JPS6156200B2 - - Google Patents

Info

Publication number
JPS6156200B2
JPS6156200B2 JP13617283A JP13617283A JPS6156200B2 JP S6156200 B2 JPS6156200 B2 JP S6156200B2 JP 13617283 A JP13617283 A JP 13617283A JP 13617283 A JP13617283 A JP 13617283A JP S6156200 B2 JPS6156200 B2 JP S6156200B2
Authority
JP
Japan
Prior art keywords
bapb
single crystal
melt
crystal
pbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13617283A
Other languages
Japanese (ja)
Other versions
JPS6027681A (en
Inventor
Kunihiko Oka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13617283A priority Critical patent/JPS6027681A/en
Publication of JPS6027681A publication Critical patent/JPS6027681A/en
Publication of JPS6156200B2 publication Critical patent/JPS6156200B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 この発明は、溶液ひきあげ法による
BaPb1-xBixO3単結晶の製造方法に関するもので
ある。
[Detailed Description of the Invention] This invention is based on a solution drawing method.
The present invention relates to a method for producing BaPb 1-x Bi x O 3 single crystal.

従来、高温で分解溶融して通常のひきあげ法で
単結晶を育成できない包晶反応する物質の単結晶
を得る手段としては、通常、目的物質を溶剤中に
混合し、その混合融液を降温することによつてそ
の混合融液を過飽和濃度以上の状態にし、前記目
的物質を融液から単結晶として析出させて得るフ
ラツクス法が用いられる。
Conventionally, the method of obtaining a single crystal of a substance that decomposes and melts at high temperatures and undergoes a peritectic reaction, which cannot be grown by normal pulling methods, is to mix the target substance in a solvent and cool the mixed melt. In particular, a flux method is used in which the mixed melt is made to have a supersaturation concentration or higher, and the target substance is precipitated as a single crystal from the melt.

この発明は、上記した溶剤混合液から目的の物
質の単結晶をその種子結晶上に微結晶を析出さ
せ、それをひきあげながら育成するという溶液ひ
きあげ法によるBaPb1-xBixO3単結晶の製造方法
である。
This invention produces BaPb 1-x Bi x O 3 single crystals using the solution pulling method, in which microcrystals are precipitated on seed crystals of a single crystal of a target substance from the above-mentioned solvent mixture, and the microcrystals are grown while being pulled up. This is the manufacturing method.

BaPb1-xBixO3はペロブスカイト型結晶構造を
もつ酸化物で、Biの組成比xが0.00〜0.35の場
合、低温で超伝導を示す。特に、x=0.25では超
伝導転移温度Tcは約13Kとなり、遷移金属を含
まない超伝導物質では最高の転移温度を示す酸化
物超伝導体として知られている。極低温素子とし
てこれから応用が考えられ、そのためには大型の
良質な単結晶が望まれ、その製造方法の開発が望
まれている。
BaPb 1-x Bi x O 3 is an oxide with a perovskite crystal structure, and exhibits superconductivity at low temperatures when the Bi composition ratio x is 0.00 to 0.35. In particular, when x = 0.25, the superconducting transition temperature Tc is approximately 13 K, and it is known as an oxide superconductor that exhibits the highest transition temperature among superconducting materials that do not contain transition metals. Applications as cryogenic devices are being considered in the future, and for this purpose, large, high-quality single crystals are desired, and the development of a manufacturing method is desired.

BaPb1-xBixO3でx=0の場合、高温にしてゆ
くと1080℃付近でBa2PbO4と液相に分解溶融する
ため、単結晶と同一組成の原料から単結晶を製造
することができない。そのためチヨクラルスキー
法が適用できず、従来ではPbO2、Pb3O4、KCl、
KClとBaClを融剤としたフラツクス法で結晶成長
がされている。しかし、このフラツクス法では最
大で3×3mmの面積で厚さ0.5mm以下のものが報
告されているにすぎない。
When x = 0 in BaPb 1-x Bi x O 3 , as the temperature is raised, it decomposes and melts into Ba 2 PbO 4 and the liquid phase around 1080℃, so a single crystal is manufactured from raw materials with the same composition as the single crystal. I can't. Therefore, the Czyochralski method cannot be applied, and in the past, PbO 2 , Pb 3 O 4 , KCl,
Crystals are grown using the flux method using KCl and BaCl as fluxes. However, this flux method has only been reported to have a maximum area of 3 x 3 mm and a thickness of 0.5 mm or less.

この発明は、このような点に鑑みなされたもの
で、目的物であるBaPb1-xBixO3を析出させ得る
組成範囲内に一酸化鉛(PbO)と炭酸バリウム
(BaCO3)と三酸化ビスマス(Bi2O3)を混合し、そ
の融液を降温させることにより融液中に析出して
くるBaPb1-xBixO3微結晶を融液に接触させた種
子結晶上に結晶化させ、これを溶液ひきあげ法に
よつてBaPb1-xBixO3を製造する方法であり、フ
ラツクス法と異なり種子結晶によつて望みの方向
に任意の大きさの良質な単結晶が製造できる。以
下この発明について詳細に説明する。
This invention was made in view of these points, and includes lead monoxide (PbO), barium carbonate (BaCO 3 ), and trichloride within a composition range that can precipitate the target product BaPb 1-x Bi x O 3 . By mixing bismuth oxide (Bi 2 O 3 ) and lowering the temperature of the melt, the BaPb 1-x Bi x O 3 microcrystals that precipitate in the melt are crystallized on seed crystals that are in contact with the melt. This is a method to produce BaPb 1-x Bi x O 3 using the solution pulling method. Unlike the flux method, high-quality single crystals of any size can be produced in the desired direction using seed crystals. can. This invention will be explained in detail below.

まず、この発明の原理について述べる。第1図
は示差熱分析と実際の結晶成長実験から作図した
BaCO3−PbO系の相平衡図である。BaCO3が50モ
ル%、PbOが50モル%の組成からなるBaPbO3
加熱上昇させると約1080℃付近でBa2PbO4と液相
に分解溶融してしまう。そのために融液と同一組
成の結晶をひきあげるチヨクラルスキー法は適用
できない。次に液相線A−B間の組成比、すなわ
ちBaCO3の34〜4モル%、PbOの66〜96モル%の
範囲の組成に混合した原料を約1080〜850℃にお
いて加熱融解したのち、融液を徐々に降温させる
と、融液の組成は液相線A−Bに沿つて図の右方
へずれてゆき、BaPbO3が固相となつて析出して
くる。この相平衡図においてBa原子およびPb原
子位置に他の何らかの異種元素を少量混合したと
きに、相平衡図が定性的に変わらない場合には同
じくBaPbO3固溶体が固相となつて析出してく
る。それ故にPb原子の位置をBi原子で置き換え
ても第1図のBaCO3−PbO系の相平衡図と本質的
に変わらないためBaPb1-xBixO3の結晶成長が可
能となる。
First, the principle of this invention will be described. Figure 1 was drawn from differential thermal analysis and actual crystal growth experiments.
It is a phase equilibrium diagram of BaCO3 -PbO system. When BaPbO 3 , which has a composition of 50 mol% BaCO 3 and 50 mol% PbO, is heated and raised, it decomposes and melts into Ba 2 PbO 4 and a liquid phase at around 1080°C. Therefore, the Czyochralski method, which pulls up crystals with the same composition as the melt, cannot be applied. Next, after heating and melting the raw materials mixed at a composition ratio between liquidus A and B, that is, 34 to 4 mol% of BaCO 3 and 66 to 96 mol% of PbO at about 1080 to 850 °C, When the temperature of the melt is gradually lowered, the composition of the melt shifts to the right in the figure along the liquidus line AB, and BaPbO 3 becomes a solid phase and precipitates. In this phase equilibrium diagram, when a small amount of some other different element is mixed at the Ba atom and Pb atom positions, if the phase equilibrium diagram does not qualitatively change, BaPbO 3 solid solution will precipitate as a solid phase. . Therefore, even if the position of the Pb atom is replaced by a Bi atom, the phase equilibrium diagram of the BaCO 3 --PbO system shown in FIG. 1 remains essentially the same, making it possible to grow BaPb 1-x Bi x O 3 crystals.

従来のフラツクス法ではPbO2、Pb3O4、KCl、
BaCl等の溶剤にBaPb1-xBixO3を混入し、結晶育
成後に溶剤だけを薬品で取り去るか徐冷中にるつ
ぼを炉から取り出して固化していない溶剤だけを
捨て去つてBaPb1-xBixO3単結晶を取り出してき
た。このように薬品で長い時間を要したり、危険
な操作をしないと融液の固化物とBaPb1-xBixO3
単結晶の分離はできなかつた。
In the conventional flux method, PbO 2 , Pb 3 O 4 , KCl,
Mix BaPb 1-x Bi x O 3 in a solvent such as BaCl, and remove only the solvent with chemicals after crystal growth, or remove the crucible from the furnace during slow cooling and throw away only the unsolidified solvent to form BaPb 1-x Bi. I took out the x O 3 single crystal. If you do not use chemicals for a long time or perform dangerous operations, the melt will solidify and BaPb 1-x Bi x O 3
It was not possible to separate single crystals.

この発明においては、同一のBaPb1-xBixO3
結晶の種子結晶上に析出してきたBaPb1-xBixO3
単結晶を育成させてひきあげる方法をとつたもの
である。
In this invention, BaPb 1-x Bi x O 3 precipitated on the seed crystal of the same BaPb 1-x Bi x O 3 single crystal
This method involves growing and pulling a single crystal.

第2図はこの発明の一実施例を説明するための
BaPb1-xBixO3の製造装置である。なお、この製
造装置は有毒のPbOの蒸気を製造者から隔離する
ための結晶育成観察窓付の容器に入つている。こ
の図で、1は水冷シヤフト、2は白金シヤフト、
3は保温材、4は高周波加熱コイル、5は熱電
対、6はるつぼ支持物、7はBaPb1-xBixO3単結
晶、8は出発原料、9は白金るつぼである。
Figure 2 is for explaining one embodiment of this invention.
This is a BaPb 1-x Bi x O 3 manufacturing equipment. This manufacturing equipment is housed in a container with a crystal growth observation window to isolate toxic PbO vapor from the manufacturer. In this figure, 1 is a water-cooled shaft, 2 is a platinum shaft,
3 is a heat insulating material, 4 is a high-frequency heating coil, 5 is a thermocouple, 6 is a crucible support, 7 is a BaPb 1-x Bi x O 3 single crystal, 8 is a starting material, and 9 is a platinum crucible.

次に製造方法について説明する。 Next, the manufacturing method will be explained.

出発原料8は一例として、BaCO3を20モル
%、PbOを65モル%、Bi2O3を15モル%の組成に
混合し、第2図に示す口径50mm、高さ35mmの発熱
体を兼ねた白金るつぼ9に入れ、高周波加熱コイ
ル4による誘導加熱方式により〜1080℃まで加熱
して溶融させた後、種子結晶である
BaPb1-xBixO3単結晶7を融液表面に接触させ
る。融液を徐々に降温させると、融液中で最も温
度の低い種子結晶と接触している融液の界面に
BaPb1-xBixO3微結晶が少しずつ析出してきて種
子結晶上に結晶化する。このようにして成長した
単結晶を融液から徐々にひきあげる。すなわち、
融液を降温しながら、育成された単結晶のひきあ
げを同時におこなつてゆくのである。
As an example, starting material 8 is a mixture of 20 mol% BaCO 3 , 65 mol% PbO, and 15 mol% Bi 2 O 3 , which also serves as a heating element with a diameter of 50 mm and a height of 35 mm as shown in Figure 2. The seed crystals were placed in a platinum crucible 9 and heated to ~1080°C to melt by induction heating using the high frequency heating coil 4.
BaPb 1-x Bi x O 3 single crystal 7 is brought into contact with the surface of the melt. When the temperature of the melt is gradually lowered, the temperature at the interface of the melt that is in contact with the seed crystal with the lowest temperature in the melt increases.
BaPb 1-x Bi x O 3 microcrystals precipitate little by little and crystallize on the seed crystal. The single crystal grown in this way is gradually pulled out of the melt. That is,
While cooling the melt, the grown single crystal is pulled up at the same time.

このときの製造条件としてはBaPb1-xBixO3
結晶7のひきあげ速度は0.3〜1mm/hr、融液降温
速度2〜10℃/hr、結晶回転数10〜30rpm、雰囲
気は空気中である。また、BaPb1-xBixO3単結晶
の育成を完了するまでに要する時間は約10gの単
結晶を得るのに5〜6時間要しただけであつた。
The manufacturing conditions at this time are: the pulling speed of the BaPb 1-x Bi x O 3 single crystal 7 is 0.3 to 1 mm/hr, the melt cooling rate is 2 to 10°C/hr, the crystal rotation speed is 10 to 30 rpm, and the atmosphere is air. It is. Further, the time required to complete the growth of the BaPb 1-x Bi x O 3 single crystal was only 5 to 6 hours to obtain about 10 g of the single crystal.

この発明の製造方法では、結晶中のPb原子の
位置をBi原子で置き換えても、第1図のBaCO3
PbO系の相平衡図が本質的に変わらないために
BaPb1-xBixO3単結晶が製造できた。
BaPb1-xBixO3が超伝導を示す0x0.35の範囲
の組成の単結晶育成が可能である。同様に結晶中
のPb原子およびBa原子の位置に何らかの異種元
素を少量混合したときに相平衡図が定性的に第1
図のBaCO3−PbO系相平衡図とと本質的に変わら
ない場合は、上記と全く同一の方法、条件によつ
てこの異種元素を混入したBaPb1-xBixO3固溶体
単結晶を製造することも可能である。
In the manufacturing method of this invention, even if the position of Pb atom in the crystal is replaced with Bi atom, BaCO 3
Because the phase equilibrium diagram of the PbO system remains essentially unchanged,
A BaPb 1-x Bi x O 3 single crystal was produced.
It is possible to grow a single crystal with a composition in the range of 0x0.35 where BaPb 1-x Bi x O 3 exhibits superconductivity. Similarly, when a small amount of some kind of different element is mixed at the positions of Pb and Ba atoms in the crystal, the phase equilibrium diagram qualitatively changes to
If it is essentially the same as the BaCO 3 −PbO system phase equilibrium diagram shown in the figure, a BaPb 1-x Bi x O 3 solid solution single crystal mixed with this different element is manufactured using the same method and conditions as above. It is also possible to do so.

以上のようにして製造された単結晶は、従来の
フラツクス法で育成された単結晶が、約5日を要
して3×3×0.5mm以下の大きさであるのと比較
すると、5〜6時間で30×30×1mmの大きさのも
のが得られ、短時間で大きな単結晶を製造できる
という利点を有する。
The single crystal produced as described above takes about 5 days to grow, and the size of the single crystal grown by the conventional flux method is less than 3 x 3 x 0.5 mm. A crystal with a size of 30 x 30 x 1 mm can be obtained in 6 hours, and has the advantage of being able to produce large single crystals in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の原理を説明するための
BaCO3−PbO系の相平衡図、第2図はこの発明の
一実施例を説明するためのBaPb1-xBixO3単結晶
の製造装置の構成図である。 図中、1は水冷シヤフト、2は白金シヤフト、
3は保温材、4は高周波加熱コイル、5は熱電
対、6はるつぼ支持物、7はBaPb1-xBixO3単結
晶、8は出発原料、9は白金るつぼである。
Figure 1 is for explaining the principle of this invention.
FIG. 2 is a phase equilibrium diagram of the BaCO 3 --PbO system, and is a block diagram of a BaPb 1-x Bi x O 3 single crystal manufacturing apparatus for explaining an embodiment of the present invention. In the figure, 1 is a water-cooled shaft, 2 is a platinum shaft,
3 is a heat insulating material, 4 is a high-frequency heating coil, 5 is a thermocouple, 6 is a crucible support, 7 is a BaPb 1-x Bi x O 3 single crystal, 8 is a starting material, and 9 is a platinum crucible.

Claims (1)

【特許請求の範囲】[Claims] 1 一酸化鉛と炭酸バリウムと三酸化ビスマスを
混合して加熱融解したのち、融液を降温させるこ
とにより一般式BaPb1-xBixO3で表わされ、前記
式中x=0.00〜0.4の微結晶を析出させ、それを
種子結晶上に結晶させて結晶成長させることを特
徴とするBaPb1-xBixO3単結晶の溶液ひきあげ法
による製造方法。
1 By mixing lead monoxide, barium carbonate, and bismuth trioxide, heating and melting the mixture, and then cooling the melt, it is expressed by the general formula BaPb 1-x Bi x O 3 , where x = 0.00 to 0.4. A method for producing a BaPb 1-x Bi x O 3 single crystal by a solution pulling method, which is characterized by precipitating microcrystals of and crystallizing them on a seed crystal for crystal growth.
JP13617283A 1983-07-26 1983-07-26 Production of bapb1-xbixo3 single crystal by solution pulling method Granted JPS6027681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13617283A JPS6027681A (en) 1983-07-26 1983-07-26 Production of bapb1-xbixo3 single crystal by solution pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13617283A JPS6027681A (en) 1983-07-26 1983-07-26 Production of bapb1-xbixo3 single crystal by solution pulling method

Publications (2)

Publication Number Publication Date
JPS6027681A JPS6027681A (en) 1985-02-12
JPS6156200B2 true JPS6156200B2 (en) 1986-12-01

Family

ID=15169004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13617283A Granted JPS6027681A (en) 1983-07-26 1983-07-26 Production of bapb1-xbixo3 single crystal by solution pulling method

Country Status (1)

Country Link
JP (1) JPS6027681A (en)

Also Published As

Publication number Publication date
JPS6027681A (en) 1985-02-12

Similar Documents

Publication Publication Date Title
JPH0152359B2 (en)
JPH09124396A (en) Preparation of oxide crystal
US4956334A (en) Method for preparing a single crystal of lanthanum cuprate
JP2740427B2 (en) Preparation method of oxide crystal
JPS6156200B2 (en)
JPH0243717B2 (en) BAPBO3KEISANKABUTSUCHODENDOTAITANKETSUSHONOYOEKIHIKIAGEHONYORUSEIZOHOHO
US3939252A (en) Dilithium heptamolybdotetragadolinate
JPH0471876B2 (en)
JPH01249691A (en) Production of superconducting thin film
JPS63274695A (en) Production of cupric acid-lanthanum single crystal
JP3548910B2 (en) Method for producing ZnO single crystal
JP2852405B2 (en) Bi (2) (Sr, Ca) (3) Cu (2) O (8) Single crystal production method by solution pulling method
JP3613424B2 (en) Manufacturing method of oxide superconductor
JP2733197B2 (en) Method for producing rare earth element-containing single crystal
JP2557882B2 (en) Method for growing superconducting oxide single crystal
JPH0471877B2 (en)
JPH01148796A (en) Production of oxide superconductor crystal
JPH01148795A (en) Production of oxide superconductor crystal
RU1526290C (en) Method of production of high-temperature superconducting material
JPH02167893A (en) Production of single crystal of lead titanate
JPH01148794A (en) Production of oxide superconductor crystal
JP3205646B2 (en) Method for producing Sm-based 123 crystal
RU2051210C1 (en) High-temperature super-conducting material and method for production thereof
Palaniappan et al. The influence of temperature fluctuations on melt growth of antimony sulfoiodide
JPH02167894A (en) Production of single crystal of lead titanate