JPS6156293B2 - - Google Patents

Info

Publication number
JPS6156293B2
JPS6156293B2 JP10828777A JP10828777A JPS6156293B2 JP S6156293 B2 JPS6156293 B2 JP S6156293B2 JP 10828777 A JP10828777 A JP 10828777A JP 10828777 A JP10828777 A JP 10828777A JP S6156293 B2 JPS6156293 B2 JP S6156293B2
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
weight
graphite cast
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10828777A
Other languages
Japanese (ja)
Other versions
JPS5441216A (en
Inventor
Akihiro Okuno
Kazuyoshi Hanano
Tokio Maekawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP10828777A priority Critical patent/JPS5441216A/en
Publication of JPS5441216A publication Critical patent/JPS5441216A/en
Publication of JPS6156293B2 publication Critical patent/JPS6156293B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は自動車用変速機に使用されるシフトフ
オークなどの摺動部品、特に耐摩耗性に優れた球
状黒鉛鋳鉄部品の製造方法に関する。 従来、自動車用変速機のシフトフオークのよう
に薄肉部を有する小物摺動部品としては、鍛造品
または鋳造品に硬質クロームメツキあるいは浸炭
窒化処理を施して耐摩耗性を向上させたものが使
用されている。しかしながら、これらの部品はそ
の表面処理に多大の工数および経費を要するばか
りでなく、近年の苛酷化する条件下で使用するに
充分な耐久性を保証するだけの耐摩耗性を持たな
いという問題があつた。このため、安価で良好な
機械的性質をもつものとして、球状黒鉛鋳鉄で鋳
造した部品に焼準処理を施して基地をパーライト
地にしたもの、あるいはさらに機械加工後に高周
波焼入れを施したものが使用されるようになつて
いるが、これらは硬質クロームメツキ等を施した
ものより耐摩耗性において優るとはいえ、苛酷な
使用条件下での耐久性が保証し難いという問題が
依然として残されている。 一般に、鋳鉄基地は炭化物を分散させると耐摩
耗性が向上することはよく知られているが、その
反面、炭化物は強靭性と機械加工性を害すること
もよく知られた事実である。従つて、自動車変速
度機に使用されるシフトフオーク等のように高度
の耐摩耗性と強靭性を要求される薄肉小物摺動部
品を製造する場合、強靭性と機械加工性を低下さ
せない程度に炭化物を形成しうる鋳鉄を使用する
ことが考えられるが、通常の球状黒鉛鋳鉄では炭
化物量を制御し上記特性を両立させることは不可
能であつた。すなわち、シフトフオークのように
薄肉部を有する摺動部品を通常の球状黒鉛鋳鉄で
製造すると、鋳放しで炭化物と球状黒鉛が晶出す
るが、この炭化物は基地をパーライト地にするた
め焼準処理を施すと完全に分解、消失してしまう
問題があつた。 本発明は、上記の如き従来の問題に鑑みてなさ
れたものであつて、苛酷な使用条件下での耐久性
をも保証する安価で耐摩耗性に優れた耐摩耗性球
状黒鉛鋳鉄部品を得ることを目的とする。 上記目的達成のため、球状黒鉛鋳鉄製摺動部品
の機械的性質に影響を及ぼす各種要因について
種々検討を加えた結果、球状黒鉛鋳鉄自体に着目
しその化学組成をある特定のものとすることによ
り、具体的には特定量のBを存在させることによ
り、鋳造後の処理に応じて高耐摩耗性等の諸性質
に優れた摺動部品の製造が可能となることを見出
した。 即ち、Bを従来の球状黒鉛鋳鉄に添加すると、
非常に硬い炭化物を生成し機械加工性を悪化さ
せ、また黒鉛が微細化すると共にフエライトを生
成するため耐摩耗性および強靭性が悪化するとい
う問題が発生するが、これは黒鉛生成効果が大き
く機械的性質を大きく左右するC、Siと、炭化物
を生成すると共に基地を微細化するBとを有機的
に配合し、鋳造後、一定の条件下で熱処理するこ
とによつて解決できることを見出だし、本発明は
これらの知見に基づいて完成されたものである。 本発明の要旨は、C3.0〜4.5重量%、Si1.5〜3.5
重量%、Mn1.0重量%以下、Mg0.03〜0.06重量
%、B0.03〜0.10重量%、残部鉄および不可避的
不純物を含有する球状黒鉛鋳鉄からなる球状黒鉛
鋳鉄部品を鋳造し、該球状黒鉛鋳鉄部品を850〜
950℃で10〜120分間保持することにより、基地中
にBを含む炭化物を体積率で5〜20%含有し、パ
ーライトを主とする基地組織に変態させることを
特徴とする耐摩耗性球状黒鉛鋳鉄部品の製造方法
にある。また、本発明は、前記方法においてパー
ライトを主とする基地組織に変態させた後、焼き
入れして基地をマルデンサイト組織に変態させる
ことを特徴とする耐摩耗性球状黒鉛鋳鉄部品の製
造方法をも提供するものである。 本発明の好ましい実施態様においては、焼準処
理後に基地中に微量のフエライトが残留するのを
防止するため、上記組成に1.0%以下のCu、Sn、
Sb、Cr等が添加される。 次に、本発明の耐摩耗性球状黒鉛鋳鉄の化学組
成を限定した理由を説明する。Cは基本的には球
状黒鉛鋳鉄に通常含有される範囲でよいが、炭素
量が少なすぎると鋳放しで炭化物が多くなり過ぎ
て脆くなり、斫り作業等に支障をきたすと共に凝
固収縮が大きく欠陥を生じ易いので3.0%以上を
必要とする。しかし、4.5%を越えると黒鉛量が
必要以上に増加し、機械的性質を劣化させること
になるので、C3.0〜4.5%としたのである。な
お、Cは実際上はC3.0〜4.0%が好ましい。次
に、Siを1.5〜3.5%としたのは、Siは炭素と同様
に黒鉛と炭化物の量的なバランスに強い影響を及
ぼし、1.5%未満では機械的性質および機械加工
性が低下し、3.5%を越えると耐摩耗性が低下す
るからである。また、Mnは製鉄上脱酸等の目的
で添加されるが、1.0%を越えると炭化物が多く
なりすぎて、機械的性質および加工性が低下す
る。SはMgとの親和力が大きく、Mgが添加され
るとMgSを形成して浮上脱硫されるのでMgの歩
どまりを低下させ、黒鉛球状化を害するので0.03
%以下に制限した。Mgは黒鉛を球状化させるた
めに必要な元素で、0.03%未満では充分に黒鉛を
球状化できず、また0.06%を越えて添加しても効
果に差異はないので0.03〜0.06%とした。Bは本
発明の鋳鉄の最も重要な元素で、Bを添加すると
炭化物が安定化させられるため焼準処理後も炭化
物が残留するようになる。しかし、Bは炭化物を
安定化させると同時に微量では炭化物の分解を促
進する効果があるため、0.03%未満では黒鉛化処
理後に炭化物が残留せず、Bの添加量の増加と共
に炭化物の残留量は増加し耐摩耗性を向上させる
が、0.10%を越えると炭化物の量が多くなりすぎ
て機械加工性が低下するので、B0.03〜0.10%と
する。 また、本発明においては、上述の元素以外にさ
らにCu、Sn、SbおよびCrを添加することができ
る。これらは焼準処理後の基地組織中でのフエラ
イト析出を抑止するが、黒鉛球状化を妨害する作
用もあるので1.0%以下とする。 なお、一般にMgの添加により鋳鉄が白銑化す
るのを防止するため、球状黒鉛鋳鉄の製造には接
種は欠くことのできないものであるが、これは本
発明の鋳鉄の場合でも同じである。接種剤として
は通常使用されているもの、例えばFe−Si合金
を使用することができる。 本発明方法においては、耐摩耗性球状黒鉛鋳鉄
部品の耐摩耗性、機械加工性等を高めるため、製
造後、熱処理を施して、基地をパーライトを主と
する組織に変態させることが行なわれる。 この熱処理は850〜950℃で10〜120分間保持
後、空冷するのが好ましい。これは、850℃未満
では炭化物分解時間が長くなりすぎて実用的では
なく、しかも基地のパーライト化も不充分とな
り、また950℃を越えるとBを含む炭化物が残留
しなくなるので適当ではないからである。また、
前記温度範囲で10〜120分間熱処理することによ
り、基地中の炭化物が分解してC(黒鉛)が生成
し、黒鉛が粗大化すると共に、炭化物の析出量が
制御されるため、耐摩耗性、強靭性、機械加工性
を向上させることができる。なお、上記の熱処理
条件の範囲では、ボロンを含む炭化物は分解せず
に残留するが、その量は上記範囲内で処理条件を
適当に選ぶことによつて制御することができる。 熱処理は、鋳造品がBを含む炭化物が体積率で
5〜20%存在するように選定するのが好ましい。
これはボロンを含む炭化物が5%未満では耐摩耗
性が充分ではなく、20%を越えると機械加工性、
強靭性が低下するからである。 また、本発明の摺動部品は、必要に応じて機械
加工後高周波焼入れを施し、基地をマルテンサイ
ト組織にしてよい。なお、本発明鋳鉄は上述した
ように鋳造後、焼準処理が施されるか、本発明鋳
鉄は鋳放し状態ではフエライトを含むパーライト
基地中に球状黒鉛と30〜60容積%の炭化物が分散
している組織状態を有し、炭化物が多いため機械
加工性が悪く、衝撃値も低いからである。 以下、本発明の実施例について説明する。 実施例 基本成分が3.7%C−2.0%Si−0.4%Mnである
銑鉄を高周波炉で溶解し、これにBをFeB合金
(20%B)の形で単独またはCuと共に添加した
後、Fe−Si合金(75%Si)およびFe−Si−Mg合
金(47%Fe、50%Si、3%Mg)を用いて、接種
および黒鉛球状化処理を施し、第1表に示す化学
組成を有する鋳鉄を作つた。この溶湯をシフトフ
オーク用鋳型に鋳込み、ついで930℃で1時間保
持後、空冷し、その後、切削加工を施してシフト
フオークを製作した。
The present invention relates to a method for manufacturing sliding parts such as shift forks used in automobile transmissions, particularly spheroidal graphite cast iron parts having excellent wear resistance. Traditionally, small sliding parts with thin walls, such as shift forks in automobile transmissions, have been made of forged or cast products with hard chrome plating or carbonitriding to improve wear resistance. ing. However, these parts not only require a large amount of man-hours and expense for surface treatment, but also have the problem that they do not have enough wear resistance to guarantee sufficient durability to be used under conditions that have become increasingly severe in recent years. It was hot. For this reason, parts cast from spheroidal graphite cast iron that are normalized to make the base pearlite are inexpensive and have good mechanical properties, or parts that are induction hardened after machining are used. However, although these are superior in wear resistance to those coated with hard chrome plating, the problem still remains that it is difficult to guarantee durability under harsh usage conditions. . Generally, it is well known that the wear resistance of cast iron bases is improved by dispersing carbides, but on the other hand, it is also a well-known fact that carbides impair toughness and machinability. Therefore, when manufacturing thin-walled small sliding parts that require a high degree of wear resistance and toughness, such as shift forks used in automobile transmissions, it is necessary to Although it is conceivable to use cast iron that can form carbides, it has been impossible to control the amount of carbides and achieve both of the above characteristics with ordinary spheroidal graphite cast iron. In other words, when sliding parts with thin walls such as shift forks are manufactured from ordinary spheroidal graphite cast iron, carbides and spheroidal graphite crystallize as they are cast, but these carbides are normalized to form a pearlite base. There was a problem that when applying this, it would completely decompose and disappear. The present invention has been made in view of the conventional problems as described above, and provides a wear-resistant spheroidal graphite cast iron part that is inexpensive and has excellent wear resistance, ensuring durability even under severe usage conditions. The purpose is to In order to achieve the above objective, after conducting various studies on various factors that affect the mechanical properties of sliding parts made of spheroidal graphite cast iron, we focused on the spheroidal graphite cast iron itself and determined that its chemical composition was specific. Specifically, it has been found that by making a specific amount of B exist, it is possible to manufacture sliding parts with excellent properties such as high wear resistance depending on the post-casting treatment. That is, when B is added to conventional spheroidal graphite cast iron,
Very hard carbides are generated, which deteriorates machinability.Also, as graphite becomes finer, it also generates ferrite, which deteriorates wear resistance and toughness. We discovered that this problem could be solved by organically blending C and Si, which greatly influence the physical properties, and B, which generates carbides and refines the matrix, and then heat-treating it under certain conditions after casting. The present invention was completed based on these findings. The gist of the present invention is that C3.0~4.5% by weight, Si1.5~3.5
A spheroidal graphite cast iron part is cast, which is made of spheroidal graphite cast iron containing 1.0% by weight or less of Mn, 0.03 to 0.06% by weight of Mg, 0.03 to 0.10% by weight of B, the balance iron and unavoidable impurities. Graphite cast iron parts from 850
Wear-resistant spheroidal graphite that contains 5 to 20% by volume of carbide containing B in the matrix and transforms into a matrix structure consisting mainly of pearlite by holding it at 950°C for 10 to 120 minutes. In the manufacturing method of cast iron parts. The present invention also provides a method for manufacturing a wear-resistant spheroidal graphite cast iron component, which comprises transforming the base structure into a matrix structure mainly consisting of pearlite in the above method, and then quenching to transform the base structure into a mardensite structure. It also provides. In a preferred embodiment of the present invention, 1.0% or less of Cu, Sn,
Sb, Cr, etc. are added. Next, the reason for limiting the chemical composition of the wear-resistant spheroidal graphite cast iron of the present invention will be explained. Basically, C can be contained within the range normally contained in spheroidal graphite cast iron, but if the amount of carbon is too low, there will be too many carbides in the as-cast iron, making it brittle, which will impede scooping work, etc. and cause large solidification shrinkage. Since defects are likely to occur, a content of 3.0% or more is required. However, if it exceeds 4.5%, the amount of graphite increases more than necessary and deteriorates mechanical properties, so C was set at 3.0 to 4.5%. Note that C is actually preferably 3.0 to 4.0%. Next, the reason for setting Si to 1.5 to 3.5% is that like carbon, Si has a strong influence on the quantitative balance of graphite and carbide, and if it is less than 1.5%, mechanical properties and machinability deteriorate. This is because if it exceeds %, the wear resistance will decrease. Furthermore, Mn is added for purposes such as deoxidation during iron manufacturing, but if it exceeds 1.0%, carbides become too large and mechanical properties and workability deteriorate. S has a large affinity with Mg, and when Mg is added, it forms MgS and is floated and desulfurized, reducing the yield of Mg and impairing graphite spheroidization.
% or less. Mg is an element necessary to make graphite spheroidal, and if it is less than 0.03%, graphite cannot be sufficiently spheroidized, and even if it is added in excess of 0.06%, there is no difference in the effect, so it was set at 0.03 to 0.06%. B is the most important element in the cast iron of the present invention, and since the addition of B stabilizes carbides, the carbides remain even after normalizing treatment. However, since B has the effect of stabilizing carbides and promoting the decomposition of carbides in small amounts, if it is less than 0.03%, no carbides remain after graphitization, and as the amount of B added increases, the amount of carbides remaining decreases. B increases to improve wear resistance, but if it exceeds 0.10%, the amount of carbides becomes too large and machinability deteriorates, so B is set at 0.03 to 0.10%. Further, in the present invention, Cu, Sn, Sb, and Cr can be added in addition to the above-mentioned elements. These suppress the precipitation of ferrite in the matrix structure after normalizing treatment, but they also have the effect of interfering with graphite spheroidization, so they should be kept at 1.0% or less. Note that inoculation is generally essential in the production of spheroidal graphite cast iron in order to prevent cast iron from becoming white due to the addition of Mg, and this is the same in the case of the cast iron of the present invention. As the inoculant, commonly used inoculants such as Fe-Si alloy can be used. In the method of the present invention, in order to improve the wear resistance, machinability, etc. of wear-resistant spheroidal graphite cast iron parts, heat treatment is performed after manufacture to transform the matrix into a structure mainly consisting of pearlite. This heat treatment is preferably carried out by holding at 850 to 950°C for 10 to 120 minutes and then air cooling. This is because if the temperature is lower than 850°C, the carbide decomposition time will be too long, which is not practical, and the pearlite formation of the base will also be insufficient, and if it exceeds 950°C, carbide containing B will not remain, so it is not suitable. be. Also,
By heat treating in the above temperature range for 10 to 120 minutes, carbides in the base are decomposed to produce C (graphite), coarsening the graphite, and controlling the amount of carbide precipitation, improving wear resistance, Toughness and machinability can be improved. Note that, within the range of the heat treatment conditions described above, the carbide containing boron remains without being decomposed, but the amount thereof can be controlled by appropriately selecting the treatment conditions within the above range. The heat treatment is preferably selected so that the cast product contains 5 to 20% by volume of B-containing carbide.
This is because if the carbide containing boron is less than 5%, wear resistance is insufficient, and if it exceeds 20%, machinability is poor.
This is because toughness decreases. Further, the sliding component of the present invention may be subjected to induction hardening after machining, if necessary, to make the base a martensitic structure. The cast iron of the present invention is either normalized after casting as described above, or in the as-cast state, spheroidal graphite and 30 to 60% by volume of carbides are dispersed in a pearlite base containing ferrite. This is because it has a structural state that is similar to that of steel, has a large amount of carbide, has poor machinability, and has a low impact value. Examples of the present invention will be described below. Example Pig iron whose basic components are 3.7%C-2.0%Si-0.4%Mn is melted in a high frequency furnace, and after adding B alone or together with Cu in the form of FeB alloy (20%B), Fe- Cast iron is made of Si alloy (75%Si) and Fe-Si-Mg alloy (47%Fe, 50%Si, 3%Mg), inoculated and graphite nodularized, and has the chemical composition shown in Table 1. I made it. This molten metal was poured into a shift fork mold, held at 930°C for 1 hour, cooled in air, and then cut to produce a shift fork.

〔試験条件〕〔Test conditions〕

試験機:ターンテーブル式摩耗試験機 摩擦方法:大気中における一方向繰返し摩擦 試験片に掛る面圧:0.55Kg/mm2 摩擦速度:2.76m/S Testing machine: Turntable abrasion tester Friction method: Surface pressure applied to unidirectional cyclic friction test piece in air: 0.55Kg/mm 2Friction speed: 2.76m/S

【表】 第2表の結果から明らかなように、本発明の鋳
鉄製シフトフオークは従来のシフトフオークに比
べて非常に摩耗量が少なく、約2〜6倍の耐摩耗
性を示す。また、Bの量、すなわちBを含む炭化
物の量が増大するにつれて耐摩耗性が向上するこ
とがわかる。なお、第2表における炭化物量は体
積率で示してある。 さらに、上記試料を用い、10mm(長さ)×10mm
(幅)×55mm(厚さ)を有するパーライト地の試験
片を作成し、無溝シヤルピー衝撃試験に供した。
その結果を第3表に示す。
[Table] As is clear from the results in Table 2, the cast iron shift fork of the present invention has significantly less wear than the conventional shift fork, and exhibits about 2 to 6 times more wear resistance. It is also seen that as the amount of B, that is, the amount of carbide containing B increases, the wear resistance improves. In addition, the amount of carbide in Table 2 is shown in volume percentage. Furthermore, using the above sample, 10 mm (length) x 10 mm
A test piece of pearlite material having dimensions (width) x 55 mm (thickness) was prepared and subjected to a grooveless sharpie impact test.
The results are shown in Table 3.

【表】 第3表から明らかなように、炭化物の量が増加
するにつれてシヤルピー衝撃値は低下する傾向を
示すが、シフトフオーク用材料に要求される値は
2.0Kg・m/cm2であるから、本発明のものは充分に
これを満足し、強靭性を有していることがわか
る。 また、上記試料1〜4の鋳鉄で作つてシフトフ
オークに高周波焼入れを施し、基地をマルテンサ
イトにしたもの(試料1′〜4′)とパーライト地の
もの(試料1〜4)について実エンジンテストに
供したところ、第4表に示すように優れた耐摩耗
性を示した。なお、テストは、各シフトフオーク
について操作荷重:100Kg、操作時間:0.3秒、操
作回数50回 スリーブ回転数:4000rpm、潤滑剤:デキシロ
ンオイル、油温:70〜75℃の条件下でおこなつ
た。
[Table] As is clear from Table 3, the Charpy impact value tends to decrease as the amount of carbide increases, but the value required for shift fork materials is
Since it is 2.0Kg·m/cm 2 , it can be seen that the material of the present invention sufficiently satisfies this requirement and has toughness. In addition, actual engine tests were conducted on samples 1 to 4 above, which were made of cast iron and subjected to induction hardening, with martensite bases (samples 1' to 4') and pearlite bases (samples 1 to 4). As shown in Table 4, it exhibited excellent wear resistance. The test was conducted for each shift fork under the following conditions: operating load: 100 kg, operating time: 0.3 seconds, number of operations: 50 times, sleeve rotation speed: 4000 rpm, lubricant: Dexilon oil, oil temperature: 70 to 75°C. .

【表】 以上説明したように、本発明に係る摺動部品用
耐摩耗性球状黒鉛鋳鉄は、Bを添加することによ
つて、鋳造後の熱処理に応じて高度の耐摩耗性、
強靭性等の諸性質に優れた摺動部品を安価に製造
することができ、しかも良好な機械加工性も持つ
ので、工業的価値は非常に高いものである。
[Table] As explained above, by adding B, the wear-resistant spheroidal graphite cast iron for sliding parts according to the present invention has a high degree of wear resistance, depending on the heat treatment after casting.
Sliding parts with excellent properties such as toughness can be manufactured at low cost, and they also have good machinability, so they have very high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明の耐摩耗性球状黒鉛鋳鉄製摺
動部品の組織状態を示す顕微鏡写真、第1図bは
従来の球状黒鉛鋳鉄製摺動部品の組織状態を示す
顕微鏡写真である。
FIG. 1a is a photomicrograph showing the structure of a wear-resistant spheroidal graphite cast iron sliding part of the present invention, and FIG. 1b is a photomicrograph showing the structure of a conventional spheroidal graphite cast iron sliding part.

Claims (1)

【特許請求の範囲】 1 C3.0〜4.5重量%、Si1.5〜3.5重量%、Mn1.0
重量%以下、Mg0.03〜0.06重量%、B0.03〜0.10
重量%、残部鉄および不可避的不純物を含有する
球状黒鉛鋳鉄からなる球状黒鉛鋳鉄部品を鋳造
し、該球状黒鉛鋳鉄部品を850〜950℃で10〜120
分間保持することにより、基地中にBを含む炭化
物を体積率で5〜20%含有し、パーライトを主と
する基地組織に変態させることを特徴とする耐摩
耗性球状黒鉛鋳鉄部品の製造方法。 2 前記球状黒鉛鋳鉄がCu、Sn、SbおよびCrを
1.0重量%以下含有する特許請求の範囲第1項記
載の耐摩耗性球状黒鉛鋳鉄部品の製造方法。 3 C3.0〜4.5重量%、Si1.5〜3.5重量%、Mn1.0
重量%以下、Mg0.03〜0.06重量%、B0.03〜0.10
重量%、残部鉄および不可避的不純物を含有する
球状黒鉛鋳鉄からなる球状黒鉛鋳鉄部品を鋳造
し、該球状黒鉛鋳鉄部品を850〜950℃で10〜120
分間保持することにより、基地中にBを含む炭化
物を体積率で5〜20%含有し、パーライトを主と
する基地組織に変態させ、次いで焼き入れして基
地をマルテンサイト組織に変態させることを特徴
とする耐摩耗性球状黒鉛鋳鉄部品の製造方法。 4 前記球状黒鉛鋳鉄がCu、Sn、SbおよびCrを
1.0重量%以下含有する特許請求の範囲第3項記
載の耐摩耗性球状黒鉛鋳鉄部品の製造方法。
[Claims] 1 C3.0-4.5% by weight, Si1.5-3.5% by weight, Mn1.0
Weight% or less, Mg0.03~0.06wt%, B0.03~0.10
% by weight, balance iron and unavoidable impurities are cast, and the spheroidal graphite cast iron parts are heated at 850-950℃ for 10-120℃.
A method for producing a wear-resistant spheroidal graphite cast iron part, which is characterized in that the matrix contains 5 to 20% by volume of carbides containing B in the matrix and transforms into a matrix structure mainly made of pearlite by holding for a minute. 2 The spheroidal graphite cast iron contains Cu, Sn, Sb and Cr.
A method for manufacturing a wear-resistant spheroidal graphite cast iron part according to claim 1, which contains 1.0% by weight or less. 3 C3.0-4.5% by weight, Si1.5-3.5% by weight, Mn1.0
Weight% or less, Mg0.03~0.06wt%, B0.03~0.10
% by weight, balance iron and unavoidable impurities are cast, and the spheroidal graphite cast iron parts are heated at 850-950℃ for 10-120℃.
By holding the matrix for a minute, the base contains 5 to 20% of the carbide containing B in terms of volume percentage, transforming into a base structure mainly made of pearlite, and then quenching to transform the base into a martensitic structure. A manufacturing method for wear-resistant spheroidal graphite cast iron parts. 4 The spheroidal graphite cast iron contains Cu, Sn, Sb and Cr.
The method for manufacturing a wear-resistant spheroidal graphite cast iron part according to claim 3, which contains 1.0% by weight or less.
JP10828777A 1977-09-07 1977-09-07 Wearrresistant spheroidal iron and slidinggproducts made of cast iron Granted JPS5441216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10828777A JPS5441216A (en) 1977-09-07 1977-09-07 Wearrresistant spheroidal iron and slidinggproducts made of cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10828777A JPS5441216A (en) 1977-09-07 1977-09-07 Wearrresistant spheroidal iron and slidinggproducts made of cast iron

Publications (2)

Publication Number Publication Date
JPS5441216A JPS5441216A (en) 1979-04-02
JPS6156293B2 true JPS6156293B2 (en) 1986-12-02

Family

ID=14480830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10828777A Granted JPS5441216A (en) 1977-09-07 1977-09-07 Wearrresistant spheroidal iron and slidinggproducts made of cast iron

Country Status (1)

Country Link
JP (1) JPS5441216A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149449A (en) * 1981-03-10 1982-09-16 Toyota Motor Corp Wear-resistant cast iron
US4638847A (en) * 1984-03-16 1987-01-27 Giw Industries, Inc. Method of forming abrasive resistant white cast iron
JPS61159551A (en) * 1985-01-07 1986-07-19 Mitsubishi Heavy Ind Ltd Roller for conveyance
JPH0730426B2 (en) * 1986-03-12 1995-04-05 日産自動車株式会社 Heat remelting Cast iron for surface hardening
JPH02159345A (en) * 1988-12-12 1990-06-19 Mitsubishi Motors Corp Wear resistant spheroidal graphite cast iron
DE102004056331A1 (en) 2004-11-22 2006-05-24 Georg Fischer Fahrzeugtechnik Ag Ductile cast iron alloy and method for producing castings from nodular cast iron alloy

Also Published As

Publication number Publication date
JPS5441216A (en) 1979-04-02

Similar Documents

Publication Publication Date Title
EP1384794A1 (en) Spheroidal cast iron particulary for piston rings and method for its production
US6258180B1 (en) Wear resistant ductile iron
JPH08127845A (en) Graphite steel,its article and its production
JPS6156293B2 (en)
US5279902A (en) Air hardening steel
EP0272788B1 (en) A method of making wear resistant gray cast iron
Davis Classification and basic metallurgy of cast irons
JP3218625B2 (en) Scuff and wear-resistant sliding parts
US4889687A (en) Nodular cast iron having a high impact strength and process of treating the same
Chavan et al. Effect of mo on micro-structural and mechanical properties of as-cast ferritic spheroidal graphite iron
Alabi et al. Production of Austempered Ductile Iron with Optimum Sulphur level for effective Mechanical Properties
Mittal et al. Property enhancement of spheroidal graphite cast iron by heat treatment
CN109280845B (en) High-strength and high-toughness chromium ductile iron
JP2970387B2 (en) Wear-resistant steel and piston ring or liner materials for internal combustion engines
JPS627260B2 (en)
RU2681076C1 (en) Nodular cast iron, eutectic cementite inclusions and bainite-austenitic metal base heat treatment method
SU1725757A3 (en) Wear-resistant cast iron
Dossett et al. Heat treating of gray irons
SU1587072A1 (en) Iron with spherical graphite for casting
SU1752819A1 (en) Antifriction cast iron
SU1100328A1 (en) Iron composition
KR100543274B1 (en) A low noise gear and manufacturing thereof
SU1763506A1 (en) Wear-resistant cast iron
KR100646440B1 (en) Microalloying fine grain steel having superior mechanical properties and method for the preparation thereof
Gundlach et al. Effects of Silicon in High-Cr White Cast Irons