JPS6156201A - Surface treatment of magnetic metallic powder - Google Patents

Surface treatment of magnetic metallic powder

Info

Publication number
JPS6156201A
JPS6156201A JP59175151A JP17515184A JPS6156201A JP S6156201 A JPS6156201 A JP S6156201A JP 59175151 A JP59175151 A JP 59175151A JP 17515184 A JP17515184 A JP 17515184A JP S6156201 A JPS6156201 A JP S6156201A
Authority
JP
Japan
Prior art keywords
magnetic powder
metal magnetic
surface treatment
powder
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59175151A
Other languages
Japanese (ja)
Other versions
JPH0148323B2 (en
Inventor
Kyoji Odan
恭二 大段
Mizuho Oda
水穂 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP59175151A priority Critical patent/JPS6156201A/en
Publication of JPS6156201A publication Critical patent/JPS6156201A/en
Publication of JPH0148323B2 publication Critical patent/JPH0148323B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the above-mentioned powder having excellent oxidation resistance and dispersibility by subjecting magnetic metallic powder (powder) to an annealing treatment in an inert gaseous atmosphere contg. a slight amt. of oxygen then to a surface treatment with an org. sulfur compd. CONSTITUTION:The powder obtd. by reducing iron oxyhydroxide or iron oxide is subjected to the annealing treatment in the inert gas contg. preferably about 50-10,000ppm oxygen and is then subjected to the surface treatment with the org. sulfur compd. generally by a wet process. More specifically, the above- mentioned powder is dipped into a solvent for a magnetic paint such as benzene dissolved or dispersed therein with the org. sulfur compd. and is then dried. Preferably, O,O'-dibenzamide diphenyl disulfide or the mercaptan compd. expressed by the formula: R-SH or the like is particularly preferable as the org. sulfur compd. R in the formula denotes an alkyl group, phenyl group, cyclohexyl group, allyl group or benzyl group of 4-20C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、オキシ水酸化鉄または酸化鉄を還元して得ら
れる金属磁性粉末の表面処理法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for surface treatment of metal magnetic powder obtained by reducing iron oxyhydroxide or iron oxide.

更に詳しくは1本発明は、金属磁性粉末を表面処理して
金属磁性粉末の耐酸化性および分散性を向上させる方法
に関するものである。
More specifically, the present invention relates to a method of surface-treating metal magnetic powder to improve its oxidation resistance and dispersibility.

〔従来の技術〕[Conventional technology]

オキシ水酸化鉄または酸化鉄を還元性ガス、例えば水素
で還元して得られる金属磁性粉末は、酸化物系磁性粉末
2例えばγ−F’e203  に比べて高保磁力、高飽
和磁気モーメントを与えるので高密度磁気記録用として
期待され、一部使用されるようになってきた。
Metal magnetic powder obtained by reducing iron oxyhydroxide or iron oxide with a reducing gas, such as hydrogen, provides higher coercive force and higher saturation magnetic moment than oxide-based magnetic powder 2, such as γ-F'e203. It is expected to be used for high-density magnetic recording, and has come to be used in some cases.

しかし々から金属磁性粉末は2表面活性が大きく、大気
中に放置すると発火、燃焼の危険性があり、また経時的
に酸化が進行して飽和磁化が低下するという問題点があ
る。
However, metal magnetic powder has a large surface activity, and if left in the atmosphere, there is a risk of ignition or combustion, and oxidation progresses over time, resulting in a decrease in saturation magnetization.

それ故、オキシ水酸化鉄または酸化鉄を還元して得られ
る金属磁性粉末を大気中にとりだすにあたっては、また
とりだした金属磁性粉末を各種用途に使用するにあたっ
ては、金属磁性粉末の表面処理(安定化処理)が必要不
可決であり、すでに種々の表面処理法が提案されている
Therefore, when taking out the metal magnetic powder obtained by reducing iron oxyhydroxide or iron oxide into the atmosphere, or when using the taken out metal magnetic powder for various purposes, it is necessary to perform surface treatment (stabilization) of the metal magnetic powder. surface treatment) is not necessary and various surface treatment methods have already been proposed.

例えば、(1)金属磁性粉末をトルエン、キシレンの如
き有機溶媒中に浸漬した後、有機溶媒を徐々に蒸発させ
て粉末粒子表面に酸化被膜を形成させる方法、(2)金
属磁性粉末の粒子表面を含酸素不活性ガスにより酸化し
て酸化被膜を形成させる方法。
For example, (1) a method in which a metal magnetic powder is immersed in an organic solvent such as toluene or xylene, and then the organic solvent is gradually evaporated to form an oxide film on the powder particle surface; (2) a method in which an oxide film is formed on the powder particle surface; A method of forming an oxide film by oxidizing with an oxygen-containing inert gas.

(3)金属磁性粉末の表面をある種の金属元素、金属化
合物、界面活性剤、樹脂等で被覆する方法等が提案され
ている。
(3) A method of coating the surface of metal magnetic powder with a certain metal element, metal compound, surfactant, resin, etc. has been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし々から、(1)の方法は有機溶媒の蒸発速度等の
条件により燃焼の危険があったり1期待した耐酸化性効
果や磁気特性が得られなかったり、塗料化(インク化)
時の分散性が劣ったりする難点があり、(2)の方法で
も分散性は十分でなく、また記録密度の向上を図るため
に金属磁性粉末を微粒子化すると耐酸化性が悪く々った
り、飽和磁化が低下したりする難点があり、−!た(3
)の方法は被覆物質の選択の難しさもさること々がら、
たとえ耐酸化性の向上を図ることができてもインク化時
の分散性に難点が生じたりすることが多い。
However, with method (1), there is a risk of combustion depending on conditions such as the evaporation rate of the organic solvent, 1) the expected oxidation resistance effect and magnetic properties cannot be obtained, and method (1) cannot be made into a paint (ink).
Even with method (2), the dispersibility is not sufficient, and when the metal magnetic powder is made into fine particles in order to improve the recording density, the oxidation resistance becomes poor. There is a drawback that the saturation magnetization decreases, -! It was (3
) method is not only difficult in selecting the coating material, but also
Even if it is possible to improve the oxidation resistance, there are often problems with dispersibility when forming an ink.

本発明は、インク化時の分散性が改善された金属磁性粉
末を提供することにある。
An object of the present invention is to provide a metal magnetic powder with improved dispersibility when formed into an ink.

また本発明は、耐酸化性にすぐれた磁気特性のよい金属
磁性粉末を提供することにある。
Another object of the present invention is to provide a metal magnetic powder with excellent oxidation resistance and good magnetic properties.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、オキシ水酸化鉄または酸化鉄を還元して得ら
れる金属磁性粉末を、微量の酸素を含有する不活性ガス
雰囲気下でアニール処理した後。
In the present invention, metal magnetic powder obtained by reducing iron oxyhydroxide or iron oxide is annealed in an inert gas atmosphere containing a trace amount of oxygen.

有機イオウ化合物で表面処理することを特徴とする金属
磁性粉末の表面処理法に関するものである。
The present invention relates to a method for surface treatment of metal magnetic powder, which is characterized by surface treatment with an organic sulfur compound.

本発明において表面処理される金属磁性粉末は。The metal magnetic powder to be surface-treated in the present invention is as follows.

それ自体公知の方法でオキシ水酸化鉄または酸化鉄を水
素の如き還元性ガス雰囲気下に300〜500℃程度の
温度で加熱還元して得られるものであり、金属磁性粉末
には従来この種の磁気記録用磁性粉末に用いられている
Ni+ Co、 Or、 Mn、 Cu。
It is obtained by heat-reducing iron oxyhydroxide or iron oxide at a temperature of about 300 to 500°C in an atmosphere of a reducing gas such as hydrogen using a method known per se. Ni+ Co, Or, Mn, Cu used in magnetic powder for magnetic recording.

Zn、 Tj、 V等が少量含壕れているものも包含さ
れる。
Those containing small amounts of Zn, Tj, V, etc. are also included.

本発明においては、最初に金属磁性粉末を微量の酸素を
含有する不活性ガス雰囲気下にアニール処理する。アニ
ール処理によって金属磁性粉末の表面には緻密で強固な
酸化被膜を形成させることができるので、大気中に放置
しても発火、燃焼等の危険性は々い。しかしアニール処
理だけでは耐酸化性および分散性はい捷だ十分とはいえ
ない。
In the present invention, metal magnetic powder is first annealed in an inert gas atmosphere containing a trace amount of oxygen. Since a dense and strong oxide film can be formed on the surface of the metal magnetic powder by annealing, there is a high risk of ignition or combustion even if it is left in the atmosphere. However, annealing alone is not sufficient to improve oxidation resistance and dispersibility.

不活性ガス中の酸素含有量は、50〜1ooo。The oxygen content in the inert gas is 50 to 1 ooo.

ppm +好捷しくけ100〜8000 ppmにする
のがよい。酸素含有量が多すぎると酸化が急速に進み緻
密で強固な酸化被膜の形成が困難になり1発火、燃焼等
の恐れもあり、捷だ少なすぎると酸化被膜の形成に長時
間を要する。不活性ガスとしては一般に窒素が便利に使
用されるが、アルゴン。
It is preferable to set the amount to 100 to 8000 ppm + 100 to 8000 ppm. If the oxygen content is too high, oxidation will proceed rapidly, making it difficult to form a dense and strong oxide film, and there is a risk of ignition, combustion, etc. If the oxygen content is too low, it will take a long time to form the oxide film. Argon, although nitrogen is generally conveniently used as an inert gas.

ヘリウム等その他の不活性ガスを使用しても差支え々い
Other inert gases such as helium may also be used.

アニール処理する際の温度は、30〜700℃。The temperature during annealing treatment is 30 to 700°C.

好ましくは100〜500℃が効果的であり、また処理
時間は1〜10時間、好ましくは2〜5時間が適当であ
る。
Preferably, a temperature of 100 to 500°C is effective, and a suitable treatment time is 1 to 10 hours, preferably 2 to 5 hours.

アニール処理した後の酸化被膜を形成させた金属磁性粉
末は、これを有機イオウ化合物で表面処理する。この表
面処理によって金属磁性粉末の耐酸化性および分散性を
一段と向上させることができ、磁気特性もすぐれた金属
磁性粉末が得られる。
After annealing, the metal magnetic powder on which an oxide film has been formed is surface-treated with an organic sulfur compound. By this surface treatment, the oxidation resistance and dispersibility of the metal magnetic powder can be further improved, and a metal magnetic powder with excellent magnetic properties can be obtained.

有機イオウ化合物としては、o、o’−ジベンズアミド
ジフェニルジスルフィド、 式: R−8H(式中Rは
炭素数4〜20のアルキル基、フェニル基。
Examples of the organic sulfur compound include o,o'-dibenzamide diphenyl disulfide, formula: R-8H (wherein R is an alkyl group having 4 to 20 carbon atoms, or a phenyl group).

シクロヘキシル基、アリル基またはベンジル基を示す。Represents a cyclohexyl group, allyl group or benzyl group.

)で表わされるメルカプタン化合物等が特に有効である
。々お、前記式で表わされるメルカプタン化合物のRの
フェニル基は、水酸基、メチル基、カルボキシル基およ
びハロゲン原子よりなる群から選択された置換基を有し
ていてもよい。
) are particularly effective. The phenyl group of R in the mercaptan compound represented by the above formula may have a substituent selected from the group consisting of a hydroxyl group, a methyl group, a carboxyl group, and a halogen atom.

メルカプタン化合物の代表的なものとしては、ブチルメ
ルカプタン、アミルメルカプタン、ヘキシルメルカブタ
ン、ヘプチルメルカプタン、オクチルメルカプタン、ノ
ニルメルカプタン、デシルメルカプタン、ウンデシルメ
ルカプタン、ドデシルメルカプタン、トリデシルメルカ
プタン、テトラデシルメルカプタン、ペンタデシルメル
カプタン。
Typical mercaptan compounds include butyl mercaptan, amyl mercaptan, hexyl mercaptan, heptyl mercaptan, octyl mercaptan, nonyl mercaptan, decyl mercaptan, undecyl mercaptan, dodecyl mercaptan, tridecyl mercaptan, tetradecyl mercaptan, and pentadecyl mercaptan. .

ヘキサデシルメルカプタン、オタタデシルメルカブタン
、ノナデシルメルカプタン、アラキルメルカプタン等の
炭素数4〜20のアルキルメルカプタン、チオフェノー
ル、チオクレゾール、チオサリチル酸、チオカテコール
、チオアニソール、チオ安息香酸、p−メルカプトクロ
ルベンゼン。
Alkyl mercaptans having 4 to 20 carbon atoms such as hexadecyl mercaptan, otatadecyl mercaptan, nonadecyl mercaptan, and aralyl mercaptan, thiophenol, thiocresol, thiosalicylic acid, thiocatechol, thioanisole, thiobenzoic acid, p-mercapto Chlorbenzene.

2.4.5−)リクロロチオフェノール等の如きフェニ
ルメルカプタン類、シクロヘキシルメルカプタン、アリ
ルメルカプタン、ベンジルメルカプタン等を挙げること
ができる。
2.4.5-) Phenylmercaptans such as dichlorothiophenol, cyclohexylmercaptan, allylmercaptan, benzylmercaptan and the like can be mentioned.

酸化被膜を形成させた金属磁性粉末を有機イオウ化合物
で表面処理する方法としては、粉末粒子7     表
面を有機イオウ化合物で均一に処理することができれば
湿式法、乾式法等いずれの方法を採用してもよいが、一
般には有機イオウ化合物を溶解ないしは分散させた溶媒
中に金属磁性粉末を浸漬した後、乾燥する湿式法を採用
するのが好適である。
As a method for surface-treating the metal magnetic powder on which an oxide film has been formed with an organic sulfur compound, either a wet method or a dry method can be adopted as long as the surface of the powder particles 7 can be uniformly treated with the organic sulfur compound. However, it is generally preferable to employ a wet method in which metal magnetic powder is immersed in a solvent in which an organic sulfur compound is dissolved or dispersed, and then dried.

溶媒中の有機イオウ化合物の濃度は、とれがあまり高す
ぎると磁気特性に悪影響を及ぼしたり、操作が煩雑にな
ったりすることがあるので、0.05〜10重量係以下
、好ましくは0.1〜5重量%が適当である。またその
際有機イオウ化合物は金属磁性粉末に対して0.1〜1
0重量係の量で使用するのが適当である。
The concentration of the organic sulfur compound in the solvent should be 0.05 to 10% by weight or less, preferably 0.1, since too high a concentration may adversely affect magnetic properties or complicate operations. ~5% by weight is suitable. In addition, in this case, the organic sulfur compound is 0.1 to 1% relative to the metal magnetic powder.
It is appropriate to use it in an amount of 0 weight.

浸漬して表面処理する際の温度は室温以上、好ましくは
50〜100℃程度が、また処理時間は1〜10時間、
好ましくは1.5〜7時間程度が一般に採用される。
The temperature during surface treatment by dipping is room temperature or higher, preferably about 50 to 100°C, and the treatment time is 1 to 10 hours.
Preferably, about 1.5 to 7 hours is generally employed.

溶媒としては、水、有機溶媒等いずれを使用してもよい
が一般に有機溶媒が好適に使用される。
As the solvent, any of water, organic solvents, etc. may be used, but organic solvents are generally preferably used.

有機溶媒としては2通常磁性塗料用溶媒として使用され
ているもの1例えばベンゼン、トルエン。
Examples of organic solvents include 2 those commonly used as solvents for magnetic coatings, 1 examples of which are benzene and toluene.

キシレン、メチルエチルケトン、メチルイソブチルケト
ン、シクロヘキサノン、ジオキサン、メチルセロソルフ
、エチルアルコール、フロビルアルコール、ブチルアル
コール、アセトン、テトラヒドロフラン等を挙げること
ができる。
Examples include xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, dioxane, methyl cellosol, ethyl alcohol, furoyl alcohol, butyl alcohol, acetone, and tetrahydrofuran.

浸漬処理した金属磁性粉末は、これをそれ自体公知の分
離操作9例えばろ過等の方法でとり出して乾燥すると、
有機イオウ化合物で表面処理された金属磁性粉末が得ら
れる。乾燥方法としては風乾、不活性ガス雰囲気下での
乾燥、真空乾燥等特に制限され々いが、一般には室温〜
50℃程度の温度で乾燥するのが適当である。表面処理
された金属磁性粉末の粒子表面に有機イオウ化合物がど
のような形態で結合し、被着しているのかは十分に明ら
かでは々いが、FT−IR,ESOA等で分析すると鉄
とイオウの強固な結合が認められる。
The immersed metal magnetic powder is removed by a known separation procedure 9, such as filtration, and dried.
Metal magnetic powder whose surface is treated with an organic sulfur compound is obtained. Drying methods are not particularly limited, such as air drying, drying under an inert gas atmosphere, vacuum drying, etc., but in general, drying at room temperature to
It is appropriate to dry at a temperature of about 50°C. Although it is not entirely clear in what form organic sulfur compounds bind and adhere to the surface of the surface-treated metal magnetic powder particles, analysis using FT-IR, ESOA, etc. reveals that iron and sulfur are present. A strong bond is observed.

〔実施例〕〔Example〕

各側において耐酸化性の評価〔0日維持率(イ)〕は、
〕60℃−90%Rの空気中に有機イオウ化合物による
表面処理後の金属磁性粉末を、1週間放置した後に飽和
磁化σs (emu/ t )を測定し。
The evaluation of oxidation resistance [0-day retention rate (A)] on each side is as follows:
] The metal magnetic powder after surface treatment with an organic sulfur compound was left in air at 60° C. and 90% R for one week, and then the saturation magnetization σs (emu/t) was measured.

放置前の飽和磁化に対する百分率で示した。It is expressed as a percentage of the saturation magnetization before being left.

また分散性の評価〔ろ過率(1)〕は、有機イオウ化合
物による表面処理後の金属磁性粉末を使用し。
Further, the evaluation of dispersibility [filtration rate (1)] was performed using metal magnetic powder after surface treatment with an organic sulfur compound.

第1表に示すバインダー組成にて磁性塗料を作成し、篩
目が1μのフィルターで磁性塗料をろ過し。
A magnetic paint was prepared with the binder composition shown in Table 1, and the magnetic paint was filtered through a filter with a sieve size of 1μ.

磁性塗料がフィルターを通過する度合で判定(全量通過
した場合はろ過率100重量%)した。
Judgment was made based on the degree to which the magnetic paint passed through the filter (if the entire amount passed, the filtration rate was 100% by weight).

第    1    表 ※1)塩化ビニル−酢酸ビニル共重合体※2)コロネー
ト(商品名) 実施例1 針状のオキシ水酸化鉄粉末を650℃で脱水後。
Table 1 *1) Vinyl chloride-vinyl acetate copolymer *2) Coronate (trade name) Example 1 After dehydrating acicular iron oxyhydroxide powder at 650°C.

水素雰囲気下に400℃で8時間還元して、針状の金属
磁性粉末(長軸0.2μm、軸比8〜10゜比表面積5
0 m”/ ? )をイq、雰囲気を水素から窒素に切
り換えて室WA ’?で降1)ll’l L 、内び徐
々にlf目11’1させながら、酸素含有量1100p
pの窒素ガスを流通させ、650℃の温度で6時間保持
し、金属磁性粉末の表面に緻密な酸化被膜を形成させた
It was reduced in a hydrogen atmosphere at 400°C for 8 hours to produce acicular magnetic metal powder (long axis 0.2 μm, axial ratio 8-10°, specific surface area 5
0 m"/?) was changed from hydrogen to nitrogen, and the atmosphere was lowered in the chamber WA'?1)ll'l L, and the oxygen content was reduced to 1100 p while gradually increasing the temperature to 11'1.
A dense oxide film was formed on the surface of the metal magnetic powder by passing p nitrogen gas and maintaining the temperature at 650° C. for 6 hours.

次いで酸化被膜を形成させた金属磁性粉末10グを、o
、o’−ジベンズアミドジフェニルジスルフィド0.5
7を、トルエン200m1!に溶解させた溶液中に浸漬
し、十分に攪拌2分散させ、80℃の温度に2時間保持
して表面処理を行った後、処理液を室温まで下げて金属
磁性粉末をろ別し、40℃の温度で真空乾燥した。
Next, 10 g of metal magnetic powder on which an oxide film was formed was heated to
, o'-dibenzamide diphenyl disulfide 0.5
7, 200ml of toluene! The metal magnetic powder was immersed in a solution dissolved in Vacuum dried at a temperature of °C.

得られた表面処理金属磁性粉末の表面をFT−IRおよ
びFiSOAにより分析した結果、鉄とイオウの強固な
結合が認められた。
As a result of analyzing the surface of the obtained surface-treated metal magnetic powder by FT-IR and FiSOA, a strong bond between iron and sulfur was observed.

金属磁性粉末(酸化被膜形成前および形成後。Metal magnetic powder (before and after oxide film formation).

有機イオウ化合物による表面処理後)(保磁力Heおよ
び飽和磁化σ8)の磁気特性、耐酸化性および分散性の
評価結果等の測定結果を第3表に示す。
Measurement results such as evaluation results of magnetic properties (coercive force He and saturation magnetization σ8), oxidation resistance, and dispersibility (after surface treatment with an organic sulfur compound) are shown in Table 3.

実施例2〜9 実施例1と同様にして針状のオキシ水酸化鉄を脱水後、
水素雰囲気下に還元して釘状の金属磁性粉末にした後、
酸化被膜を形成させる際の温度を第2表記載の温度にし
たほかは実施例1と同様にして酸化被膜を形成させ1次
いで第2表記載の有機イオウ化合物および溶媒を用いた
ほかは実施例1と同様にして有機イオウ化合物で表面処
理した金属磁性粉末を得た。
Examples 2 to 9 After dehydrating needle-shaped iron oxyhydroxide in the same manner as in Example 1,
After being reduced to a nail-shaped metal magnetic powder in a hydrogen atmosphere,
Example 1 An oxide film was formed in the same manner as in Example 1, except that the temperature at which the oxide film was formed was set to the temperature listed in Table 2, and then the organic sulfur compound and solvent listed in Table 2 were used. A metal magnetic powder whose surface was treated with an organic sulfur compound was obtained in the same manner as in Example 1.

得られた表面処理金属磁性粉末の表面をFT−IRおよ
びESC!Aにより分析した結果、鉄とイオウの強固な
結合が認められた。
The surface of the obtained surface-treated metal magnetic powder was subjected to FT-IR and ESC! As a result of analysis by A, a strong bond between iron and sulfur was observed.

金属磁性粉末の測定結果は第3表に示す。The measurement results for the metal magnetic powder are shown in Table 3.

朋細書の浄書(内容に変更なし) 比較例1 01O′−ジベンズアミドジフェニルジスルフィドによ
る表面処理をしなかったほかは、実施例1と同様にして
針状のオキシ水酸化鉄から酸化被膜を形成させた金属磁
性粉末を得た。
Engraving of a booklet (no change in content) Comparative Example 1 An oxide film was formed from needle-shaped iron oxyhydroxide in the same manner as in Example 1, except that the surface treatment with 01O'-dibenzamide diphenyl disulfide was not performed. A metal magnetic powder was obtained.

金属磁性粉末の測定結果は第4表に示す。The measurement results for the metal magnetic powder are shown in Table 4.

比較例2 実施例1と同様にして針状のオキシ水酸化鉄を脱水後、
水素雰囲気下に還元して針状の金属磁性粉末にした。
Comparative Example 2 After dehydrating needle-shaped iron oxyhydroxide in the same manner as in Example 1,
It was reduced to acicular magnetic metal powder under a hydrogen atmosphere.

次いで金属磁性粉末109をトルエン200++lJ中
に浸漬し、十分に攪拌1分散させ、室温にて空気を35
0m/minの流量で5分間吹きこんで表面に酸化被膜
を形成させ、トルエンを除去後、風乾して酸化被膜を形
成させた金属磁性粉末を得た。
Next, the metal magnetic powder 109 was immersed in 200++ lJ of toluene, thoroughly stirred and dispersed, and air was evaporated to 35 liters at room temperature.
The mixture was blown at a flow rate of 0 m/min for 5 minutes to form an oxide film on the surface, and after removing toluene, it was air-dried to obtain metal magnetic powder with an oxide film formed thereon.

金属磁性粉末の測定結果は第4表に示す。The measurement results for the metal magnetic powder are shown in Table 4.

比較例3 実施例1と同様にして針状のオキシ水酸化鉄を脱水後、
水素雰囲気下に還元して針状の金属磁性粉末にした。
Comparative Example 3 After dehydrating needle-shaped iron oxyhydroxide in the same manner as in Example 1,
It was reduced to acicular magnetic metal powder under a hydrogen atmosphere.

明細古の浄書(内容に変更なし) 次いで金属磁性粉末iorを0.5 wt%のシリコン
オイルを含むトルエン溶液に浸漬し、十分に攪拌2分散
させ、5時間保持した後、トルエン溶液を除去し、風乾
してシリコンオイルで処理した金属磁性粉末を得た。
Old specification (no change in content) Next, the metal magnetic powder ior was immersed in a toluene solution containing 0.5 wt% silicone oil, thoroughly stirred and dispersed, and held for 5 hours, after which the toluene solution was removed. , a metal magnetic powder was obtained which was air-dried and treated with silicone oil.

金属磁性粉末の測定結果は第4表に示す。The measurement results for the metal magnetic powder are shown in Table 4.

※比較例1:酸素含有不活性ガスによる表面処理※比較
例2:トルエン中空気吹き込みによる表面処理峯比較例
3:シリコンオイルによる表面処理〔発明の効果〕 本発明の表面処理法によると耐酸化性および分散性のす
ぐれた金属磁性粉末が得られる。
*Comparative example 1: Surface treatment with oxygen-containing inert gas *Comparative example 2: Surface treatment by blowing air in toluene Comparative example 3: Surface treatment with silicone oil [Effect of the invention] Oxidation resistance according to the surface treatment method of the present invention A metal magnetic powder with excellent properties and dispersibility can be obtained.

Claims (4)

【特許請求の範囲】[Claims] (1)オキシ水酸化鉄または酸化鉄を還元して得られる
金属磁性粉末を、微量の酸素を含有する不活性ガス雰囲
気下にアニール処理した後、有機イオウ化合物で表面処
理することを特徴とする金属磁性粉末の表面処理法。
(1) A metal magnetic powder obtained by reducing iron oxyhydroxide or iron oxide is annealed in an inert gas atmosphere containing a trace amount of oxygen, and then surface treated with an organic sulfur compound. Surface treatment method for metal magnetic powder.
(2)微量の酸素を含有する不活性ガスの酸素含有量が
50〜10,000ppmである特許請求の範囲第1項
記載の金属磁性粉末の表面処理法。
(2) The method for surface treatment of metal magnetic powder according to claim 1, wherein the inert gas containing a trace amount of oxygen has an oxygen content of 50 to 10,000 ppm.
(3)有機イオウ化合物が、式:R−SH(式中Rは炭
素数4〜20のアルキル基、フェニル基、シクロヘキシ
ル基、アリル基またはベンジル基を示す。)で表わされ
るメルカプタン化合物である特許請求の範囲第1項記載
の金属磁性粉末の表面処理法。
(3) A patent in which the organic sulfur compound is a mercaptan compound represented by the formula: R-SH (wherein R represents an alkyl group having 4 to 20 carbon atoms, a phenyl group, a cyclohexyl group, an allyl group, or a benzyl group) A method for surface treatment of metal magnetic powder according to claim 1.
(4)有機イオウ化合物が、o,o’−ジベンズアミド
ジフェニルジスルフィドである特許請求の範囲第1項記
載の金属磁性粉末の表面処理法。
(4) The method for surface treatment of metal magnetic powder according to claim 1, wherein the organic sulfur compound is o,o'-dibenzamide diphenyl disulfide.
JP59175151A 1984-08-24 1984-08-24 Surface treatment of magnetic metallic powder Granted JPS6156201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59175151A JPS6156201A (en) 1984-08-24 1984-08-24 Surface treatment of magnetic metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59175151A JPS6156201A (en) 1984-08-24 1984-08-24 Surface treatment of magnetic metallic powder

Publications (2)

Publication Number Publication Date
JPS6156201A true JPS6156201A (en) 1986-03-20
JPH0148323B2 JPH0148323B2 (en) 1989-10-18

Family

ID=15991160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59175151A Granted JPS6156201A (en) 1984-08-24 1984-08-24 Surface treatment of magnetic metallic powder

Country Status (1)

Country Link
JP (1) JPS6156201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952409A (en) * 1988-05-18 1990-08-28 Nippon Kayaku Kabushiki Kaisha Agent for prevention and remedy of injuries caused by ischemia
JP2004204354A (en) * 2004-03-12 2004-07-22 Daiken Kagaku Kogyo Kk Metallic superfine particle and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378096A (en) * 1976-12-20 1978-07-11 Hitachi Maxell Magnetic metal powder for magnetic recording and method of manufacturing same
JPS5635721A (en) * 1980-05-26 1981-04-08 Nippon Steel Corp Production of steel material of good cold workability
JPS56142801A (en) * 1980-03-18 1981-11-07 Hitachi Maxell Ltd Treatment of metallic powder
JPS5852523A (en) * 1981-09-24 1983-03-28 Ishida Scales Mfg Co Ltd Automatic weighing device
JPS58221203A (en) * 1982-06-18 1983-12-22 Tdk Corp Magnetic powder having improved dispersibility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378096A (en) * 1976-12-20 1978-07-11 Hitachi Maxell Magnetic metal powder for magnetic recording and method of manufacturing same
JPS56142801A (en) * 1980-03-18 1981-11-07 Hitachi Maxell Ltd Treatment of metallic powder
JPS5635721A (en) * 1980-05-26 1981-04-08 Nippon Steel Corp Production of steel material of good cold workability
JPS5852523A (en) * 1981-09-24 1983-03-28 Ishida Scales Mfg Co Ltd Automatic weighing device
JPS58221203A (en) * 1982-06-18 1983-12-22 Tdk Corp Magnetic powder having improved dispersibility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952409A (en) * 1988-05-18 1990-08-28 Nippon Kayaku Kabushiki Kaisha Agent for prevention and remedy of injuries caused by ischemia
JP2004204354A (en) * 2004-03-12 2004-07-22 Daiken Kagaku Kogyo Kk Metallic superfine particle and its manufacturing method

Also Published As

Publication number Publication date
JPH0148323B2 (en) 1989-10-18

Similar Documents

Publication Publication Date Title
US4475946A (en) Ferromagnetic metal particles of iron alloyed with Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Si, P, Mo, Sn, Sb and Ag coated with mono- or dialkoxysilanes
JPH0544162B2 (en)
JPS6156201A (en) Surface treatment of magnetic metallic powder
US4251592A (en) Stabilization treatment of acicular ferromagnetic iron or iron-alloy particles against the oxidation thereof
JPS61231101A (en) Surface treatment of magnetic metallic powder
US4556604A (en) Magnetic recording media
DE3124430C2 (en)
US4576635A (en) Process for producing ferromagnetic metal powder
JPS6148501A (en) Manufacture of metallic magnetic powder
JPH08109401A (en) Metallic powder for magnetic recording and its production
JPS6156202A (en) Surface treatment of magnetic metallic powder
JPS6411577B2 (en)
JPS61216306A (en) Magnetic metal powder and manufacture thereof
EP0976479B1 (en) Magnetic acicular alloy particles containing iron as a main component
JPS5916903A (en) Processing method of ferromagnetic metal powder
JPS5916902A (en) Processing method for protecting iron or iron alloy powder from oxidation
JPH042641B2 (en)
GB2055778A (en) Magnetic recording medium
JPH0310682B2 (en)
JPS6089501A (en) Production of magnetic metallic powder keeping stability
JPS62174903A (en) Anticorrosive treatment of magnetic metal powder for magnetic recording
JPS62202822A (en) Magnetic powder for high-density magnetic recording
JPS5853681B2 (en) Metal magnetic powder and its processing method
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP2000106307A (en) Acicular magnetic alloy particles and powder containing iron as main component