粒
径0.1μm)480部を仕込みバインダー(A)の中に均
一に分散させ、更にそこに過塩素酸アンモニウム
(平均粒径15μm)5440部を仕込んで約60℃で約
30分間真空下で混和した。。次にその混和物を直
径150mm、長さ150mmの成形容器に仕込み真空脱泡
した後、常圧に戻し約60℃の硬化槽に入れて7日
間かけて硬化成形し、離型して目的の点火モータ
用組成物の薬幹を成形した。なお前記の真空混和
後の混和物について、その粘度をB型粒度計で測
定し、その結果を測定時温度と共に第1表に示
す。 次に、前記のようにして成形した点火モータ用
組成物の薬幹について、その燃焼速度、圧力指
数、発熱量、着火待ち時間および被着火待ち時間
から成る燃焼性能および機械的強度を次のような
方法で測定し、その結果を第1表に示す。
The present invention relates to an improved ignition motor composition for use in igniting solid fuel rocket motors.
More specifically, the present invention relates to a composition for an ignition motor that has a high calorific value, a high combustion rate, and a low pressure index, and is characterized by containing a combination of a specific oxidizing agent and a specific combustion aid. It is. Conventionally, the ignition system for a solid fuel rocket motor mixes a fuel such as boron or aluminum with an oxidizing agent such as potassium nitrate in a ratio of approximately 3:7, adds a small amount of a binder such as nitrocellulose, and forms the mixture into a pellet. The ignition powder was stored in an ignition container. However, with such igniters, there are limits to the adjustment of the combustion time, and there are also problems such as a long ignition waiting time and insufficient ignitability of the igniter, especially for large rockets and There were restrictions on its use in upper stage rockets. Therefore, in order to solve the above-mentioned problems, an ignition motor was developed in which a medicinal substance formed by integrally molding a composition consisting of a binder, an oxidizing agent, and other additives was housed in an ignition container. The ignition powder base composition for such an ignition motor was satisfactory in that it had good ignitability, the combustion time was easy to adjust, and the ignition waiting time was short. It cannot be said that the required properties of heat generation, combustion rate, and pressure index are sufficient.
Certain ignition applications require ignition motor compositions with even higher performance. That is, conventional ignition motor compositions include, for example, a binder made of a synthetic resin such as hydroxylated polybutadiene or carboxylated polybutadiene and a hardening agent and a plasticizer, potassium perchlorate, ammonium perchlorate, etc. Oxidizing agents, combustion aids such as magnesium, aluminum and iron oxides,
It consists of a combustion catalyst such as copper-chromium oxide, and the calorific value of this ignition motor composition is approximately
It was 1250 cal/g, the burning rate was about 20 mm/sec, and the pressure index was about 0.6. On the other hand, products that require even higher performance have a calorific value of approximately
It is a composition for ignition motors with performance of 1400 cal/g, burning speed of about 22 mm/sec or more, and pressure index of about 0.5 or less. However, when trying to increase the combustion speed from 20 mm/sec to 22 mm/sec or more by adjusting the blending ratio of the conventional ignition motor composition described above, the pressure index becomes high and the required performance cannot be satisfied. There was a problem that I couldn't get it. In general, the pressure index is a value that indicates the sensitivity of the rocket motor propellant and ignition motor composition to the combustion pressure, and the relational expression between the combustion pressure and the pressure index is P c = CK o 〓 (wherein, P C is Combustion pressure, C is a constant, K o is the ratio of the combustion surface area (A b ) to the nozzle throat area (A t ) (A b /A t ), and n is the pressure index). According to this relational expression, for example, the pressure index n
When n is 0.5, the combustion pressure P c is proportional to the square of K o , and when the pressure index n is 0.75, the combustion pressure P c
is proportional to the fourth power of K o . Therefore, even if the nozzle throat area or combustion surface area of the ignition motor changes slightly, the combustion pressure will be greatly affected, and if the combustion pressure exceeds the design value, there is a risk that the ignition motor will explode. Compositions for motors are desired to have as low a pressure index as possible. However, no particular rule has yet been found for reducing the pressure index in a composition for an ignition motor, and it is extremely difficult to reduce the pressure index by, for example, 0.1. The inventors of the present invention solved the above-mentioned difficult problems and conducted intensive research into a composition for ignition motors that can satisfy the above-mentioned performance requirements. For composition systems for ignition motors using aluminum as
Furthermore, by incorporating boron as a combustion aid, a high calorific value and a high combustion rate can be obtained without increasing the pressure index, an effect that could not be expected from known technology, and the present invention has been achieved. . That is, the present invention provides an ignition motor composition comprising a binder, an oxidizing agent, a combustion aid, and a combustion catalyst, in which ammonium perchlorate is used as the oxidizing agent.
It is characterized by containing 58-82% by weight, 7-3% by weight of boron and 7-3% by weight of aluminum as combustion aids. The reason for limiting the oxidizing agent to ammonium perchlorate is that, for example, even if potassium perchlorate is used as the oxidizing agent and this is used in combination with boron,
This is because although the combustion rate increases, the pressure index becomes 0.5 or more, whereas in the combination of ammonium perchlorate and boron, the combustion rate can be increased and the pressure index becomes 0.5 or less. .
Furthermore, the reason for using boron and aluminum together as combustion aids is that in combination with ammonium perchlorate, aluminum alone cannot increase the combustion rate without increasing the pressure index, whereas boron alone is sufficient. This is because a sufficient calorific value cannot be obtained. If the content of ammonium perchlorate is less than 58% by weight, the effect as an oxidizing agent is insufficient, and 82
If it exceeds % by weight, the content of other components will be relatively reduced, which will affect the performance of the ignition motor composition, and the manufacturability of the ignition motor composition will deteriorate. A particularly preferred content of ammonium perchlorate is 60-75% by weight. Further, ammonium perchlorate having an average particle size of 10 to 200 μm is usually used, but fine particles of 1 to 30 μm are particularly preferred. If the content of each of boron and aluminum in the combustion aid is less than 3% by weight, it will not be possible to exhibit an effect that satisfies the required combustion performance, and
If the weight percentage is exceeded, the raw material mixture becomes non-fluid and it becomes difficult to obtain a homogeneous mixture, which causes manufacturing problems. It is not possible to increase the effect of A particularly preferred content of boron and aluminum is 4 to 6% by weight. Further, boron and aluminum each having an average particle diameter of 0.1 to 10 μm are usually used. Examples of the combustion catalyst include commonly used metal oxides such as iron, copper, and chromium.
Ferric oxide, copper-chromium oxide, etc. are used.
A particularly preferred combustion catalyst is ferric oxide. The average particle size of the combustion catalyst is preferably fine, and usually
A thickness of 0.11 to 10 μm is used. The content of the combustion catalyst is usually 1 to 8% by weight, particularly preferably 4 to 7% by weight. The above-mentioned binder is used as a binder and fuel for an ignition motor composition, and consists of a curable synthetic resin as a main ingredient, and a curing agent, a plasticizer, and other additives added as necessary. . The binder is usually used in an ignition motor composition in an amount of 10 to 20% by weight. Examples of the above-mentioned curable synthetic resin include liquid polysulfide, diol, triol, hydroxylated polybutadiene, and carboxylated polybutadiene. As the curing agent, for example, a dioxime compound is used for the liquid polysulfide, and a di(or tri) compound is used for diol, triol, hydroxypolybutadiene, etc.
Isocyanate compounds and imine compounds as binders are used, and for carboxylated polybutadiene imine compounds and epoxy compounds are used. Examples of the plasticizer include dioctyl adipate, dibutyl phthalate, and dioctyl phthalate. The ignition motor composition of the present invention as described above is
In terms of combustion performance, the calorific value is approximately 1400 ~
It exhibits high performance with a burning rate of 1500 cal/g, a burning rate of approximately 23 to 27 mm/sec, and a pressure index of 0.40 to 0.49. In addition, compositions for ignition motors are produced by, for example, molding a mixture obtained through the steps of measuring, blending, and mixing raw materials into a predetermined shape, that is, casting (or casting), curing, mold release, finishing, etc. After the molding process,
Manufactured as a single medicinal substance. In the above-mentioned mixing step, if the viscosity of the mixture is high, the load on the mixer and the mixture will increase, and the risk of ignition or explosion will increase accordingly. In addition, in the above-mentioned molding process, if the viscosity of the mixture is high, it becomes difficult for air bubbles trapped in the mixture to come out during the molding process, and there is an extremely high possibility that air bubbles will remain in the molded drug substance. . If such a drug substance contains air bubbles, when the drug substance is used as an ignition motor to burn it, the combustion area will be larger than the intended design value, and the combustion pressure will be reduced by the above relational expression P c − CK o 〓, it increases rapidly according to
And, the relational expression V b −aP n c (V b is the burning rate and a
is a constant), as the combustion pressure P c increases, the combustion velocity V b increases, the combustion pressure synergistically increases rapidly, and there is a risk that the ignition motor will explode. Therefore, in order to produce a highly reliable drug substance that is free from the above-mentioned production risks and does not contain air bubbles, the mixture must have an appropriate viscosity. In general, conventional ignition motor compositions containing a large amount of fine powder tended to have extremely high viscosity, but the ignition motor composition of the present invention uses the above-mentioned grade of raw material fine powder. By blending, the composition satisfies the above-mentioned combustion performance required for an ignition motor composition, and also has a viscosity at the end of mixing that can improve safety, workability, reproducibility, etc. in the mixing process and molding process. The effect was that a mixture with a viscosity of about 100 kilopoise (KPS) or less could be obtained. Moreover, the obtained medicinal substance has sufficient mechanical strength for practical use. Furthermore, the drug substance of the ignition motor composition is loaded into an ignition motor equipped with a primary igniter, and the ignition motor is used by being attached to the ignition part of a solid fuel rocket motor. The drug substance of the composition has good ignition properties with the primary igniter, and the ignition properties with respect to the rocket motor are also good with a short ignition waiting time of about 30 msec or less.
Therefore, by shortening the ignition waiting time, the reliability of ignition of the rocket motor is increased, and at the same time, the simultaneous ignition of a plurality of rocket motors is improved. Furthermore, by shortening the ignition waiting time, it is also possible to reduce the weight of the main body of the ignition motor, and since the pressure index is small, the safety factor for the pressure resistance of the ignition motor case can also be lowered, so overall It is expected that the weight of the ignition motor will be reduced, and it will also lead to an improvement in mass fraction (propellant weight/total rocket motor weight), which is particularly strictly required for upper stage rocket motors. Next, the composition for an ignition motor of the present invention will be specifically explained using Examples and Comparative Examples. Note that all parts and percentages in each example are based on weight. Example 1 The drug substance of the ignition motor composition of the present invention was molded in the following manner using the formulation shown in Table 1. That is, 1200 parts of carboxylated polybutadiene as a main binder, 40 parts of tris[1-(2-methyl)aziridinyl]phosphine oxide (hereinafter abbreviated as MAPO) as a curing agent, and 3,4-epoxycyclohexylmethyl-3,
10 parts of 4-epoxycyclohexane carboxylate (hereinafter abbreviated as EMEC) and 30 parts of dioctyl adipate (hereinafter abbreviated as DOA) as a plasticizer were charged into a mixer and thoroughly mixed to obtain a binder (A). Next, 400 parts of aluminum (average particle size: 8 μm), 400 parts of boron (average particle size: 1 μm), and 480 parts of ferric oxide (average particle size: 0.1 μm) were added to the binder (A). 5,440 parts of ammonium perchlorate (average particle size 15 μm) was added thereto and heated at about 60°C.
Mixed under vacuum for 30 minutes. . Next, the mixture was placed in a molding container with a diameter of 150 mm and a length of 150 mm, and after vacuum degassing, the mixture was returned to normal pressure and placed in a curing tank at approximately 60°C, where it was cured and molded for 7 days, and then released from the mold to form the desired product. The drug substance of the composition for ignition motor was molded. The viscosity of the mixture after vacuum mixing was measured using a B-type granulometer, and the results are shown in Table 1 along with the temperature at the time of measurement. Next, the combustion performance and mechanical strength of the ignition motor composition formed as described above, including its combustion rate, pressure index, calorific value, ignition waiting time, and ignition waiting time, were evaluated as follows. The results are shown in Table 1.

【表】 (イ) 燃焼速度および圧力指数 前記の薬幹から切り出した縦5mm、横5mmお
よび長さ100mmのストランド試料を用いて、30
Kg/cm2、50Kg/cm2および70Kg/cm2の各窒素ガス
加圧下での燃焼速度(Vb)を測定し、Vb
aPnの関係式により圧力指数(n)を算出した
(ただしaは定数、pは燃焼圧力である)。 (ロ) 発熱量 ボンブ式カロリメータ(島津製作所社製)を
用いて、30Kg/cm2の窒素ガス加圧下での前記薬
幹の試料の発熱量を測定した。 (ハ) 着火待ち時間 着火待ち時間はロケツトモータに対する点火
モータの着火能力の尺度であり、その時間は短
いほど良く、次のようにして測定した。すなわ
ち、前記の成形された点火モータ用組成物の薬
幹を切削加工により、内径34mm、外径54mmおよ
び長さ80mmの円筒状グレインにし、これを電気
発火式イグナイター(前記一次点火器)と圧力
ピツクアツプを備えた点火モータに装填し、こ
れを内径50mm、外径150mmおよび長さ500mmの形
状の内面燃焼式のポリブタジエン系コンポジツ
ト推進薬と圧力ピツクアツプを備えたロケツト
モータに装着して燃焼試験を行ない、その時の
点火モータおよびロケツトモータの各圧力―時
間曲線をオシログラフに同時計測し、その点火
モータの燃焼圧力立上り時からロケツトモータ
の燃焼最高圧力の75%に達するまでの時間を着
火待ち時間として測定した。 (ニ) 被着火待ち時間 被着火待ち時間は点火モータ用組成物の被着
火性の良否を示す尺度であり、これは、前記薬
幹の試料にレーザー光で20cal/cm2・secのエネ
ルギーを与えた時に試料に着火するに要した時
間を被着火待ち時間として測定した。 (ホ) 機械的強度 前記成形された点火モータ用組成物の薬幹か
ら切り出した全長125mm、幅25mm、厚さ10mm、
標線間距離50mm、標線間の幅10mmおよびつかみ
部と標線との間の曲部のアールが12.5Rである
ダンベル片様形状の引張り試験片を用いて、
500Kg引張試験機により、引張り速度50mm/
分、25℃において引張り試験を行ない、その時
の最大応力、最大応力時歪および弾性率を測定
した。 実施例 2 実施例1と同様の成分で、第1表に示す配合組
成の点火モータ用組成物の薬幹を実施例1に準じ
て製造し、その時の混和物粘度、薬幹の燃焼性能
および機械的強度を実施例1と同様の方法で測定
した。その結果は第1表に示すとおりであつた。 実施例 3 バインダーとして、バインダー(A)に代えて下記
のバインダー(B)を用いたほかは実施例1と同様の
成分を用い、第1表に示すような配合組成の点火
モータ用組成物の薬幹を実施例1に準じて製造
し、その時の混和物粘度、薬幹の燃焼性能および
機械的強度を実施例1と同様の方法で測定した。
その結果は第1表に示すとおりであつた。 前記のバインダー(B)とは、バインダー主剤とし
てのヒドロキシル化ポリブタジエン752.6部、硬
化剤としてのイソホロンジイソシアネート53.8
部、結合剤としてのMAPO13.4部および可塑剤と
してのDOA300.2部を混和機で十分に混合して得
られたものである。 実施例 4 燃焼触媒として酸化第二鉄に代えて銅―クロム
酸化物(平均粒径0.1μm)を用いたほかは実施
例1と同様の成分を用い、第1表に示すような配
合組成の点火モータ用組成物の薬幹を実施例1に
準じて成形し、その時の混和物粘度、薬幹の燃焼
性能および機械的強度を実施例1と同様の方法で
測定した。その結果は第1表に示すとおりであつ
た。 比較例 1 燃焼助剤としての硼素を用いないほかは実施例
1と同様の成分で、第1表に示す配合組成の点火
モータ用組成物の薬幹を実施例1に準じて製造
し、その時の混和物粘度、薬幹の燃焼性能および
機械的強度を実施例1と同様の方法で測定した。
その結果は第1表に示すとおりであり、その燃焼
性能はいずれも実施例1〜4より劣るものであつ
た。 比較例 2 バインダーとしてバインダー(A)を用い、過塩素
酸アンモニウムの代りに過塩素酸カリウム(平均
粒径15μm)を用い、その他の成分としては硼素
のみを用いた第1表に示すような配合組成の点火
モータ用組成物の薬幹を実施例1に準じて製造
し、その時の混和物粘度、薬幹の燃焼性能および
機械的強度を実施例1と同様の方法で測定した。
その結果は第1表に示すとおりであり、燃焼速度
は十分に満足するものであつたが、他の燃焼性能
はいずれも実施例1〜4より劣るものであつた。 比較例 3 燃焼助剤としてのアルミニウムを用いないほか
は実施例1と同様の成分で、第1表に示すような
配合組成の点火モータ用組成物の薬幹を実施例1
に準じて製造し、その時の混和物粘度、薬幹の燃
焼性能および機械的強度を実施例1と同様の方法
で測定した。その結果は第1表に示すとおりであ
り、発熱量および着火待ち時間において、実施例
1〜4より劣るものであつた。 比較例 4〜6 配合成分は実施例1と同様にし、そのうちアル
ミニウムと硼素との各配合量を本発明の範囲外と
して第2表に示すような配合組成の点火モータ用
組成物の薬幹の製造を実施例1の方法に準じて行
なつた。その結果、比較例4の場合にはアルミニ
ウムと硼素との配合量が多いため、これらをバイ
ンダー(A)中に均一分散させ、更に過塩素酸アンモ
ニウムを仕込んだところ、配合物全体が非流動性
の固液混和物となつて、混和物の撹拌が不能とな
り、均一な混和物を得ることができなかつたの
で、以後の成形工程は中止した。比較例5および
比較例6の場合は前記のような混和工程での問題
を生じることなく目的とする薬幹を製造すること
ができた。次に、比較例5および比較例6で得ら
れた混和物の粘度および薬幹の燃焼性能と機械的
強度とを実施例1と同様の方法で測定した。その
結果は第2表に示すとおりであり、比較例5の場
合は、燃焼速度が要求性能を一応満したが、圧力
指数および発熱量において要求性能を満足し得な
かつた。また比較例6の場合は、燃焼速度および
発熱量において要求性能を満したが、圧力指数が
0.58と高く要求性能を満し得なかつた。また比較
例5および比較例6のいずれの場合も着火待ち時
間が実施例1〜4の場合よりも約2倍も長く劣つ
ていた。以上のように、アルミニウムおよび硼素
の配合量が、本発明の配合範囲の上限を越えて
は、配合物の混和が不可能であり、また本発明の
配合範囲の下限未満では要求される燃焼性能を満
し得ないことが明らかである。
[Table] (a) Burning rate and pressure index Using a strand sample of 5 mm in length, 5 mm in width and 100 mm in length cut out from the medicinal stem above, 30
The combustion rate (V b ) under nitrogen gas pressure of Kg/cm 2 , 50 Kg/cm 2 and 70 Kg/cm 2 was measured, and V b -
The pressure index (n) was calculated using the relational expression of aP n (where a is a constant and p is the combustion pressure). (b) Calorific value Using a bomb calorimeter (manufactured by Shimadzu Corporation), the calorific value of the sample of the drug substance was measured under a nitrogen gas pressure of 30 Kg/cm 2 . (c) Ignition waiting time The ignition waiting time is a measure of the ignition ability of the ignition motor with respect to the rocket motor, and the shorter the time, the better, and it was measured as follows. That is, the drug substance of the molded ignition motor composition is cut into cylindrical grains with an inner diameter of 34 mm, an outer diameter of 54 mm, and a length of 80 mm, and the grains are connected to an electric ignition type igniter (the primary igniter) and pressure A combustion test was carried out by loading the propellant into an ignition motor equipped with a pick-up and attaching it to a rocket motor equipped with an internal combustion type polybutadiene composite propellant with an inner diameter of 50 mm, an outer diameter of 150 mm, and a length of 500 mm and a pressure pick-up. At that time, the pressure-time curves of the ignition motor and rocket motor are simultaneously measured on an oscilloscope, and the time from when the combustion pressure of the ignition motor rises until it reaches 75% of the maximum combustion pressure of the rocket motor is determined as the ignition wait time. It was measured. (d) Ignition waiting time The ignition waiting time is a measure of the quality of the ignitability of the ignition motor composition, and it is measured by applying an energy of 20 cal/cm 2 sec to a sample of the drug substance using a laser beam. The time required for the sample to ignite when the sample was applied was measured as the ignition waiting time. (e) Mechanical strength A total length of 125 mm, width of 25 mm, thickness of 10 mm, cut from the drug substance of the molded ignition motor composition.
Using a dumbbell-shaped tensile test piece with a distance between the gauge lines of 50 mm, a width of 10 mm between the gauge lines, and a radius of the curved part between the grip part and the gauge line of 12.5R,
Using a 500Kg tensile tester, the tensile speed is 50mm/
A tensile test was conducted at 25°C for 30 minutes, and the maximum stress, strain at maximum stress, and elastic modulus were measured. Example 2 A drug substance for an ignition motor composition having the same ingredients as in Example 1 and the composition shown in Table 1 was manufactured according to Example 1, and the viscosity of the mixture, the combustion performance of the drug substance, and Mechanical strength was measured in the same manner as in Example 1. The results were as shown in Table 1. Example 3 The same components as in Example 1 were used except that the following binder (B) was used instead of binder (A) as the binder, and an ignition motor composition having the composition shown in Table 1 was prepared. A drug substance was produced according to Example 1, and the viscosity of the mixture, combustion performance and mechanical strength of the drug substance were measured in the same manner as in Example 1.
The results were as shown in Table 1. The above-mentioned binder (B) consists of 752.6 parts of hydroxylated polybutadiene as a binder main ingredient and 53.8 parts of isophorone diisocyanate as a curing agent.
13.4 parts of MAPO as a binder and 300.2 parts of DOA as a plasticizer were thoroughly mixed in a mixer. Example 4 The same components as in Example 1 were used except that copper-chromium oxide (average particle size 0.1 μm) was used instead of ferric oxide as a combustion catalyst, and the composition as shown in Table 1 was used. The drug substance of the ignition motor composition was molded according to Example 1, and the viscosity of the mixture, combustion performance and mechanical strength of the drug substance were measured in the same manner as in Example 1. The results were as shown in Table 1. Comparative Example 1 A drug substance for an ignition motor composition having the composition shown in Table 1 was prepared in accordance with Example 1 with the same ingredients as in Example 1 except that boron was not used as a combustion aid. The viscosity of the mixture, the combustion performance of the drug substance, and the mechanical strength were measured in the same manner as in Example 1.
The results are shown in Table 1, and the combustion performance was inferior to Examples 1 to 4 in all cases. Comparative Example 2 A formulation as shown in Table 1 using binder (A) as the binder, using potassium perchlorate (average particle size 15 μm) instead of ammonium perchlorate, and using only boron as the other component. A drug substance of the composition for an ignition motor was produced according to Example 1, and the viscosity of the mixture, combustion performance and mechanical strength of the drug substance were measured in the same manner as in Example 1.
The results are shown in Table 1, and although the combustion rate was fully satisfactory, all other combustion performances were inferior to Examples 1 to 4. Comparative Example 3 The main ingredients of an ignition motor composition as shown in Table 1 were used in Example 1 with the same ingredients as in Example 1 except that aluminum was not used as a combustion aid.
The viscosity of the mixture, the combustion performance of the medicinal substance, and the mechanical strength were measured in the same manner as in Example 1. The results are shown in Table 1, and were inferior to Examples 1 to 4 in terms of calorific value and ignition waiting time. Comparative Examples 4 to 6 The ingredients were the same as in Example 1, but the amounts of aluminum and boron were outside the scope of the present invention, and the main drug of the ignition motor composition was as shown in Table 2. Production was carried out according to the method of Example 1. As a result, in the case of Comparative Example 4, since the blended amounts of aluminum and boron were large, when these were uniformly dispersed in the binder (A) and ammonium perchlorate was added, the entire blend became non-fluid. Since the mixture became a solid-liquid mixture, stirring of the mixture became impossible, and a uniform mixture could not be obtained, the subsequent molding process was discontinued. In the case of Comparative Example 5 and Comparative Example 6, the desired drug substance could be produced without causing any problems in the mixing step as described above. Next, the viscosity, the combustion performance of the drug substance, and the mechanical strength of the mixtures obtained in Comparative Examples 5 and 6 were measured in the same manner as in Example 1. The results are shown in Table 2, and in the case of Comparative Example 5, the combustion rate satisfied the required performance, but the pressure index and calorific value could not satisfy the required performance. In addition, in the case of Comparative Example 6, the required performance was met in terms of combustion rate and calorific value, but the pressure index was
It was 0.58, which was too high to meet the required performance. Further, in both Comparative Examples 5 and 6, the ignition waiting time was about twice as long as in Examples 1 to 4. As described above, if the blending amount of aluminum and boron exceeds the upper limit of the blending range of the present invention, it is impossible to mix the blend, and if the blending amount is below the lower limit of the blending range of the present invention, the required combustion performance is achieved. It is clear that the requirements cannot be met.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 バインダー、酸化剤、燃焼助剤および燃焼触
媒からなる点火モータ用組成物において、酸化剤
として過塩素酸アンモニウムを58〜82重量%、燃
焼助剤として硼素を7〜3重量%および燃焼助剤
としてアルミニウムを7〜3重量%含有したこと
を特徴とする点火モータ用組成物。
1. An ignition motor composition comprising a binder, an oxidizing agent, a combustion aid, and a combustion catalyst, containing 58 to 82% by weight of ammonium perchlorate as an oxidizing agent, 7 to 3% by weight of boron as a combustion aid, and a combustion aid. A composition for an ignition motor, characterized in that it contains 7 to 3% by weight of aluminum.
JP1237680A 1980-02-06 1980-02-06 Composition for ignition motor Granted JPS56109889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1237680A JPS56109889A (en) 1980-02-06 1980-02-06 Composition for ignition motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1237680A JPS56109889A (en) 1980-02-06 1980-02-06 Composition for ignition motor

Publications (2)

Publication Number Publication Date
JPS56109889A JPS56109889A (en) 1981-08-31
JPS6158440B2 true JPS6158440B2 (en) 1986-12-11

Family

ID=11803543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1237680A Granted JPS56109889A (en) 1980-02-06 1980-02-06 Composition for ignition motor

Country Status (1)

Country Link
JP (1) JPS56109889A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314844A (en) * 1988-06-15 1989-12-20 Matsushita Electric Ind Co Ltd Hot water supplying device for bath
JPH0714762Y2 (en) * 1989-09-14 1995-04-10 株式会社ノーリツ Automatic hot water bath equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537967A (en) * 2004-05-20 2007-12-27 アレックザ ファーマシューティカルズ, インコーポレイテッド Stable initiator composition and igniter
JP6007021B2 (en) * 2012-07-31 2016-10-12 中国化薬株式会社 Ignition agent for electric detonator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383253A (en) * 1960-10-25 1968-05-14 Susquehanna Corp Boron containing polyvinyl chloride propellent compositions
US3791891A (en) * 1972-04-12 1974-02-12 Us Army Solid composite propellants with very high burning rates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383253A (en) * 1960-10-25 1968-05-14 Susquehanna Corp Boron containing polyvinyl chloride propellent compositions
US3791891A (en) * 1972-04-12 1974-02-12 Us Army Solid composite propellants with very high burning rates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314844A (en) * 1988-06-15 1989-12-20 Matsushita Electric Ind Co Ltd Hot water supplying device for bath
JPH0714762Y2 (en) * 1989-09-14 1995-04-10 株式会社ノーリツ Automatic hot water bath equipment

Also Published As

Publication number Publication date
JPS56109889A (en) 1981-08-31

Similar Documents

Publication Publication Date Title
US3002830A (en) Method of manufacturing solid propellants having a polymeric fuel-binder using a plurality of crosslinking agents
CN114276202B (en) Thermoplastic composite solid propellant and preparation method thereof
US5579634A (en) Use of controlled burn rate, reduced smoke, biplateau solid propellant formulations
JP5041467B2 (en) Composite propellant
GB2248611A (en) Insensitive high explosive.
US3695952A (en) Solid propellant compositions containing hydroxymethyl-terminated polydienes
US3986910A (en) Composite propellants containing critical pressure increasing additives
US6679959B2 (en) Propellant
Kohga et al. Mechanical Properties and Thermal Decomposition Behaviors of Hydroxyl‐Terminated Polybutadiene/Glycerol Propoxylate Blend and Its Application to Ammonium Nitrate‐Based Propellants
US3951706A (en) Solid propellant mixtures and process of preparation
KR101811956B1 (en) Solid propellants for propulsion system including a yellow iron oxide
JPS6158440B2 (en)
US3014796A (en) Solid composite propellants containing chlorinated polyphenols and method of preparation
US4057441A (en) Solid propellant with burning rate catalyst
US5509981A (en) Hybrid rocket fuel
US4000025A (en) Incorporating ballistic modifiers in slurry cast double base containing compositions
US4655858A (en) Burning rate enhancement of solid propellants by means of metal/oxidant agglomerates
US3726729A (en) Solid propellant compositions having a nitrocellulose-hydroxyl-terminated polybutadiene binder and method of preparing the same
US3856590A (en) Propellants and method of producing the same
US3755019A (en) Solid propellant compositions containing plasticized nitrocellulose and aluminum hydride
US3180770A (en) Propellant fuel containing magnesium aluminum alloy
JP2562501B2 (en) Rocket solid propellant
US3767489A (en) Nitrasol propellant
US3837938A (en) Solid propellant containing fuel-oxidizer component prepared from fused oxidizers
US3785888A (en) Nitrocellulose gas-generating composition containing a polyethylene glycol