JPS6157123B2 - - Google Patents

Info

Publication number
JPS6157123B2
JPS6157123B2 JP58155526A JP15552683A JPS6157123B2 JP S6157123 B2 JPS6157123 B2 JP S6157123B2 JP 58155526 A JP58155526 A JP 58155526A JP 15552683 A JP15552683 A JP 15552683A JP S6157123 B2 JPS6157123 B2 JP S6157123B2
Authority
JP
Japan
Prior art keywords
drill
cemented carbide
rod
carbide
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58155526A
Other languages
Japanese (ja)
Other versions
JPS6048207A (en
Inventor
Yoshio Fujiwara
Tooru Shiokawa
Ryuichi Abe
Iwao Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP15552683A priority Critical patent/JPS6048207A/en
Publication of JPS6048207A publication Critical patent/JPS6048207A/en
Publication of JPS6157123B2 publication Critical patent/JPS6157123B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/14Configuration of the cutting part, i.e. the main cutting edges

Description

【発明の詳細な説明】 この発明は、高速かつ高送り穴明け加工に好適
な超硬ドリルの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a carbide drill suitable for high-speed, high-feed drilling.

一般に、超硬ドリルにおいては、切刃を高速度
鋼より硬度が高い超硬合金によつて構成している
から、高速度鋼製ドリルに比して高速穴明け加工
を行うことができ、これによつて加工能率の向上
を図ることができるという利点が得られる。
In general, carbide drills have cutting edges made of cemented carbide, which is harder than high-speed steel, so they can perform drilling at higher speeds than high-speed steel drills. This has the advantage that processing efficiency can be improved.

しかしながら、送り速度については向上させる
ことが難しかつた。これは、超硬合金が硬い反面
脆いため、ドリル先端の軸線近傍部分がそこに作
用するスラスト荷重によつて圧壊するおそれがあ
るからであり、高送りしようとするとそれに伴つ
てスラスト荷重が増大し、より一層圧壊の危険性
が増大することになる。したがつて、この種の超
硬ドリルにおいては、穴明け加工の能率向上を図
るにも一定の限度があり、また寿命の点でも充分
に満足し得るものとはいい難かつた。
However, it has been difficult to improve the feed rate. This is because while cemented carbide is hard, it is also brittle, so there is a risk that the part near the axis of the drill tip will be crushed by the thrust load acting there.If you try to use a high feed rate, the thrust load will increase accordingly. , the risk of crushing will further increase. Therefore, with this type of carbide drill, there are certain limits to improving the efficiency of drilling, and it is difficult to say that it is fully satisfactory in terms of service life.

そこで、軸線近傍部分の圧壊の危険性を軽減す
るために、より靫性に富む超硬合金を用いて超硬
ドリルを製造することが考えられる。ところが、
このような超硬ドリルは送り速度を向上させるこ
とができる反面、靫性に富む超硬合金は硬度が低
いため、切削速度の低下を余儀なくされ、したが
つて根本的な解決策とはいえなかつた。
Therefore, in order to reduce the risk of crushing in the vicinity of the axis, it may be possible to manufacture a cemented carbide drill using a cemented carbide with higher toughness. However,
Although such a carbide drill can increase the feed rate, since the hardness of the cemented carbide, which is rich in toughness, is low, cutting speed is forced to decrease, so it is not a fundamental solution. Ta.

以上の点を勘案し、高速かつ高送り穴明け加工
を行うことができるドリルとして、この出願の発
明者は、第1図〜第7図に示すような新規な超硬
ドリルを開発した。
Taking the above points into consideration, the inventor of this application developed a new carbide drill as shown in FIGS. 1 to 7 as a drill capable of performing high-speed, high-feed drilling.

第1図〜第3図に示す超硬ドリルは、ドリル体
1を2層構造としたものであり、ドリル本体1
は、その軸線Oを中心とする断面円形の中心部1
aと、この中心部1aの外側に設けられた筒状を
なす外周部1bとから構成されている。中心部1
aは外周部1bを構成する超硬合金より靫性が高
い超硬合金によつて構成され、他方外周部1bは
中心部1aを構成する超硬合金より硬度が高い超
硬合金によつて構成されている。また、中心部1
aの直径dは、ドリルの外形をDとしたとき、 D/15≦d≦D/5 に設定されており、ドリルの芯厚よりも小さくな
されている。したがつて、切屑排出溝2および切
刃4は外周部1bにのみ形成され、中心部1aに
はチゼル5が形成されている。また、切屑排出溝
2と中心部1bとの間に存する外周部1bには、
シンニングが施され、これによつて切刃4は中心
部1aの外周に接するようになつている。なお、
図中符号3は先端逃げ面である。
The carbide drill shown in FIGS. 1 to 3 has a drill body 1 having a two-layer structure.
is a central part 1 with a circular cross section centered on its axis O.
a, and a cylindrical outer peripheral portion 1b provided outside the central portion 1a. Center 1
a is made of a cemented carbide that has higher toughness than the cemented carbide that makes up the outer peripheral part 1b, and the outer peripheral part 1b is made of a cemented carbide that is harder than the cemented carbide that makes up the center part 1a. has been done. In addition, the center 1
The diameter d of a is set to D/15≦d≦D/5, where D is the outer diameter of the drill, and is smaller than the core thickness of the drill. Therefore, the chip discharge groove 2 and the cutting edge 4 are formed only on the outer peripheral portion 1b, and the chisel 5 is formed on the central portion 1a. Moreover, in the outer peripheral part 1b existing between the chip discharge groove 2 and the center part 1b,
Thinning is performed so that the cutting edge 4 comes into contact with the outer periphery of the center portion 1a. In addition,
Reference numeral 3 in the figure is a tip flank.

また、第4図および第5図に示す超硬ドリル
は、上記のドリルがその軸線Oと中心部1aの中
心線1とを一致させているのに対し、中心部1a
の中心線1を軸線Oからずらしたものであり、第
6図および第7図に示すドリルは、中心部1aの
断面形状を円形にしたものである。その他の構成
は、上記のドリルと同様である。
Furthermore, in the carbide drill shown in FIGS. 4 and 5, the axis O of the above-mentioned drill matches the center line 1 of the center portion 1a, whereas the center line 1 of the center portion 1a
The center line 1 of the drill is shifted from the axis O, and the drill shown in FIGS. 6 and 7 has a center portion 1a having a circular cross-sectional shape. The rest of the configuration is the same as the drill described above.

なお、上記のドリルにおいては、その全体を2
層構造としているが、刃部のみを超硬合金からな
る2層構造とし、シヤンクについては鋼によつて
構成することもある。
In addition, in the above drill, the entire drill is 2
Although it has a layered structure, only the blade part has a two-layer structure made of cemented carbide, and the shank may be made of steel.

上記の超硬ドリルによれば、切刃4が形成され
る外周部1bを硬度の高い超硬合金によつて構成
し、チゼル5が形成され、多大のスラスト荷重が
作用する中心部1aを靫性の高い超硬合金によつ
て構成されているから、高速かつ高送り穴明け加
工を行うことができる。
According to the above-mentioned carbide drill, the outer peripheral part 1b where the cutting edge 4 is formed is made of a highly hard cemented carbide, and the central part 1a where the chisel 5 is formed and where a large thrust load acts is made of a hard metal. Since it is made of a highly durable cemented carbide, it can perform high-speed and high-feed drilling.

ところで、上記の超硬ドリルを製造する場合、
特に問題となるのは、中心部1aと外周部1bと
の接合である。すなわち、中心部1aと外周部1
bとを例えばロー付けによつて接合すると、ロー
層が穴明け加工中にワークあるいは切屑によつて
侵食され、中心部1aと外周部1bとの間にロー
層の分の間隙が形成される。この隙間にワークの
削り残しや切屑が侵入、脱落を繰り返し、これに
よつて中心部1aと外周部1bとの各接合面部が
欠損する。また、外周部1b内に中心部1a内に
中心部1aを圧入することが考えられるが、中心
部1aは細いものであるため、圧入が困難であ
り、しかも圧入時に中心部1aが折れる危険性が
非常に高いという問題がある。しかも、圧入する
ためには外周部1bの内径および中心部1aの外
径を高精度に仕上げる必要があり、その加工に手
間がかかる等の問題がある。なお、比較的緩く嵌
合すると、外周部1bの割れは解消することがで
きるが、中心部1aが外周部1bから脱落するお
それがある。
By the way, when manufacturing the above carbide drill,
Particularly problematic is the joining between the central portion 1a and the outer peripheral portion 1b. That is, the center part 1a and the outer peripheral part 1
b, for example, by brazing, the low layer is eroded by the workpiece or chips during drilling, and a gap corresponding to the low layer is formed between the center portion 1a and the outer peripheral portion 1b. . Uncut parts and chips from the workpiece repeatedly enter and fall off into this gap, resulting in damage to each joint surface between the center portion 1a and the outer peripheral portion 1b. Also, it is possible to press fit the center part 1a into the center part 1a inside the outer peripheral part 1b, but since the center part 1a is thin, it is difficult to press fit, and there is a risk that the center part 1a will break when press-fitted. The problem is that it is very high. Furthermore, in order to press-fit, it is necessary to finish the inner diameter of the outer circumferential portion 1b and the outer diameter of the center portion 1a with high precision, which poses problems such as the machining thereof being time-consuming. Note that if the fitting is relatively loose, cracks in the outer circumferential portion 1b can be eliminated, but there is a risk that the center portion 1a may fall off from the outer circumferential portion 1b.

この発明は、上記事情を考慮してなされたもの
で、中心部と外周部とを隙間なく強固に接合する
ことができ、したがつて中心部および外周部が欠
損したり、中心部が外周部から脱落するのを防止
することができ、しかも製造を容易に行うことが
できる超硬ドリルの製造方法を提供することを目
的とする。
This invention was made in consideration of the above-mentioned circumstances, and it is possible to firmly join the center part and the outer peripheral part without any gap. It is an object of the present invention to provide a method for manufacturing a carbide drill that can prevent the drill from falling off and can be easily manufactured.

以下、この発明の製造方法について詳細に説明
する。
Hereinafter, the manufacturing method of the present invention will be explained in detail.

〔第1の製造方法〕 この製造方法においては、第8図に示すよう
に、超硬合金の圧粉体からなる筒状体11をまず
製造する。この場合、予め柱状体を圧縮成形し、
その柱状体の中心部を繰り抜いて筒状体11とな
してもよく、圧縮成形によつて筒状体11そのも
のを得るようにしてもよい。なお、筒状体11の
外周に、ドリルとして完成した際に切屑排出溝と
なるべき凹部を予め形成しておいてもよい。この
ように、棒状体11としては、筒状体10の内径
より小さいものを用いることができるから、棒状
体11を筒状体10に容易に挿入することがで
き、しかも棒状体11が折れることがない。
[First Manufacturing Method] In this manufacturing method, as shown in FIG. 8, a cylindrical body 11 made of a green compact of cemented carbide is first manufactured. In this case, the columnar body is compression molded in advance,
The center portion of the columnar body may be hollowed out to form the cylindrical body 11, or the cylindrical body 11 itself may be obtained by compression molding. Note that a recessed portion that will become a chip discharge groove when completed as a drill may be formed in advance on the outer periphery of the cylindrical body 11. In this way, since the rod-shaped body 11 can be smaller than the inner diameter of the cylindrical body 10, the rod-shaped body 11 can be easily inserted into the cylindrical body 10, and the rod-shaped body 11 can be easily inserted. There is no.

次に、筒状体11内に棒状体12を挿入する。 Next, the rod-shaped body 12 is inserted into the cylindrical body 11.

この棒状体12は筒状体11を構成する超硬合
金より靫性が高く、しかも焼結時の収縮率が小さ
い超硬合金を圧縮成形してなるものである。な
お、棒状体12の外径については、焼結後におけ
る筒状体11と棒状体12との収縮量の差を考慮
して決定すべきであるが、一般的には筒状体11
の内径より0.01〜0.5mm小さくしておくのがよ
い。
This rod-shaped body 12 is made by compression molding a cemented carbide that has higher toughness than the cemented carbide forming the cylindrical body 11 and has a smaller shrinkage rate during sintering. The outer diameter of the rod-shaped body 12 should be determined by considering the difference in the amount of shrinkage between the cylindrical body 11 and the rod-shaped body 12 after sintering.
It is best to make the inner diameter 0.01 to 0.5 mm smaller than the inner diameter.

その後、筒状体11内に棒状体12を組み込ん
だ状態でそれらを焼結する。すると、筒状体11
が棒状体12より大きく収縮するので、それらの
はめ合い状態が締まりばあいの状態になる。しか
も、焼結時に互いに金属的に接合される。これに
よつて、筒状体11と棒状体12とは隙間なく強
固に一体化される。
Thereafter, the rod-shaped body 12 is assembled into the cylindrical body 11 and then sintered. Then, the cylindrical body 11
shrinks more than the rod-shaped body 12, so that the fit between them becomes a tight fit. Moreover, they are metallically bonded to each other during sintering. Thereby, the cylindrical body 11 and the rod-shaped body 12 are firmly integrated without any gaps.

次いで、第9図に示すように、その焼結体に切
屑排出溝13、切刃14、その他ドリルとして必
要な形状加工を施す。この形状加工については、
焼結する前に行い、その後焼結するようにしても
よい。
Next, as shown in FIG. 9, the sintered body is processed into a chip discharge groove 13, a cutting edge 14, and other shapes necessary for a drill. Regarding this shape processing,
It may be performed before sintering and then sintered.

なお、上記のようにして製造するのは、ドリル
全体でもよく、また刃部だけでもよい。
Note that the entire drill may be manufactured as described above, or only the blade portion may be manufactured.

〔第2の製造方法〕 この製造方法は、棒状体を予め焼結しておく点
が上記第1の製造方法と異なり、その他の工程は
第1の製造方法と同様である。
[Second Manufacturing Method] This manufacturing method differs from the first manufacturing method in that the rod-shaped body is sintered in advance, and the other steps are the same as the first manufacturing method.

この第2の製造方法においては、棒状体を予め
焼結しているから、組み込んだ筒状体と棒状体と
を焼結するとき、棒状体は収縮することがなく、
収縮するのは筒状体だけである。したがつて、こ
の第2の製造方法においては、棒状体を構成する
超硬合金と筒状体を構成する超硬合金との収縮率
の差を考慮する必要がない。しかも、棒状体がほ
とんど収縮しないから、統状体と棒状体とをより
一層強固に一体化することができる。また、棒状
体を予め焼結しておくから、製造工程中に棒状体
が欠損する等の事故を未然に防止することがで
き、これによつてロス率の低減を図ることができ
る。
In this second manufacturing method, since the rod-shaped body is sintered in advance, when the assembled cylindrical body and the rod-shaped body are sintered, the rod-shaped body does not shrink.
Only the cylindrical body contracts. Therefore, in this second manufacturing method, there is no need to consider the difference in shrinkage rate between the cemented carbide forming the rod-shaped body and the cemented carbide forming the cylindrical body. Moreover, since the rod-like body hardly shrinks, the rod-like body and the rod-like body can be integrated even more firmly. Further, since the rod-shaped body is sintered in advance, accidents such as breakage of the rod-shaped body during the manufacturing process can be prevented, thereby reducing the loss rate.

〔第3の製造方法〕 この第3の製造方法は、中心部に外周部を構成
する超硬合金より靫性が高く、しかも焼結時の収
縮率が小さい超硬合金を配し、これら中心部と外
周部とを同時に圧縮成形して棒状の圧粉体を製造
し、その後この圧粉体を焼結し、次いで形状加工
を行うものである。なお、形状加工工程と焼結工
程とを前後逆にしてもよいことは、前述した第
1、第2の製造方法と同様である。
[Third manufacturing method] In this third manufacturing method, a cemented carbide having higher toughness than the cemented carbide constituting the outer periphery and having a smaller shrinkage rate during sintering is placed in the center. In this method, a rod-shaped green compact is produced by simultaneously compression molding the outer circumferential portion and the green compact, and then this green compact is sintered and then shaped. Note that, as in the first and second manufacturing methods described above, the shape processing step and the sintering step may be reversed.

この第3の製造方法においては圧縮成形工程お
よび焼結工程をいずれも一回行えばよいから、上
記2つの製造方法に比して超硬ドリルを安価に製
造することができ、特に大量生産する場合に好適
である。
In this third manufacturing method, the compression molding process and the sintering process only need to be performed once, so the carbide drill can be manufactured at a lower cost compared to the above two manufacturing methods, and it is especially suitable for mass production. Suitable for cases where

以上説明したように、この発明の超硬ドリルの
製造方法によれば、第1、第2、第3のいずれの
方法においても、ドリルの中心部と外周部とを超
硬合金が焼結時に収縮するという性質を利用して
一体化し、しかも焼結時に中心部と外周部とが金
属的に接合するから、中心部と外周部とを隙間な
く強固に接合することができ、したがつて中心部
および外周部が欠損したり、中心部が外周部から
脱落するのを防止することができ、また棒状体を
圧入する必要がないから棒状体の折れを防止する
ことができ、しかも製造を容易に行うことができ
る等の効果が得られる。
As explained above, according to the method for manufacturing a cemented carbide drill of the present invention, in any of the first, second, and third methods, the cemented carbide is formed at the center and the outer periphery of the drill during sintering. It is integrated by utilizing the property of shrinkage, and since the center and the outer circumference are joined metallically during sintering, the center and the outer circumference can be firmly joined without any gaps. It is possible to prevent the center part and the outer periphery from being damaged and the center part from falling off from the outer periphery, and since there is no need to press fit the rod-shaped body, it is possible to prevent the rod-shaped body from breaking, and it is easy to manufacture. Effects such as being able to do this can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図はこの出願の発明者が開発
した超硬ドリルの一例を示し、第1図はその正面
図、第2図は一部省略側面図、第3図は第1図の
―線矢視断面図、第4図および第5図は超硬
ドリルの他の例を示し、第4図はその正面図、第
5図は一部省略側面図、第6図および第7図は超
硬ドリルのさらに他の例を示し第6図はその正面
図、第7図は一部省略側面図、第8図および第9
図はこの発明の製造方法を説明するための図であ
つて、第8図は組み立て工程を示す斜視図、第9
図は形状加工後の超硬ドリルを示す一部省略側面
図である。 1……ドリル本体、1a……中心部、1b……
外周部、11……筒状体、12……棒状体、O…
…軸線、1……中心線。
1 to 3 show an example of a carbide drill developed by the inventor of this application, FIG. 1 is a front view thereof, FIG. 2 is a partially omitted side view, and FIG. 3 is the same as that shown in FIG. 1. - A sectional view taken along the line, FIGS. 4 and 5 show other examples of the carbide drill, FIG. 4 is a front view thereof, FIG. 5 is a partially omitted side view, and FIGS. 6 and 7. shows yet another example of a carbide drill; FIG. 6 is a front view thereof, FIG. 7 is a partially omitted side view, and FIGS. 8 and 9.
The figures are diagrams for explaining the manufacturing method of the present invention, in which Figure 8 is a perspective view showing the assembly process, and Figure 9 is a perspective view showing the assembly process.
The figure is a partially omitted side view showing the carbide drill after shape processing. 1... Drill body, 1a... Center part, 1b...
Outer peripheral part, 11... cylindrical body, 12... rod-shaped body, O...
...Axis line, 1...Center line.

Claims (1)

【特許請求の範囲】 1 ドリルの軸線を含み、かつドリルの2つの切
屑排出溝となるべき部分から離れて形成された挿
入孔を有する超硬合金の圧粉体である筒状体に、
この筒状体を構成する超硬合金より靫性が高く、
かつ焼結時の収縮率が小さい超硬合金を圧縮成形
してなる棒状体を挿入してこれらを組み立て、そ
の後組み立てられた筒状体および棒状体の形状加
工と焼結とのいずれか一方を行い、次いで他方を
行うことを特徴とする超硬ドリルの製造方法。 2 ドリルの軸線を含み、かつドリルの2つの切
屑排出溝となるべき部分から離れて形成された挿
入孔を有する超硬合金の圧粉体である筒状体に、
この筒状体を構成する超硬合金より靫性が高い超
硬合金を圧縮成形後焼結してなる棒状体を挿入し
てこれらを組み立て、その後組み立てられた筒状
体および棒状体の形状加工と焼結とのいずれか一
方を行い、次いで他方を行うことを特徴とする超
硬ドリルの製造方法。 3 ドリルの軸線を含み、かつドリルの2つの切
屑排出溝となるべき部分から離れた中心部に外周
部を構成する超硬合金より靫性が高く、かつ焼結
時の収縮率が小さい超硬合金を配し、これら中心
部と外周部とを同時に圧縮成形して棒状の圧粉体
となし、その後圧粉体の形状加工と焼結とのいず
れか一方を行い、次いで他方を行うことを特徴と
する超硬ドリルの製造方法。
[Claims] 1. A cylindrical body that is a compacted powder body of cemented carbide having an insertion hole that includes the axis of the drill and is formed away from the portions of the drill that are to become the two chip discharge grooves;
It has higher toughness than the cemented carbide that makes up this cylindrical body,
A rod-shaped body made by compression molding a cemented carbide with a small shrinkage rate during sintering is inserted and assembled, and then either one of the assembled cylindrical body and rod-shaped body is shaped and sintered. A method for manufacturing a carbide drill, characterized by performing one step and then performing the other step. 2. A cylindrical body that is a cemented carbide powder body that includes the axis of the drill and has an insertion hole that is formed away from the parts that are to become the two chip discharge grooves of the drill,
A rod-shaped body made by compression molding and sintering a cemented carbide that has higher toughness than the cemented carbide that makes up the cylindrical body is inserted and assembled, and then the assembled cylindrical body and rod-shaped body are shaped. 1. A method for manufacturing a carbide drill, comprising performing either one of and sintering, and then performing the other. 3. A cemented carbide that has higher toughness than the cemented carbide and has a smaller shrinkage rate during sintering than the cemented carbide that forms the outer periphery in the center part that includes the axis of the drill and is away from the parts that should become the two chip discharge grooves of the drill. The alloy is arranged, the center and the outer periphery are compression-molded at the same time to form a rod-shaped green compact, and then one of the shaping of the green compact and sintering is performed, and then the other is performed. Characteristic manufacturing method for carbide drills.
JP15552683A 1983-08-25 1983-08-25 Ultra-hard drill and its manufacture Granted JPS6048207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15552683A JPS6048207A (en) 1983-08-25 1983-08-25 Ultra-hard drill and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15552683A JPS6048207A (en) 1983-08-25 1983-08-25 Ultra-hard drill and its manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP16940786A Division JPS6234710A (en) 1986-07-18 1986-07-18 Cemented carbide drill

Publications (2)

Publication Number Publication Date
JPS6048207A JPS6048207A (en) 1985-03-15
JPS6157123B2 true JPS6157123B2 (en) 1986-12-05

Family

ID=15607992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15552683A Granted JPS6048207A (en) 1983-08-25 1983-08-25 Ultra-hard drill and its manufacture

Country Status (1)

Country Link
JP (1) JPS6048207A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4912552B2 (en) * 1999-12-14 2012-04-11 ティーディーワイ・インダストリーズ・インコーポレーテッド Compound rotary cutting tool
US8225886B2 (en) 2008-08-22 2012-07-24 TDY Industries, LLC Earth-boring bits and other parts including cemented carbide
US8272816B2 (en) 2009-05-12 2012-09-25 TDY Industries, LLC Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US8312941B2 (en) 2006-04-27 2012-11-20 TDY Industries, LLC Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US8318063B2 (en) 2005-06-27 2012-11-27 TDY Industries, LLC Injection molding fabrication method
US8322465B2 (en) 2008-08-22 2012-12-04 TDY Industries, LLC Earth-boring bit parts including hybrid cemented carbides and methods of making the same
US8841005B2 (en) 2006-10-25 2014-09-23 Kennametal Inc. Articles having improved resistance to thermal cracking
US9643236B2 (en) 2009-11-11 2017-05-09 Landis Solutions Llc Thread rolling die and method of making same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218010A (en) * 1986-03-19 1987-09-25 Mitsubishi Metal Corp Carbide drill
ATE72157T1 (en) * 1986-06-07 1992-02-15 Hertel Ag PROCEDURE FOR GRINDING A TWIST DRILL.
SE457334B (en) * 1987-04-10 1988-12-19 Ekerot Sven Torbjoern DRILL
DE10300283B3 (en) * 2003-01-02 2004-06-09 Arno Friedrichs Hard metal workpiece manufacturing method using extrusion for formation of lesser hardness material into rod-shaped carrier for greater hardness material
SE531188C2 (en) * 2007-05-29 2009-01-13 Sandvik Intellectual Property Drill body for chip separating machining
US8308096B2 (en) 2009-07-14 2012-11-13 TDY Industries, LLC Reinforced roll and method of making same
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757525A (en) * 1980-05-30 1982-04-06 Riikuman Peetaa Method and apparatus for measuring blood pressure
JPS59169706A (en) * 1983-03-14 1984-09-25 Sumitomo Electric Ind Ltd Drill
JPS59175912A (en) * 1983-03-25 1984-10-05 Sumitomo Electric Ind Ltd Carbide drill

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4726683U (en) * 1971-04-21 1972-11-25

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757525A (en) * 1980-05-30 1982-04-06 Riikuman Peetaa Method and apparatus for measuring blood pressure
JPS59169706A (en) * 1983-03-14 1984-09-25 Sumitomo Electric Ind Ltd Drill
JPS59175912A (en) * 1983-03-25 1984-10-05 Sumitomo Electric Ind Ltd Carbide drill

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4912552B2 (en) * 1999-12-14 2012-04-11 ティーディーワイ・インダストリーズ・インコーポレーテッド Compound rotary cutting tool
US8318063B2 (en) 2005-06-27 2012-11-27 TDY Industries, LLC Injection molding fabrication method
US8312941B2 (en) 2006-04-27 2012-11-20 TDY Industries, LLC Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US8841005B2 (en) 2006-10-25 2014-09-23 Kennametal Inc. Articles having improved resistance to thermal cracking
US8225886B2 (en) 2008-08-22 2012-07-24 TDY Industries, LLC Earth-boring bits and other parts including cemented carbide
US8322465B2 (en) 2008-08-22 2012-12-04 TDY Industries, LLC Earth-boring bit parts including hybrid cemented carbides and methods of making the same
US8858870B2 (en) 2008-08-22 2014-10-14 Kennametal Inc. Earth-boring bits and other parts including cemented carbide
US8272816B2 (en) 2009-05-12 2012-09-25 TDY Industries, LLC Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US9643236B2 (en) 2009-11-11 2017-05-09 Landis Solutions Llc Thread rolling die and method of making same

Also Published As

Publication number Publication date
JPS6048207A (en) 1985-03-15

Similar Documents

Publication Publication Date Title
JP3350566B2 (en) Manufacturing method of cutting insert
JPS6157123B2 (en)
US7407348B2 (en) Indexable cutting inserts and methods for producing the same
JPWO2005102572A1 (en) Ball end mill
JP5306351B2 (en) Partly ground tool rod made of sintered material
JP3352279B2 (en) Spiral end mill and method for manufacturing the same
EP0424575B1 (en) Shaft-integral type cutter wheel and cutter
EP2519378B1 (en) Blank for the manufacture of a machining tool and method of use of a blank for the manufacture of a machining tool
CN106573314B (en) Cutting tool and method of making a cutting tool
JPS6347563B2 (en)
JP2008049409A (en) Ball end mill and its manufacturing method
JP5994654B2 (en) Drill with ultra-high hardness sintered body and manufacturing method thereof
JP3127587B2 (en) Manufacturing method of split mold
JPH052247Y2 (en)
JPH08192305A (en) Throwaway tip and manufacture thereof
CN109715324B (en) PCD drill bit and manufacturing method thereof
JP2510764B2 (en) Manufacturing method of cemented carbide die
KR20060129249A (en) Tool insert
KR100437683B1 (en) corner make method for micro milling cutter
JPS59174243A (en) Tool having resistance to wear and impact
JP2009062560A (en) Method for manufacturing sintered parts and sintered parts manufactured with the method
KR101601598B1 (en) Method for manufacturing cutter ring for disk cutter using hard metal preform and cutter ring for disk cutter manufactured by the method
JP4136139B2 (en) End mill
JP2002003907A (en) Manufacturing method of composite twisted sintered compact
JPH026803B2 (en)