JPS6155340A - Exhaust overheat preventing air-fuel ratio controlling method of engine - Google Patents

Exhaust overheat preventing air-fuel ratio controlling method of engine

Info

Publication number
JPS6155340A
JPS6155340A JP59177836A JP17783684A JPS6155340A JP S6155340 A JPS6155340 A JP S6155340A JP 59177836 A JP59177836 A JP 59177836A JP 17783684 A JP17783684 A JP 17783684A JP S6155340 A JPS6155340 A JP S6155340A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
exhaust
engine
overheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59177836A
Other languages
Japanese (ja)
Inventor
Naohide Izumitani
泉谷 尚秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59177836A priority Critical patent/JPS6155340A/en
Publication of JPS6155340A publication Critical patent/JPS6155340A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent an exhaust system from overheating, by installing a process, which detects a fact that exhaust temperature reaches the setting value and, after the temperature reaches the setting value, installing another process which makes an air-fuel ratio into being overrich by degrees. CONSTITUTION:There is provided with a process detects a fact that exhaust temperature reaches the setting value in an high speed and high load range of engine. After the exhaust temperature reaches the setting value, there is also provided with a process which makes an air-fuel ratio into being overrich by degrees. For a while till the exhaust temperature reaches the setting value in the high speed and high load range of engine, the air-fuel ratio is maintained in an output air-fuel ratio or an economic air-fuel ratio. Thus, an exhaust system is surely preventable from overheating without entailing any damage to drivability, accelerating performance and a specific fuel consumption.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野) 本発明は、エンジンの排気過熱防止空燃比制御方法に係り、特に、触媒を備えた自動車用の電子制御エンジンに用いるのに好適な、エンジンの高回転高負荷域で空燃比を過濃として、排気系の過熱を防止するようにしたエンジンの排気過熱防止空燃比制御方法の改良に関する。 【従来の技術】[Industrial application field] The present invention relates to an air-fuel ratio control method for preventing exhaust overheating of an engine, and is particularly suitable for use in an electronically controlled automobile engine equipped with a catalyst. The present invention relates to an improvement in an exhaust overheat prevention air-fuel ratio control method for an engine that prevents overheating of the exhaust system. [Conventional technology]

排気ガス浄化のための触媒を備えたエンジンにおいては
、高回転高負荷域の運転状態が長時間続くと排気系の温
度が高温となり、触媒等が損備する恐れがある。従って
従来から、エンジンの高回転高負荷域で、空燃比を出力
性能上有利な出力空燃比又は燃費性能上有利な経済空燃
比より過濃な排気過熱防止空燃比として、排気系の過熱
を防止することが行われている。
In an engine equipped with a catalyst for purifying exhaust gas, if the engine is operated in a high-speed, high-load range for a long period of time, the temperature of the exhaust system becomes high, and there is a risk that the catalyst or the like may be damaged. Therefore, in the high rotation and high load range of the engine, overheating of the exhaust system has been prevented by setting the air-fuel ratio to an exhaust overheat prevention air-fuel ratio richer than the output air-fuel ratio, which is advantageous in terms of output performance, or the economical air-fuel ratio, which is advantageous in terms of fuel efficiency. things are being done.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、前記排気過熱防止空燃比は、エンジンが
高回転高負荷域で連続運転された時に、排気系温度がそ
の過熱臨界温度を越えないように、十分余裕を持った濃
い目の空燃比とされているため、従来の高回転高負荷域
で直ちに空燃比を排気過熱防止空燃比に切換える制御で
は、切換時に急激な空燃比変化によりショックが発生し
てドライバビリティが悪いだけでなく、一般の走行条件
では過剰対策となり、出力性能や燃費性能を損ねている
という問題点を有していた。又、前記従来の制御aでは
、高地走行や自動変速機を備えた車両等、一般に踏込み
聞が多くなり勝ちな条件では、排気ガス中のCOやl−
10が多くなるという問題点も有していた。このような
問題点は、待に過吸殿付きエンジンにおいて著しいもの
である。 一方、本発明に類似するものとして、出願人は既に実公
昭57−26034において、走行状態に応じて排気過
熱防止増旦に入る条件を切換え、通常走行時に比べて排
気過熱の恐れが少ない市街地走行時に、排気過熱防止層
」が行われ雑クシで、通常走11時の排気過熱防止と市
街地走行時における排気ガス成分の悪化防止とを両立さ
せた電子制iiD式燃料噴射装置を提案しているが、排
気系の状態を反映した制御ではなかったため、走行条件
によっては十分な効果を発揮できない場合があった。 (発明の目的) 本発明は、前記従来の問題点を解消するべくなされたも
ので、排気系の状態に見合った適切な排気過熱防止空燃
比制御を行うことができ、従って、ドライバビリティや
加速性能、燃費性能を損うことなく、排気系の過熱を確
実に防止することができるエンジンの排気過熱防止空燃
比制御方法を提供することを目的とする。 (問題点を解決するための手段) 本発明は、エンジンの高回転高負荷域で空燃比を過濃と
して、排気系の過熱を防止するようにしたエンジンの排
気過熱防止空燃比制御方法において、第1図にその要旨
を示す如く、排気温度が設定直に達したことを検出する
手順と、排気温度が設定直に達した後は、空燃比を徐々
に過濃とする手順とを含むことにより、前記目的を達成
したものである。 又、本発明の実施態様は、前記エンジンの高回転高負荷
域で、排気温度が前記設定値に達するまでの間は、空燃
比を出力空燃比又は経済空燃比に維持するようにして、
エンジンの出力性能又は経済性能が一層高められるよう
にしたものである。 【作用] 本発明は、排気)温度がその運転状態で飽和するために
は、特開が掛ること、又、排気系の熱的な強度も短時間
であれば許容される場合が多いことに着目してなされた
もので、排気温度が設定値に達した後に、空燃比を徐々
に過濃とするようにしたので、エンジンのドライバビリ
ティや加速性能、燃費性能を損うことなく、排気系の過
熱を確実に防止することができる。 【実施例) 以下図面を参照して、本発明に係るエンジンの排気過熱
防止空燃比制御方法が採用された自動車用エンジンの空
燃比制御装置の実施例を詳細に説明する。 本実1例において、第2図に示す如く、エアクリーナ1
2を通って取入れられた空気は、エアフローメータ14
で計量された後、吸気管16、スロットル弁18、サー
ジタンク20及び吸気マニホルド22を経て、該吸気マ
ニホルド22に配設されたインジェクタ24から間欠的
に噴射される燃料と共に、エンジン1oの燃焼空10A
に供給される。エンジン燃焼空10A内で燃焼、形成さ
れた排気ガスは、排気マニホルド26で集合された後、
排気管28及び触媒コンバータ3oを経て排出される。 エンジン制御装置32は、前記エアフローメータ14で
測定された吸入空気流量とデストリピユータ34に内蔵
されたクランク角センサ36出力から計算されるエンジ
ン回転数によって、前記インジェクタ24から1回に噴
射される基本の燃料噴射量を計算する。エンジン制御装
置32は、更に、前記基本噴tA量を、前記エアフロー
メータ14に配設された吸気温センサ38、前記スロッ
トル弁18の開度を検出するスロットルセンサ40、前
記吸気マニホルド22の下流側に配設された酸素濃度セ
ンサ(以下02センサと称する)42、前記触媒コンバ
ータ30に配設された排気温センサ44、水温センサ4
6及びバッテリ48出力等によって補正することにより
実行噴射時間を求め、該実行噴射時間だけ前記インジェ
クタ24を問いて、燃料を適母噴射させる。 前記エンジン制御装置32は、例えば第3図に詳細に示
す如く、マイクロプロセッサからなる中央処理ユニット
(以下CPUと称する)32Aと、制御プログラムや各
種データ等を記憶しておくためのリードオンリーメモリ
(以下ROMと称する)32Bと、演算データ等を一時
的に記憶するためのランダムアクセスメモリ(以下RA
Mと称する)32Cと、前記エアフローメータ14出力
、吸気)温センサ38出力、水温センサ46出力、02
センサ42出力、バッテリ48の電圧、スロットルセン
サ40のスロットル開度信号、排気温センサ44出力等
をデジタル信号に変換して取込むための、マルチプレク
サ機能を有するアナログ−デジタル変換器(以下A/D
コンバータと称する)32Dと、前記スロットルセンサ
40のアイドル・スイッチ信号、クランク角センサ36
出力等を直接取込むと共に、前記CP U 32 Aの
演算処理結果に応じて、前記インジェクタ24等に制器
信号を出力するための、バッファ別能を有する入出力ボ
ート(以下I10ボートと称する)32Fと、前記各構
成機器間を接続するコモンバス32Fとから構成されて
いる。 以下、実施例の作用を説明する。 この実施例における排気過熱防止増量は、第4図に示す
ような燃料増量サブルーチンに従って行われる。即ち、
まずステップ110で、前記スロットルセンサ40で検
出されたスロットル開度TAが判定値A以上であるか否
かを判定する。判定結果が正である場合には、ステップ
112に進み、前記クランク角センサ36出力から計算
されるエンジン回転数Neが判定値8以上であるか否か
を判定する。前出ステップ110又は112の判定結果
が否である場合、即ち、排気過熱の恐れがある高回転高
負荷域ではないと判断される時には、ステップ114に
進み、燃料増」係数KFOTを基準に1とする。従って
、この場合には、空燃比が例えば理論空燃比(A/F=
14.5程度)とされる。 一方、前出ステップ112の判定結果が正である場合、
即ち、排気過熱の恐れがある高回転高負荷域であると判
断される時には、ステップ116に進み、次式に示す如
く、基準値1に設定11c+を加えた値を燃料増量係数
KFOTに入れ、空燃比が例えば出力空燃比(A/F−
12,5程度)となるようにする。 KFoT←1+C1・・・(1) 次いでステップ118に進み、前記排気温センサ44出
力から検出される排気温度ExTが判定値り以上である
否かを判定する。判定結果が否である場合、即ち、高回
転高負荷域ではあるが、未だ排気)温度ExTが判定圃
りに達していない加速開始直後であると判断される時、
又は、前出ステップ114終了後、ステップ120に進
み、増器カウンタCFOTに零を入れて、排気過熱防止
増量が行われないようにする。 一方、前出ステップ118の判定結果が正である場合、
即ち、高回転高負荷域であり、且つ、排気温度ExTが
判定値りに達したと判断される時には、ステップ120
に進み、次式に示す如く、前記増量カウンタCFOTを
、1だけカウントアツプする。 CFOT”CFOT+ 1・・・(2)次いでステップ
122に進み、増量カウンタCFOTの計¥1直が、そ
の上限(直E以上となったか否かを判定する。判定結果
が正である場合には、ステップ124に進み、増量カウ
ンタCFOTの計数値に上限tiiEを入れて、その上
限をカードする。該ステップ124終了後、又はmll
スステップ122判定結果が否である場合には、ステッ
プ126に進み、次式により燃料増量係数KFOTを算
出して、時間の経過に比例した増量が(テわれるように
する。 KFOT+KFOT+CFOT/C2・・・(3)ここ
で、C2は予め設定された定数である。 前出ステップ120又は126終了後、ステップ128
に進み、予め他のルーチンで計算されている基本噴射f
f1TPに、前出ステップ114.116又は126で
算出された燃料増器係数KFO下を乗することによって
、燃料噴射量を計算する。 次いでステップ130に進み、燃料噴射を実行して、こ
のサブルーチンを終了する。 このようにして、例えば第5図に示す如く、部分負荷走
行から時刻Toで加速走行に移行した場合には、時刻T
oに到達する前の部分負荷走行時には、前出ステップ1
14で基準値1とされた燃料増量係数KFOTを用いて
燃料噴躬扮が計算されるため、第5図(A)に示す如く
、空燃比は例えばA/F−14,5の理論空燃比とされ
る。次いで、時刻下0で部分負荷走行から加速走行に移
った時には、前出ステップ116で燃料増量係数KFO
Tが1+C1とされると共に、前出ステップ120で増
量カウンタCFOTが零とされるので、空燃比は設定1
111C1の値に応じて、例えばA、′’F=12.5
の出力空燃比とされる。更に、第5図(B)に示す如く
、時刻T1で排気温度Ex下が判定値り以上となると、
前出ステップ126により、燃料増関係aKFOTがス
テップ116で設定された出力空燃比に対応する圃1 
+ C+から増量カウンタCFOTの計数値に応じて徐
々に上限値1+C++E/Czまで増量されるので、空
燃比は、出力空燃比から排気過熱を防止するために必要
な、例えばA/F−11,5の排気過熱防止空燃比まで
徐々に過濃とされる。第5図(B)において、Tcは排
気系の過熱臨界温度(850°C程度)である。 従って、エンジン回転数Neを一定とした場合には、第
5図(C)に実線Aで示す如く、同じくM5図(C)に
破線Bで示す、時刻Toで直ちに空燃比を理論空燃比か
ら排気過熱防止空燃比に切換える従来例に比べて、加速
初期に高いトルクを維持でき、加速性能や燃費性能を向
上させることができる。又、空燃比が徐々に濃くされる
ので、ショック等がなくドライバビリティが優れている
。 本実施例においては、高回転高負荷域となった時に、直
ちに排気過熱防止増量を開始するのではなく、高回転高
負荷域の初期は出力空燃比に移1テするようにしている
ので、加速性能に特に混れている。なお、高回転高負荷
域の初期に燃費性能上有利な経済空燃比に移行したり、
あるいは、直ちに排気過熱防止増量を開始することも可
能である。 又、本実施例においては、排気)3度ExTの判定値り
を排気系の過熱臨界温度Tcより低い値としているので
、排気過熱を確実に防止する−ことができる。なあ、排
気系の熱的な強度も短時間であれば許容されることから
、前記判定値りを排気系の臨界温度TOと一致させるこ
とも可能である。 更に、前記実施例においては、エンジンの高回転高負荷
域の判定をスロットル開度TAとエンジン回転vlN 
eに応じて行うようにしていたが、高回転高負荷域の判
定方法はこれに限定されず、例えば、エンジン1回転当
りの吸入空気I Q 、/ N又は基本噴1)1 m 
T Pに応じて行うことも可能である。 [発明の効果] 以上説明した通り、本発明によれば、排気系の状態に見
合った適切な排気過熱防止空燃比制御を11うことかで
き、従って、ドライバビリティや加速性能、燃費性能を
損うことなく、排気系の過熱を確実に防止することがで
きるという浸れた効果を有する。
However, the exhaust overheating prevention air-fuel ratio is set to a high air-fuel ratio with sufficient margin to prevent the exhaust system temperature from exceeding its superheating critical temperature when the engine is continuously operated in a high-speed, high-load range. Therefore, with conventional control that immediately switches the air-fuel ratio to the exhaust overheating prevention air-fuel ratio in the high-speed, high-load range, the sudden change in the air-fuel ratio at the time of switching causes shock, which not only deteriorates drivability, but also impairs normal driving. The problem was that this was an excessive measure under certain conditions, impairing output performance and fuel efficiency. Furthermore, in the conventional control a, CO and l-
There was also a problem that the number of 10s increased. Such problems are particularly serious in engines with oversuction. On the other hand, as something similar to the present invention, the applicant has already proposed in Utility Model Publication No. 57-26034 that the condition for increasing the exhaust overheating prevention temperature is changed depending on the driving condition, and when driving in urban areas, there is less risk of exhaust overheating than during normal driving. At times, an exhaust overheating prevention layer is applied, and we are proposing an electronically controlled IID fuel injection system that prevents exhaust overheating during normal driving and prevents deterioration of exhaust gas components during city driving. However, because the control did not reflect the state of the exhaust system, it could not be sufficiently effective depending on the driving conditions. (Object of the Invention) The present invention has been made to solve the above-mentioned conventional problems, and can perform appropriate exhaust overheat prevention air-fuel ratio control commensurate with the state of the exhaust system, thereby improving drivability and acceleration. An object of the present invention is to provide an exhaust overheat prevention air-fuel ratio control method for an engine that can reliably prevent overheating of an exhaust system without impairing performance or fuel efficiency. (Means for Solving the Problems) The present invention provides an exhaust overheating prevention air-fuel ratio control method for an engine that prevents overheating of the exhaust system by making the air-fuel ratio rich in the high speed and high load range of the engine. As summarized in Figure 1, it includes a procedure for detecting that the exhaust gas temperature has just reached the set value, and a procedure for gradually enriching the air-fuel ratio after the exhaust temperature has just reached the set value. Thus, the above objective has been achieved. Further, in an embodiment of the present invention, the air-fuel ratio is maintained at the output air-fuel ratio or the economic air-fuel ratio until the exhaust temperature reaches the set value in the high rotation and high load range of the engine,
The output performance or economic performance of the engine is further improved. [Function] The present invention is based on the fact that in order for the exhaust gas temperature to be saturated under the operating conditions, it takes a patent application, and that the thermal strength of the exhaust system is often allowed for a short time. After the exhaust temperature reaches the set value, the air-fuel ratio is gradually enriched. can reliably prevent overheating. Embodiments Hereinafter, embodiments of an air-fuel ratio control device for an automobile engine will be described in detail with reference to the drawings, in which an engine exhaust overheat prevention air-fuel ratio control method according to the present invention is adopted. In this example, as shown in FIG.
The air taken in through the air flow meter 14
After being metered in, the combustion air of the engine 1o passes through the intake pipe 16, throttle valve 18, surge tank 20, and intake manifold 22, and is injected intermittently from the injector 24 disposed in the intake manifold 22. 10A
supplied to After the exhaust gases combusted and formed in the engine combustion air 10A are collected in the exhaust manifold 26,
It is discharged through the exhaust pipe 28 and the catalytic converter 3o. The engine control device 32 controls the basic amount of air injected at one time from the injector 24 based on the engine rotational speed calculated from the intake air flow rate measured by the airflow meter 14 and the output of a crank angle sensor 36 built into the distributor 34. Calculate fuel injection amount. The engine control device 32 further transmits the basic injection amount tA to an intake air temperature sensor 38 disposed in the air flow meter 14, a throttle sensor 40 that detects the opening degree of the throttle valve 18, and a downstream side of the intake manifold 22. An oxygen concentration sensor (hereinafter referred to as 02 sensor) 42 disposed in the catalytic converter 30, an exhaust temperature sensor 44 disposed in the catalytic converter 30, and a water temperature sensor 4
6 and the output of the battery 48, etc. to determine the effective injection time, and the injector 24 is queried for the effective injection time to inject the fuel appropriately. As shown in detail in FIG. 3, the engine control device 32 includes a central processing unit (hereinafter referred to as CPU) 32A consisting of a microprocessor, and a read-only memory (hereinafter referred to as CPU) for storing control programs and various data. 32B (hereinafter referred to as ROM), and a random access memory (hereinafter referred to as RA) for temporarily storing calculation data, etc.
Referred to as M) 32C, the air flow meter 14 output, intake air temperature sensor 38 output, water temperature sensor 46 output, 02
An analog-to-digital converter (hereinafter referred to as A/D) with a multiplexer function is used to convert the output of the sensor 42, the voltage of the battery 48, the throttle opening signal of the throttle sensor 40, the output of the exhaust temperature sensor 44, etc. into digital signals.
converter) 32D, the idle switch signal of the throttle sensor 40, and the crank angle sensor 36.
an input/output boat (hereinafter referred to as I10 boat) having a buffer function for directly taking in output, etc. and outputting a control signal to the injector 24 etc. according to the arithmetic processing result of the CPU 32A; 32F, and a common bus 32F that connects the respective component devices. The effects of the embodiment will be explained below. In this embodiment, the amount of exhaust gas to prevent overheating is increased according to a fuel amount increasing subroutine as shown in FIG. That is,
First, in step 110, it is determined whether the throttle opening degree TA detected by the throttle sensor 40 is greater than or equal to the determination value A. If the determination result is positive, the process proceeds to step 112, where it is determined whether the engine rotation speed Ne calculated from the output of the crank angle sensor 36 is equal to or higher than the determination value 8. If the determination result in step 110 or 112 is negative, that is, if it is determined that the high rotation and high load region is not in which there is a risk of exhaust overheating, the process proceeds to step 114, where the fuel increase coefficient is increased by 1 based on the fuel increase coefficient KFOT. shall be. Therefore, in this case, the air-fuel ratio is, for example, the stoichiometric air-fuel ratio (A/F=
14.5). On the other hand, if the determination result in step 112 is positive,
That is, when it is determined that the engine is in a high-speed, high-load range where there is a risk of exhaust overheating, the process proceeds to step 116, where the value obtained by adding the setting 11c+ to the reference value 1 is entered into the fuel increase coefficient KFOT, as shown in the following equation. The air-fuel ratio is, for example, the output air-fuel ratio (A/F-
12.5). KFoT←1+C1 (1) Next, the process proceeds to step 118, where it is determined whether the exhaust gas temperature ExT detected from the output of the exhaust gas temperature sensor 44 is equal to or higher than a determination value. If the judgment result is negative, that is, when it is judged that the engine is in the high rotation and high load range, but the exhaust temperature ExT has not yet reached the judgment level and the acceleration has just started.
Alternatively, after the aforementioned step 114 is completed, the process proceeds to step 120, where the increase counter CFOT is set to zero to prevent the exhaust overheat prevention increase. On the other hand, if the determination result in step 118 is positive,
That is, when it is determined that the engine is in the high rotation and high load region and that the exhaust gas temperature ExT has reached the determination value, step 120 is performed.
Then, the increase counter CFOT is counted up by 1 as shown in the following equation. CFOT" CFOT+ 1... (2) Next, the process proceeds to step 122, and it is determined whether the total ¥1 shift of the increase counter CFOT has reached its upper limit (direct E or more). If the determination result is positive, , the process proceeds to step 124, where the upper limit tiiE is entered into the count value of the increase counter CFOT, and the upper limit is carded.After the completion of step 124, or mll
If the determination result in step 122 is negative, the process proceeds to step 126, where the fuel increase coefficient KFOT is calculated using the following formula so that the fuel increase is proportional to the passage of time (KFOT+KFOT+CFOT/C2... -(3) Here, C2 is a preset constant. After the above step 120 or 126 is completed, step 128
Proceed to the basic injection f calculated in advance by another routine.
The fuel injection amount is calculated by multiplying f1TP by the fuel increase coefficient KFO calculated in steps 114, 116 or 126 above. Next, the process proceeds to step 130, where fuel injection is performed and this subroutine ends. In this way, for example, as shown in FIG. 5, when transitioning from partial load running to accelerated running at time To, at time T
When running under partial load before reaching o, perform step 1 above.
Since the fuel injection rate is calculated using the fuel increase coefficient KFOT, which is set to the reference value 1 in A/F-14, the air-fuel ratio is, for example, the stoichiometric air-fuel ratio of A/F-14,5, as shown in Figure 5 (A). It is said that Next, when moving from partial load running to accelerated running at time 0, the fuel increase coefficient KFO is set in step 116 mentioned above.
Since T is set to 1+C1 and the increase counter CFOT is set to zero in step 120, the air-fuel ratio is set to 1.
Depending on the value of 111C1, for example A,''F=12.5
The output air-fuel ratio is assumed to be . Furthermore, as shown in FIG. 5(B), when the exhaust gas temperature Ex becomes lower than the judgment value at time T1,
In step 126, the fuel increase relation aKFOT corresponds to the output air-fuel ratio set in step 116.
Since the amount is gradually increased from +C+ to the upper limit value 1+C++E/Cz according to the count value of the increase counter CFOT, the air-fuel ratio is determined from the output air-fuel ratio to the value necessary to prevent exhaust overheating, such as A/F-11, The exhaust gas is gradually enriched until it reaches the exhaust overheat prevention air-fuel ratio of 5. In FIG. 5(B), Tc is the superheating critical temperature (about 850° C.) of the exhaust system. Therefore, when the engine speed Ne is constant, the air-fuel ratio is immediately changed from the stoichiometric air-fuel ratio at time To, as shown by the solid line A in Fig. 5 (C), and also shown by the broken line B in Fig. M5 (C). Compared to conventional systems that switch to an exhaust overheat prevention air-fuel ratio, high torque can be maintained in the early stages of acceleration, improving acceleration performance and fuel efficiency. Furthermore, since the air-fuel ratio is gradually enriched, there is no shock or the like, and drivability is excellent. In this embodiment, when the high-speed, high-load region is reached, the exhaust overheat prevention increase is not immediately started, but the output air-fuel ratio is shifted to the output air-fuel ratio at the beginning of the high-speed, high-load region. The acceleration performance is particularly mixed. In addition, at the beginning of the high rotation and high load range, the air-fuel ratio shifts to an economical air-fuel ratio that is advantageous in terms of fuel efficiency.
Alternatively, it is also possible to immediately start increasing the amount of exhaust gas overheat prevention. Further, in this embodiment, since the determination value for the exhaust gas (3 degrees ExT) is set to a value lower than the superheating critical temperature Tc of the exhaust system, overheating of the exhaust gas can be reliably prevented. Incidentally, since the thermal strength of the exhaust system is permissible for a short time, it is also possible to make the above-mentioned judgment value coincide with the critical temperature TO of the exhaust system. Furthermore, in the embodiment described above, the determination of the high speed and high load region of the engine is performed based on the throttle opening TA and the engine speed vlN.
However, the method for determining the high rotation and high load range is not limited to this, for example, the intake air I Q /N per engine revolution or the basic injection 1) 1 m
It is also possible to perform this according to T P. [Effects of the Invention] As explained above, according to the present invention, it is possible to perform exhaust overheat prevention air-fuel ratio control appropriate to the condition of the exhaust system, and therefore, drivability, acceleration performance, and fuel efficiency are not impaired. This has the advantage of being able to reliably prevent overheating of the exhaust system without overheating.

【図面の簡単な説明】[Brief explanation of drawings]

M1図は、本発明に係るエンジンの排気過熱防止空燃比
1liIJ lit方法の要旨を示す流れ図、第2図は
、本発明が採用された自動車用エンジンの空燃比制御装
置の実施例の構成を示すブロック線図、第3図は、前記
実施例で用いられているエンジン制御装置の構成を示す
ブロック線図、第4図は、同じく、燃料増量サブルーチ
ンを示す流れ図、第5図は、前記実施例及び従来例にお
ける部分負荷走行から加速走行に移行した際の、空燃比
、排気温度及びトルクの変化状態の関係の例を比較して
示す線図である。 10・・・エンジン、   18・・・スロットル弁、
24・・・インジェクタ、 30・・・触媒コンバータ
、32・・・エンジン制御装置、 36・・・クランク角センサ、 Nc・・・エンジン回転数、40・・・スロットルセン
サ、TA・・・スロットル開度、44・・・排気温セン
サ、ExT・・・排気)温度、  KFO下・・・燃料
増量係数、CFOT・・・増mカウンタ。
Figure M1 is a flowchart showing the gist of the air-fuel ratio control method for preventing engine exhaust overheating according to the present invention, and Figure 2 shows the configuration of an embodiment of an air-fuel ratio control device for an automobile engine to which the present invention is adopted. FIG. 3 is a block diagram showing the configuration of the engine control device used in the embodiment, FIG. 4 is a flow chart showing the fuel increase subroutine, and FIG. 5 is a block diagram showing the configuration of the engine control device used in the embodiment. and FIG. 9 is a diagram comparing and illustrating an example of the relationship among changing states of the air-fuel ratio, exhaust temperature, and torque when transitioning from partial load driving to accelerated driving in the conventional example. 10... Engine, 18... Throttle valve,
24... Injector, 30... Catalytic converter, 32... Engine control device, 36... Crank angle sensor, Nc... Engine rotation speed, 40... Throttle sensor, TA... Throttle opening 44...exhaust temperature sensor, ExT...exhaust) temperature, KFO lower...fuel increase coefficient, CFOT...increase m counter.

Claims (2)

【特許請求の範囲】[Claims] (1)エンジンの高回転高負荷域で空燃比を過濃として
、排気系の過熱を防止するようにしたエンジンの排気過
熱防止空燃比制御方法において、排気温度が設定値に達
したことを検出する手順と、 排気温度が設定値に達した後は、空燃比を徐々に過濃と
する手順と、 を含むことを特徴とするエンジンの排気過熱防止空燃比
制御方法。
(1) In an engine exhaust overheat prevention air-fuel ratio control method that prevents overheating of the exhaust system by making the air-fuel ratio too rich in the engine's high rotation and high load range, it is detected that the exhaust temperature has reached a set value. A method for controlling an air-fuel ratio of an engine to prevent overheating of an exhaust gas, comprising: a step of gradually enriching the air-fuel ratio after the exhaust temperature reaches a set value;
(2)前記エンジンの高回転高負荷域で、排気温度が前
記設定値に達するまでの間は、空燃比を出力空燃比又は
経済空燃比に維持するようにした特許請求の範囲第1項
記載のエンジンの排気過熱防止空燃比制御方法。
(2) The air-fuel ratio is maintained at the output air-fuel ratio or the economical air-fuel ratio until the exhaust temperature reaches the set value in the high-speed, high-load range of the engine. A method for controlling the air-fuel ratio to prevent exhaust overheating of an engine.
JP59177836A 1984-08-27 1984-08-27 Exhaust overheat preventing air-fuel ratio controlling method of engine Pending JPS6155340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59177836A JPS6155340A (en) 1984-08-27 1984-08-27 Exhaust overheat preventing air-fuel ratio controlling method of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59177836A JPS6155340A (en) 1984-08-27 1984-08-27 Exhaust overheat preventing air-fuel ratio controlling method of engine

Publications (1)

Publication Number Publication Date
JPS6155340A true JPS6155340A (en) 1986-03-19

Family

ID=16037962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59177836A Pending JPS6155340A (en) 1984-08-27 1984-08-27 Exhaust overheat preventing air-fuel ratio controlling method of engine

Country Status (1)

Country Link
JP (1) JPS6155340A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345444A (en) * 1986-08-12 1988-02-26 Toyota Motor Corp Air-fuel ratio controller for internal combustion engine
US5115780A (en) * 1988-06-14 1992-05-26 Nira Automotive Ab Arrangement for restricting the temperature of combustion engine exhaust gases
US5278762A (en) * 1990-03-22 1994-01-11 Nissan Motor Company, Limited Engine control apparatus using exhaust gas temperature to control fuel mixture and spark timing
JP2003065111A (en) * 2001-08-23 2003-03-05 Fuji Heavy Ind Ltd Fuel injection controller for engine
JP2020510160A (en) * 2017-03-16 2020-04-02 ルノー エス.ア.エス.Renault S.A.S. Method for adjusting richness in an ignition controlled internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345444A (en) * 1986-08-12 1988-02-26 Toyota Motor Corp Air-fuel ratio controller for internal combustion engine
US5115780A (en) * 1988-06-14 1992-05-26 Nira Automotive Ab Arrangement for restricting the temperature of combustion engine exhaust gases
US5278762A (en) * 1990-03-22 1994-01-11 Nissan Motor Company, Limited Engine control apparatus using exhaust gas temperature to control fuel mixture and spark timing
JP2003065111A (en) * 2001-08-23 2003-03-05 Fuji Heavy Ind Ltd Fuel injection controller for engine
JP2020510160A (en) * 2017-03-16 2020-04-02 ルノー エス.ア.エス.Renault S.A.S. Method for adjusting richness in an ignition controlled internal combustion engine
RU2752657C2 (en) * 2017-03-16 2021-07-29 Рено С.А.С Method for regulating degree of enrichment in internal combustion engine with controlled ignition

Similar Documents

Publication Publication Date Title
JPS58152147A (en) Air-fuel ratio control method for internal combustion engine
JPH0522061B2 (en)
JPH0442533B2 (en)
JPS60240840A (en) Control device of air-fuel ratio in internal-combustion engine
US4667631A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
JP2721966B2 (en) Fuel cut device for internal combustion engine
JPS6155340A (en) Exhaust overheat preventing air-fuel ratio controlling method of engine
JPS63147941A (en) Air-fuel ratio control device for internal combustion engine
JP4389139B2 (en) Exhaust gas purification control device for internal combustion engine
JPS63109257A (en) Air-fuel ratio control device of internal combustion engine
JPH0243910B2 (en)
JP2841806B2 (en) Air-fuel ratio control device for engine
JPS6254975B2 (en)
JP2590941B2 (en) Fuel injection amount learning control device for internal combustion engine
JP2615561B2 (en) Fuel injection amount control device for internal combustion engine
JPS6165046A (en) Method of controlling idle rotational speed of internal-combustion engine
JP2873504B2 (en) Engine fuel control device
JPS6090934A (en) Method of controlling fuel supply when internal- combustion engine is operated with its throttle valve being fully opened
JPH0740672Y2 (en) Air-fuel ratio controller for engine
JP2545221Y2 (en) Engine air-fuel ratio control device
JPH08312410A (en) Controlling method for air-fuel ratio of internal combustion engine
JPH063153B2 (en) Fuel injection amount control device for internal combustion engine
JPH10176565A (en) Air-fuel ratio switching control method
JPS62162742A (en) Air-fuel ratio control device
JPS5848721A (en) Fuel injection controller