JPS615563A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS615563A
JPS615563A JP12524684A JP12524684A JPS615563A JP S615563 A JPS615563 A JP S615563A JP 12524684 A JP12524684 A JP 12524684A JP 12524684 A JP12524684 A JP 12524684A JP S615563 A JPS615563 A JP S615563A
Authority
JP
Japan
Prior art keywords
film
electrodes
elements
electrode
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12524684A
Other languages
Japanese (ja)
Inventor
Takayoshi Ichikawa
市川 貴吉
Toru Inaba
稲葉 透
Tatsuhaya Takagi
高木 辰逸
Yasuaki Kowase
小和瀬 靖明
Toshinori Hirashima
平島 利宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP12524684A priority Critical patent/JPS615563A/en
Publication of JPS615563A publication Critical patent/JPS615563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To facilitate the installation of upper elements and to increase freedom in the arrangement of elements by a method wherein a polyimide film is formed to flatten an insulating film with its surface rendered uneven due to lower-stage semiconductor elements in a three-dimensional structure wherein elements on a substrate are arranged in a plurality of stages. CONSTITUTION:On a quartz substrate 1, Mo electrodes 2a, 2b, 2c, SiO2 film 3, a-Si film 4, and Al electrodes 5a, 5b... are formed. Next, an SiO2 film 6 is formed, followed by an a-Si film 7 and Mo electrode 8. A polyimide film 9 is formed, which fills up the recesses in the SiO2 film 6 for the realization of a flattened surface. Etching is performed for the exposure of the a-Si film 7, and windows are provided for the electrodes 5a, 5d. A gate film 12a and Al electrodes 13a, 13b... are formed for the completion of a three-dimensional inverter circuit.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体装置の高集積化技術、特に半導体素子を
多段に形成して3次元化した半導体集積゛回路装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a technology for highly integrating semiconductor devices, and particularly to a three-dimensional semiconductor integrated circuit device in which semiconductor elements are formed in multiple stages.

〔背景技術〕[Background technology]

現在の半導体装置、たとえばICの高集積化はテープ当
りの素子数をふやすことで2次元パターニングの微細化
の極限に達しようとしている。さらにこれを越えて高集
積化するため2次元ICを多層に積み重ねる3次元IC
構造が提案されている。
Current semiconductor devices, such as ICs, are becoming highly integrated, and by increasing the number of elements per tape, the miniaturization of two-dimensional patterning is reaching its limit. Furthermore, 3D ICs, in which 2D ICs are stacked in multiple layers, are used to achieve higher integration.
structure is proposed.

3次元ICを実用化する一つの例として溶融石英などの
絶縁物の上に半導体シリコンを形成するSOI技術があ
る。(ff子材料1983年4月p105〜110古川
静二部) これはアモルファス半導体薄膜をたとえばSiへ膜上に
形成するもので、この半導体薄膜はたとえ゛ばシラン(
Sj&)ガスをグロー放電で分解することにより、容易
KSiO@膜上に牛導体膜を形成できる。この方法によ
れば現在の技術を使って薄膜化した複数のMOSFET
を基板上に多段に形成することが可能である。
One example of putting three-dimensional ICs into practical use is SOI technology, in which semiconductor silicon is formed on an insulator such as fused silica. (FF Materials, April 1983, p. 105-110, Seiji Furukawa) This is a process in which an amorphous semiconductor thin film is formed on, for example, Si, and this semiconductor thin film is made of, for example, silane (
By decomposing Sj&) gas by glow discharge, a conductor film can be easily formed on the KSiO@ film. According to this method, multiple MOSFETs can be thinned using current technology.
can be formed in multiple stages on a substrate.

ところでこれまでの技術によれば、多段の素子間の絶縁
膜として無機材料、たとえばCVD(気相化学デポジッ
ト)法によるSin、が用いられるが、その場合に下記
の問題が生じる。
According to the conventional technology, an inorganic material such as Sin formed by CVD (vapor phase chemical deposition) is used as an insulating film between elements in multiple stages, but the following problems occur in this case.

すなわち、下層の素子の電極をアモルファスSiや金属
によって構成する場合、その部分の凹凸がcvD−st
o、膜の表面に凹凸となって生じ、と)め□):範上層
の素子を形成することが困難である。
That is, when the electrodes of the lower layer element are made of amorphous Si or metal, the unevenness of that part is cvD-st.
(o) Unevenness occurs on the surface of the film, and □): It is difficult to form an element in the upper layer.

とくに、薄膜化したMOSFETの場合、設置場所が平
坦でないと凹凸段差のため上部配線の断線を生じたり、
MOSFETの特性的にばらつきを生じるおそれがあり
、このため上部素子の設置は平坦な部分を選ぶ必要があ
り、したがって集積化が充分に生かされないことになっ
た。
In particular, in the case of thin-film MOSFETs, if the installation location is not flat, the upper wiring may break due to uneven steps.
There is a possibility that variations may occur in the characteristics of the MOSFET, and for this reason, it is necessary to select a flat area for installing the upper element, and therefore, integration is not fully utilized.

〔発明の目的〕[Purpose of the invention]

本発明は上記した問題を解決するためになされたもので
あり、その目的とするところ)言、一つの基板上に素子
を多段化する3次元デバイス構造において、段間に使わ
れる絶縁膜の上面を平坦化し、上部素子の設置を容易に
し、素子配置の自由度を増すことにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to improve the upper surface of an insulating film used between stages in a three-dimensional device structure in which elements are multi-staged on one substrate. The objective is to flatten the structure, facilitate the installation of the upper element, and increase the degree of freedom in element arrangement.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を説明すれば下記のとおりである。
A summary of typical inventions disclosed in this application is as follows.

すなわち、一つの基板上にアモルファスシリコンを用い
た半導体素子が絶縁膜を介して多段に形成された半導体
装置であって下段の半導体素子によって上記絶縁膜表面
に生じた凹凸が上記絶縁膜の一部であるポリイミド系樹
脂を介して平坦化され、その上に上段の半導体素子を形
成することにより、上段の素子の設置を容易とし、素子
配置の自由度を増加させて前記目的を達成できる。
In other words, it is a semiconductor device in which semiconductor elements using amorphous silicon are formed in multiple stages on one substrate with an insulating film interposed therebetween, and the unevenness caused on the surface of the insulating film by the semiconductor elements in the lower stage is a part of the insulating film. By forming the upper semiconductor element on the flattened polyimide resin, the upper element can be easily installed and the degree of freedom in element arrangement can be increased to achieve the above object.

〔実施例〕〔Example〕

第1図乃至第10図は本発明の一実施例を示すものであ
って、アモルファスシリコン(a−84)を用いた3次
元インパーダ回洛の1ユニツトの製造プロセスの工程断
面図である。
FIGS. 1 to 10 show an embodiment of the present invention, and are cross-sectional views of a manufacturing process for one unit of a three-dimensional impeller circuit using amorphous silicon (A-84).

以下各工程にそって具体的に述べる。Each process will be described in detail below.

(1」  第1図忙示すように溶融石英からなる基板1
を用意し、平坦化したその一生裏面上にMo(モリブデ
ン)をメタライズし、ホトレジストを使用したエッチ処
理によりその一部をパターニングし        1
てMo電極2a 、2b 、2cを形成する。このうち
、中央のMO電極2bは図示されないが、前後方向に嶌
びて■。G電極として取り出される。
(1) As shown in Figure 1, a substrate 1 made of fused silica
1, metallize Mo (molybdenum) on the flattened back surface, and pattern a part of it by etching using photoresist.
Then, Mo electrodes 2a, 2b, and 2c are formed. Of these, the central MO electrode 2b is not shown, but extends in the front-rear direction. It is taken out as a G electrode.

(2)全面に第2図に示すように、プラズマ、又はスパ
ッタ等によりSiO2を堆積し、ゲート絶縁膜としての
Si’02膜3を形成し、次いで5iH4(シラン)ガ
スをグロー放電中で分解することにより、Sin、膜3
上に、 a −Si(アモルファス・シリコン)膜4を
形成する。なお、このa−8i膜4中九はP(リン)等
のドナをドープすることによりてn″″型導電導電性与
する。
(2) As shown in Figure 2, SiO2 is deposited on the entire surface by plasma or sputtering to form a Si'02 film 3 as a gate insulating film, and then 5iH4 (silane) gas is decomposed in a glow discharge. By doing so, Sin, film 3
An a-Si (amorphous silicon) film 4 is formed thereon. The a-8i films 4 to 9 are doped with a donor such as P (phosphorus) to provide n'''' type conductivity.

(3)  ホトレジストを使用したエッチ処理により、
中央のMo電極2b上のa−8i膜4aを残して他を除
去し、さらに左右のMo電極2a 、2b上の一部Si
ng膜3を除去する。このあと、AL(アルミニウム)
を蒸着又はスパッタし、ホトエッチすることによって、
An電極5a 、5b・・・を第3図のように形成する
。このうち、a−8i膜4aに接続されるAjl電極5
b;5cをソース。
(3) By etching using photoresist,
The a-8i film 4a on the central Mo electrode 2b is left and the rest is removed, and a part of the Si film on the left and right Mo electrodes 2a and 2b is removed.
NG film 3 is removed. After this, AL (aluminum)
By vapor depositing or sputtering and photoetching,
An electrodes 5a, 5b, . . . are formed as shown in FIG. Among these, the Ajl electrode 5 connected to the a-8i film 4a
b; Sauce 5c.

ドレインとして負荷MO8FETが形成される(第11
図参照)。
A load MO8FET is formed as the drain (11th
(see figure).

14JcVD(気相化学デポジット)法により5iot
を全面に堆積させ、第4図に示すように厚いSiへ膜6
を形成する。この5101膜6は同図に示すように、a
−8i膜4a上の部分がその厚さ分だけ盛り上った状態
に形□成される。
5iot by 14JcVD (vapor phase chemical deposition) method
is deposited on the entire surface, and as shown in FIG.
form. As shown in the figure, this 5101 film 6 has a
The portion on the -8i film 4a is formed in a raised state by the thickness thereof.

(51再びSiH,をグロー放電中で分解するととによ
りa−8i膜をS10.膜6上に形成し、さら忙その上
にMo等をスパッタし、ホトエツチングを行うことによ
りて第5図忙示すように中央部の盛上った部分にa−8
i膜7と、その両端部に接続するMo電極8を形成する
。なお、同図以降、Sin、膜6の下側の部分は省略し
てあられされる。
(51 Again, by decomposing SiH in a glow discharge, an a-8i film is formed on the S10 film 6, and then Mo or the like is sputtered thereon and photoetched, as shown in Fig. 5). A-8 on the raised part in the center like this
An i film 7 and Mo electrodes 8 connected to both ends thereof are formed. Note that from the same figure onwards, the lower part of the Sin film 6 will be omitted.

(61有機樹脂、例えばポリイミド系樹脂をフェス状で
全面にスピンナ塗□布し、そのあと熱処理硬化させるこ
とで第6図(示すようKSi01膜 6の凹部を埋める
ようにし、かつ上面が平坦になるポリイミド膜9を形成
する。
(61 Organic resin, for example, polyimide resin, is applied with a spinner to the entire surface in the shape of a face, and then cured by heat treatment to fill the recesses of the KSi01 film 6 as shown in Figure 6, and to make the top surface flat. A polyimide film 9 is formed.

(71ホトレジストによるマスン(図示されない)を使
用し、ポリイミド膜9の一部をエツチングして第7図に
示すように上部のa−8i膜7が露出する窓孔10をあ
け邊とともに、S i O! Wli 6によりて埋め
込まれたアルミニウム電極5g、5bに対応する部分に
窓孔11をあける。
(Using a mask (not shown) made of 71 photoresist, a part of the polyimide film 9 is etched to open a window 10 through which the upper A-8I film 7 is exposed as shown in FIG. A window hole 11 is made in a portion corresponding to the aluminum electrodes 5g and 5b embedded with O! Wli 6.

+81  全面にプラズマ叉はスパッタによりSjOg
を堆積し、第8図に示すようにSjO!11112を形
成する。
+81 SjOg on the entire surface by plasma or sputtering
is deposited, and SjO! is deposited as shown in FIG. 11112 is formed.

+97  ホトレジストを使用しSjOgを部分的にエ
ッチして第9図に示すようにゲート糖縁膜12aを残す
。なおこのとき、ポリイミド膜9の孔11を通して8j
O,膜6をエッチし、A9電極5a。
+97 Using photoresist, SjOg is partially etched to leave gate sugar border film 12a as shown in FIG. At this time, 8j is passed through the hole 11 of the polyimide film 9.
O, film 6 is etched, and A9 electrode 5a.

’  5dを露出させる。’ Expose 5d.

■ さいごに、全面に人りを蒸着又はスパッタし、ホト
レジストを使用してエツチングを行うことにより、第1
0図に示すようにゲート絶縁al12a上と、Mo電極
3、及び孔11を通してアルミニウム電極5a、5dに
コンタクトするアルミニウム電極13a、13b・・・
な形成し、3次元インバータ回路を完成する。このうち
、An電極13aはA9電極5aと一方(QMo電極8
とを短絡するとともに■。ut(出力用)端子となる・
ゲート絶縁@ 12 a上のAn電極はvin (入力
用)端子となる。他方のMo’H1極8に接続されるA
jl電極はGND(接地)fs子となる。AA’il!
極5dに接続されるA9電極13dはVDD (電源用
)端子となる。
■ Finally, the first layer is deposited or sputtered on the entire surface and etched using photoresist.
As shown in Figure 0, aluminum electrodes 13a, 13b, .
and complete the three-dimensional inverter circuit. Among these, the An electrode 13a is connected to the A9 electrode 5a and one (QMo electrode 8
In addition to short-circuiting ■. It becomes the ut (output) terminal.
The An electrode on the gate insulation @12a becomes a vin (input) terminal. A connected to the other Mo'H1 pole 8
The jl electrode becomes a GND (ground) fs terminal. AA'il!
The A9 electrode 13d connected to the pole 5d becomes a VDD (power supply) terminal.

第11図は第1θ図に示した3次元インバータの等価回
路図である。
FIG. 11 is an equivalent circuit diagram of the three-dimensional inverter shown in FIG. 1θ.

実験によれば、チャネル長10μmで1段当りの遅延時
間60μsというデータが得られている。
According to experiments, data has been obtained that the delay time per stage is 60 μs with a channel length of 10 μm.

〔効果〕〔effect〕

以上実施例で述べた本発明忙よれば、工程141(第4
図)に示されるように下段の素子によるS i O,膜
6の突出部分を埋め込むようにポリイミド膜9(第6図
)を形成して上面を平坦化するととにより、上段の素子
が設置しやすくなり、有効面積が増し、素子配置の自由
度が太ぎくなるとい5効来が得られる。
According to the present invention described in the embodiments above, step 141 (fourth
As shown in Fig. 6, a polyimide film 9 (Fig. 6) is formed to bury the protruding portion of the SiO film 6 formed by the lower element, and the upper surface is flattened. Five advantages can be obtained: the device becomes easier to use, the effective area increases, and the degree of freedom in element arrangement increases.

以上本発明者によっズなされた発明の実施例圧もとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を変更し      −ない範
囲で種々変更可能・であることはいうまでもない。
Although the invention has been specifically explained above based on the embodiments of the invention made by the present inventor, the present invention is not limited to the above embodiments, and can be modified in various ways without changing the gist thereof. It goes without saying that there is.

〔利用分野〕[Application field]

本発明は実施例に述べたような論理集積回路に適用して
もつとも有効である。
The present invention is also effective when applied to logic integrated circuits such as those described in the embodiments.

本発嬰は上記以外にアモルファスシリコンを用゛。This product uses amorphous silicon in addition to the above.

いたイメージセンサ、電荷結合デバイ、ス・シ嘗ットキ
バリア及びPiNダイオ−、ドを多段に形成する場合に
おいても同様に応用できる。  □ 、2
The present invention can be similarly applied to the case where image sensors, charge coupled devices, switching barriers, and PiN diodes are formed in multiple stages. □ , 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至館10図は本発明の一夾施例を示7す3次元
インバータ回路の1ユニツトの製造プロセスの工程断面
図である。 第11図は第10図に対応する等価回路図である。 l・・・溶融石英基板、2・・・MO電極、3・・・S
i0g膜、4”−a−8j膜、5・An電極、5−8 
i O!膜、7−a−8i膜、8 =−M o を極、
9・・・ポリイミド膜、10,11・・・窓孔、12・
・・S i OH膜、13・・・AJ電極。 代理人 弁理士  高 橋−明 夫 □第1図 第  2  図 第  3  図 第  4  図 第  6  図 第  7  図 第  8  図 第  9  図
FIGS. 1 to 10 are cross-sectional views of a manufacturing process for one unit of a three-dimensional inverter circuit showing one embodiment of the present invention. FIG. 11 is an equivalent circuit diagram corresponding to FIG. 10. l...Fused quartz substrate, 2...MO electrode, 3...S
i0g film, 4”-a-8j film, 5・An electrode, 5-8
i O! membrane, 7-a-8i membrane, 8 = -M o as pole,
9... Polyimide membrane, 10, 11... Window hole, 12.
...S i OH film, 13...AJ electrode. Agent Patent Attorney Akio Takahashi □Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 1、一つの基板上に複数の半導体素子が絶縁膜を介して
多段に形成された半導体装置であって、下段の半導体素
子によって上記絶縁膜表面に生じた凹凸が有機樹脂を介
して平坦化されその上に上段の半導体素子が形成されて
いることを特徴とする半導体装置。 2、上記有機樹脂はポリイミド系樹脂からなる特許請求
の範囲第1項に記載の半導体装置。 3、上記複数の半導体素子にはそれぞれ一部にアモルフ
ァスシリコンが用いられている特許請求の範囲第1項又
は第2項に記載の半導体装置。
[Claims] 1. A semiconductor device in which a plurality of semiconductor elements are formed in multiple stages on one substrate with an insulating film interposed therebetween, wherein the unevenness caused on the surface of the insulating film by the semiconductor elements in the lower stage is made of an organic resin. What is claimed is: 1. A semiconductor device characterized in that the semiconductor device is planarized through the substrate and an upper semiconductor element is formed thereon. 2. The semiconductor device according to claim 1, wherein the organic resin is made of polyimide resin. 3. The semiconductor device according to claim 1 or 2, wherein amorphous silicon is used in a part of each of the plurality of semiconductor elements.
JP12524684A 1984-06-20 1984-06-20 Semiconductor device Pending JPS615563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12524684A JPS615563A (en) 1984-06-20 1984-06-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12524684A JPS615563A (en) 1984-06-20 1984-06-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS615563A true JPS615563A (en) 1986-01-11

Family

ID=14905383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12524684A Pending JPS615563A (en) 1984-06-20 1984-06-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS615563A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070657C (en) * 1995-10-06 2001-09-05 株式会社日立制作所 Motor controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070657C (en) * 1995-10-06 2001-09-05 株式会社日立制作所 Motor controller

Similar Documents

Publication Publication Date Title
US4889829A (en) Method for producing a semiconductor device having a silicon-on-insulator structure
JPH0727976B2 (en) Integrated electronic device and its manufacturing method
JP2637937B2 (en) Method for manufacturing field effect transistor
JP2001024188A (en) Semiconductor device and its manufacture
GB2180991A (en) Silicide electrode for semiconductor device
JPS58170065A (en) Manufacture of thin film field effect transistor
US4378565A (en) Integrated circuit and method of making same
JPS60138971A (en) Manufacture of semiconductor device
JPS615563A (en) Semiconductor device
JPS6143463A (en) Semiconductor device
JPH08227901A (en) Fabrication of semiconductor device
JPH06204467A (en) Semiconductor integrated circuit device and its manufacture
JP3264402B2 (en) Semiconductor device
JPH0142147B2 (en)
JPS6160588B2 (en)
JP2950620B2 (en) Semiconductor device
JPS58170064A (en) Manufacture of thin film field effect transistor
CN115036271A (en) Metal oxide semiconductor thin film transistor array substrate, manufacturing method thereof and display device
US6362102B1 (en) Method of forming top metal contact to antifuse
JPS6076170A (en) Manufacture of insulated gate type semiconductor device
JPH0448644A (en) Manufacture of semiconductor device
JPH07221317A (en) Thin film transistor and its manufacture
JP2003133432A (en) Semiconductor device and manufacturing method thereof
JPS59175162A (en) Mos type semiconductor device and manufacture thereof
JPH02244618A (en) Manufacture of semiconductor device