JPS6153530A - Thermocouple type infrared detection element - Google Patents

Thermocouple type infrared detection element

Info

Publication number
JPS6153530A
JPS6153530A JP59175915A JP17591584A JPS6153530A JP S6153530 A JPS6153530 A JP S6153530A JP 59175915 A JP59175915 A JP 59175915A JP 17591584 A JP17591584 A JP 17591584A JP S6153530 A JPS6153530 A JP S6153530A
Authority
JP
Japan
Prior art keywords
infrared
detection element
film
infrared detection
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59175915A
Other languages
Japanese (ja)
Other versions
JPH0445056B2 (en
Inventor
Kunio Nakamura
中村 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59175915A priority Critical patent/JPS6153530A/en
Publication of JPS6153530A publication Critical patent/JPS6153530A/en
Publication of JPH0445056B2 publication Critical patent/JPH0445056B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Abstract

PURPOSE:To enable the measurement of an infrared irradiated area without using a condenser such as an optical cone by eliminating non-uniformity of plane sensitivity, by forming an infrared absorbing layer on the juction part of two kinds of metal layers through an electrical/thermal insulating layer and a thermally good conductive layer. CONSTITUTION:An electrical/thermal insulating layer (e.g., a polystyrene film) 39, a thermally good conductive layer (e.g., a gold vapor deposition film ) 40 and an infrared absorbing layer (e.g., a blackened film comprising a mixture of a carbon fine power and a binder) 33 are laminated onto the temp.-sensitive junction part 36 comprising two kinds of metal (Bi and Sb) thin layers 31, 32 formed on a substrate thin film 34 and a signal outtake electrode (e.g., a gold vapor deposition film) 38 is provided. A support stand 35 comprises a copper block. This thermocouple type infrared detection element absorbs incident infrared rays by the blackened film 33 thereof with good efficiency and the infrared irradiated part rises in its temp. by the absorption of light. Subsequently, infrared absorption heat is diffused through the layer 40 to the lateral direction by heat conduction and uniformized to raise the temp. of the temp.-sensitive junction part 36.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は熱赤外発生部の面積を熱赤外量で検知すること
により、熱赤外発生部の位置情報を得るための熱電堆型
赤外検出素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a thermopile-type infrared device for obtaining positional information of a thermal infrared generating portion by detecting the area of the thermal infrared generating portion in terms of the amount of thermal infrared radiation. This relates to a detection element.

従来例の構成とその問題点 従来の熱電堆型赤外検出素子の構成を第1図に示す。基
板薄膜4の上に二種類の金属層1.2が図の様に交互に
配置されている。感温接合部6の上に赤外吸収層3が配
置されている。基準接合部7は、左右の支持台5の上部
の基板薄膜上に配置されていて、赤外線が入射しても昇
温しないようになっている。赤外吸収層3に赤外線が照
射されると感温接合部6は、昇温し、基準接合部7との
温度差に相当した起電力が、ゼーベック効果により信号
取出電極8に発生する。ここて、赤外吸収層3の一部に
微少面積の点状赤外線を照射すると、その照射位置によ
って発生する起電力かり”!〜なる。
Structure of a conventional example and its problems The structure of a conventional thermopile type infrared detection element is shown in FIG. Two types of metal layers 1.2 are arranged alternately on the substrate thin film 4 as shown. An infrared absorption layer 3 is arranged on the temperature-sensitive junction 6. The reference joint portion 7 is arranged on the substrate thin film on the upper part of the left and right support stands 5, so that the temperature does not rise even if infrared rays are incident thereon. When the infrared absorption layer 3 is irradiated with infrared rays, the temperature-sensitive junction 6 rises in temperature, and an electromotive force corresponding to the temperature difference with the reference junction 7 is generated in the signal extraction electrode 8 due to the Seebeck effect. Here, when a part of the infrared absorbing layer 3 is irradiated with point-like infrared rays in a small area, an electromotive force is generated depending on the irradiation position.

即ち、感温接合部6に近い位置では発生起電力は高くな
る。
That is, the generated electromotive force becomes high at a position close to the temperature-sensitive junction 6.

従って、従来の熱電堆型赤外検出素子は面内感度の不均
一性が大きいという欠点がある。そのため、赤外照射面
積計測型検出器として使用する場合は、その感温接合部
6をなるべく一点に集中配置するような円型構造とし、
こ几に赤外集光器としてオプチカルコ−7を組合せて使
用する方法などが採用されている。
Therefore, the conventional thermopile type infrared detection element has a drawback of large non-uniformity in in-plane sensitivity. Therefore, when used as an infrared irradiation area measurement type detector, the temperature-sensitive junction 6 should be arranged in a circular shape so that it is concentrated at one point as much as possible.
A method has been adopted in which this method is used in combination with an optical colco-7 as an infrared condenser.

第2図がその構成の一例であるが、入射赤外線はオプチ
カルコーン22の入[1部の仮想面上で像を結ぶように
してあり、この仮:lLi而て赤外発生部の面積に対応
した赤外線を受は入れることになる。
Fig. 2 shows an example of its configuration, and the incident infrared rays are designed to form an image on a virtual plane of the optical cone 22, which corresponds to the area of the infrared generating part. This means that the infrared rays will be received.

入射した赤外線は、オプチカルコーン22の内部鏡面で
反射されて、全て最終的には熱電堆の感温接合部を覆っ
ている赤外吸収層21に到達する。
The incident infrared rays are reflected by the internal mirror surface of the optical cone 22 and finally reach the infrared absorbing layer 21 covering the temperature-sensitive junction of the thermopile.

このような構成にすれば、赤外吸収層での赤外線ははソ
均一に分布するので、面内不均一の欠点を解決すること
ができる。
With such a configuration, the infrared rays in the infrared absorption layer are distributed uniformly, so that the drawback of in-plane non-uniformity can be solved.

しかし余分なオプチカルコーン22を採用しなければな
らず、これは検出部の寸法増大につながる。更に赤外結
像面が犬きくなるので、光学設計にも大きな影響を与え
る。即ち、同一分解能を達成しようとすれば、結像面が
大きいほど焦点距離の長い光学系が必要となり、同一の
明るさを達成しようとすれば、口径の大きな集光系が必
要となる。
However, an extra optical cone 22 must be employed, which increases the size of the detection section. Furthermore, since the infrared imaging surface becomes narrower, it also has a significant impact on optical design. That is, if the same resolution is to be achieved, the larger the imaging plane is, the longer the focal length optical system is required, and if the same brightness is to be achieved, a condensing system with a larger aperture is required.

発明の目的 本発明は、熱電堆型赤外検出素子における面内感度不均
一性を解消し、オプチカルコーン等の光学設計上の制約
となるようなti/2成をとらずに、赤外照射17+1
積計dl11か可能な熱電堆型赤外検出素子を実現する
ことを目的とする。
Purpose of the Invention The present invention eliminates in-plane sensitivity non-uniformity in a thermopile-type infrared detection element, and enables infrared irradiation without using a ti/2 configuration that would be a constraint on optical design such as an optical cone. 17+1
The purpose of this invention is to realize a thermopile-type infrared detection element capable of increasing the integration value dl11.

発明の構成 本発明は基板薄膜上に二種類の細状金属薄層が交互にそ
の両端が重なるように直列に配列され、その接合部が1
つおきに感温接合部に基準接合部に分離配置され、感温
接合部上に電気、熱的絶縁層、熱的良伝導層および赤外
吸収層を順次配列した熱電堆型赤外検出素子である。
Structure of the Invention The present invention is characterized in that two types of thin metal thin layers are arranged in series on a substrate thin film so that their ends overlap with each other, and the joint portion is one.
A thermopile-type infrared detection element, which is arranged separately in a reference junction at every temperature-sensitive junction, and has an electrical, thermal insulating layer, a thermally conductive layer, and an infrared absorbing layer arranged in sequence on the temperature-sensitive junction. It is.

実施例の説明 以下本発明の実施例について図面とともに詳細に説明す
る。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明による熱電堆型赤外検出素子の実施例を第3図(
a)、 (b)に示す。耐熱性有機フィルムなどの基板
薄膜34上に二種類の金属薄層の感温接合部36上に電
気的、熱的絶縁層39が配置され、その上に熱的良伝導
層4oが配置さyt、更にその上に赤外吸収層33が配
置さ八ている。赤外吸収層33での熱吸収による昇m1
−現象は、熱的良伝2、す層40と熱的絶縁層39を介
して感+71A接合部36に伝わるので、熱的良伝導層
40面内で感温接合部36の1ピンチ分に相当する部分
が均一温度分布になった状態で、熱的絶縁層39を経由
して、感温接合部36配列に到達する。従って、このよ
うな均一昇温作用によ!7感〃1(接合部36の不連続
P1゜を補って、面内感度の均一な〃(電離型赤外検出
素子が実現できる。
An embodiment of the thermopile type infrared detection element according to the present invention is shown in FIG.
Shown in a) and (b). An electrically and thermally insulating layer 39 is disposed on a temperature-sensitive junction 36 of two types of metal thin layers on a substrate thin film 34 such as a heat-resistant organic film, and a thermally conductive layer 4o is disposed thereon. Furthermore, an infrared absorbing layer 33 is arranged thereon. Increase m1 due to heat absorption in the infrared absorption layer 33
- The phenomenon is transmitted to the thermally conductive layer 40 and the thermally insulating layer 39 to the sensitive +71A junction 36, so that the phenomenon is transmitted to the thermally conductive layer 40 by one pinch of the thermally conductive junction 36. The temperature-sensitive junctions 36 are reached via the thermal insulating layer 39 in a state where the corresponding portions have a uniform temperature distribution. Therefore, due to this uniform temperature rising effect! 7. Sensation 1 (By compensating for the discontinuity P1 degree of the joint 36, uniform in-plane sensitivity can be achieved.) An ionization type infrared detection element can be realized.

次に具体的実施例について説明する。第3図において、
二種類の金属はビスマスとアンチモンとし、基板薄膜3
4は厚さ15μmのカプトンフィルムとし、支持台35
/′i鋼ブロツク、信号取出電極38は金の蒸着膜とす
る。
Next, specific examples will be described. In Figure 3,
The two metals are bismuth and antimony, and the substrate thin film 3
4 is a Kapton film with a thickness of 15 μm, and a support stand 35
/'i The steel block and the signal extraction electrode 38 are made of a vapor-deposited gold film.

ビスマスとアンチモンは蒸着膜で薄層を形成し、感温接
合部36の寸法は80μm×80μm・隣接する感温接
合部36との間隔は20μmとする。
Bismuth and antimony are deposited to form a thin layer, and the dimensions of the temperature-sensitive junction 36 are 80 μm×80 μm, and the distance between adjacent temperature-sensitive junctions 36 is 20 μm.

従って、感温接合部3らは0.1mmに1ケの割合で並
び、その個数は30ケである。感温接合部36と基準接
合部37との間隔はI Ellで基準接合部37の寸法
は180μmxisoμmとする。
Therefore, the temperature-sensitive joints 3 are arranged at a ratio of one per 0.1 mm, and the number thereof is 30. The distance between the temperature-sensitive junction 36 and the reference junction 37 is Iell, and the dimensions of the reference junction 37 are 180 μm x iso μm.

感温接合部36の配列面上に、熱絶縁層39として寸法
0.1 mll×3.0.MM×o−016nlllt
ノポリスチレン膜を塗布する。溶剤を乾燥により除去し
、固化したあと、同一面上に熱的良伝導層40古して金
蒸着膜(厚さ1μm)を重ね、更にその上に赤外吸収層
33としてカーボン微粉をバインダーで混ぜた黒化膜を
塗布する。
A thermal insulating layer 39 with dimensions of 0.1 ml×3.0. MM×o-016nllllt
Apply nopolystyrene film. After the solvent is removed by drying and solidified, a thermally conductive layer (40 layers) and a gold vapor deposited film (thickness: 1 μm) are layered on the same surface, and on top of that, fine carbon powder is applied as an infrared absorbing layer (33) with a binder. Apply the mixed blackening film.

このようにして製作されたβJ5電堆電界型赤外検出素
子入射赤外線を黒化膜で効率良く吸収し、その熱吸収に
より赤外照射部分は昇温する。次に金蒸着膜により、赤
外吸収熱は横方向に金蒸着膜内を熱伝導で拡がると同時
に、基板薄膜方向にも同様に熱伝導で拡がりビスマス/
アンチモンの感θ1.′。
The βJ5 electric field type infrared detection element manufactured in this manner efficiently absorbs incident infrared rays with the blackened film, and the temperature of the infrared irradiated portion rises due to the heat absorption. Next, due to the gold evaporation film, the infrared absorbed heat spreads laterally within the gold evaporation film by thermal conduction, and at the same time, it also spreads in the direction of the substrate thin film by thermal conduction.
Feeling of antimony θ1. '.

接合部の温度を上昇させることになる。This will increase the temperature of the joint.

ここで、横方向の熱伝導と厚さ方向の熱伝導の熱時定数
を見積ると次のようになる。
Here, the thermal time constants of lateral heat conduction and thickness direction heat conduction are estimated as follows.

τ1−Hρl/λ=0.24 m5ec    (1)
ここで、 比熱   H=0.2 cal /(gf、 de、9
 )熱伝導率 λ= 150 a2Le/(mm、Hr
、 de、9)密度   p = 0.029 f 7
81m拡散距離 l = 0.05 Iron拡散距離
eは感温接合部36の、]νびのくりかえし間隔のIA
とした。即ち、赤外照射部から両方向へ熱が拡がる(0
・05 #n X 2方向)現象に関する熱時定数を求
めた。
τ1−Hρl/λ=0.24 m5ec (1)
Here, specific heat H=0.2 cal/(gf, de, 9
) Thermal conductivity λ = 150 a2Le/(mm, Hr
, de, 9) Density p = 0.029 f 7
81m diffusion distance l = 0.05 Iron diffusion distance e is the IA of the repetition interval of ]ν of the temperature-sensitive junction 36
And so. That is, heat spreads in both directions from the infrared irradiation part (0
・05 #n x 2 directions) The thermal time constant related to the phenomenon was determined.

厚さ方向の熱伝導については、はとんど熱絶縁層39の
熱伝導で決まるので、次のように計算できる。
The heat conduction in the thickness direction is mostly determined by the heat conduction of the thermal insulating layer 39, so it can be calculated as follows.

T2 =Hpg/λ=0.8m5ec       (
2+ここで 比PA    H=0.2 cal/ (jlf−de
g)熱伝導率 λ= 0.2 ca l/(my、 H
r、 deg)密a、    p = 1X 1o ’
 9f/my’拡散距離 1=o、016朋 拡散距離lは、熱絶縁層の厚さである。これて、赤外吸
収熱が、感温接合部に達する現象における熱時定数を算
出できた。
T2 = Hpg/λ = 0.8m5ec (
2+Here ratio PA H=0.2 cal/ (jlf-de
g) Thermal conductivity λ = 0.2 cal/(my, H
r, deg) density a, p = 1X 1o'
9f/my' Diffusion distance 1=o, 016 The diffusion distance l is the thickness of the thermal insulation layer. In this way, we were able to calculate the thermal time constant for the phenomenon in which infrared absorbed heat reaches the temperature-sensitive junction.

両者を比較すると、横方向への熱拡散が厚さ方向の0.
3倍の熱時定数であり、それだけ短時間に赤外吸収熱が
均一化することがわかる1、ここで、熱絶縁層39の厚
さを増せば、均一性は良くなるが、そi″Lは赤外検出
器としての熱時定数を太きくし、かつ熱容量増大のため
赤外感度低下を招くので、赤外検出器の特性を総合的に
考え     j□ると6μm〜60μmが適切な条件
である。本実施例は、この範囲に入っている。
Comparing the two, it can be seen that the thermal diffusion in the lateral direction is 0.0% in the thickness direction.
It can be seen that the thermal time constant is three times as large, and that the infrared absorbed heat becomes uniform in a short time.1 Here, if the thickness of the thermal insulating layer 39 is increased, the uniformity will be improved, but Since L increases the thermal time constant of an infrared detector and causes a decrease in infrared sensitivity due to an increase in heat capacity, considering the characteristics of the infrared detector comprehensively, 6 μm to 60 μm is an appropriate condition. This embodiment falls within this range.

横方向への均一化という点ては、感温接合部が密に配列
していれば、(1)式のeが小さくなり、熱時定数が短
縮される。従って、本発明の目的を達するのに必要な条
件として、実施例で説明した0、1間ピッチがその限界
条件で、これより間隔が粗くなると、面内感度均−性に
直接形F、!が現われてくる。
In terms of uniformity in the lateral direction, if the temperature-sensitive junctions are densely arranged, e in equation (1) will become smaller and the thermal time constant will be shortened. Therefore, as a necessary condition to achieve the object of the present invention, the pitch between 0 and 1 explained in the embodiment is the limit condition, and if the pitch becomes coarser than this, the in-plane sensitivity uniformity will directly change. appears.

又、熱伝導性薄層40については、金属性で容易に製作
可能なアルミニウム蒸着膜、金蒸着膜を用いるとはマそ
の熱伝導率は1s o cal/(mm。
Further, as for the thermally conductive thin layer 40, it would be better to use an aluminum vapor-deposited film or a gold vapor-deposited film, which are metallic and easily manufactured, but the thermal conductivity is 1 s o cal/(mm).

Hr、de、9)以上であり、この数値を用いて設計し
た熱電堆型赤外線検出器は、製作技術上も何らの困難が
なく実現可能である。
Hr, de, 9) or more, and a thermopile-type infrared detector designed using this value can be realized without any difficulties in manufacturing technology.

曲の実施例吉して、赤外吸収層を全黒蒸沼膜とし、その
他は既述の通りとする例をあげることができる。全黒は
、窒素90係水素1o%の混合ガス1〜S Torr中
で金を厚さ約1μm蒸着することによって得られる。
As an example of the music, an example can be given in which the infrared absorbing layer is made of a completely black vapor film, and the other parts are as described above. Full black is obtained by depositing gold to a thickness of about 1 μm in a gas mixture of 90% nitrogen and 10% hydrogen at 1 to S Torr.

発明の効果 以上のように、本発明は二種類の金属層の接合部上に電
気的、熱的絶縁層と熱的良伝導層を介して赤外吸収層を
形成した熱電堆型赤外検出素子て。
Effects of the Invention As described above, the present invention provides a thermopile type infrared detector in which an infrared absorbing layer is formed on the joint of two types of metal layers via an electrically and thermally insulating layer and a thermally conductive layer. Motoko.

熱電堆型赤外検出素子の面内感度を均一にする効果があ
り、実施例では、感度のバラツキは±0.1%であった
This has the effect of making the in-plane sensitivity of the thermopile type infrared detection element uniform, and in the example, the variation in sensitivity was ±0.1%.

これにより、オプチカルコーンのような集光器は不要と
なり、結像寸法も3閂におさえることができ、小型の光
学系設計が可能となる。
This eliminates the need for a condenser such as an optical cone, reduces the imaging size to three bars, and enables a compact optical system design.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、 (blは、従来の熱電堆型赤外線検出
素子の一例を示ず平面図及びそのA−A’断面図、第2
図はオプチカルコーンを用いた従来の熱電堆型赤外線検
出素子の実施例を示す断面側面図、第3図(al、 (
b)は、本発明による熱電堆型赤外検出素子の構成を示
す平面図及びその人−人′断面図である。 IT 2+ 311 32・・・・・金机薄層、3.2
1;33・・・・・・赤外吸収層、4,34・・・・・
・基板薄膜、5゜35・・・・・・基板薄膜支持台、6
,36・・・・・・感温接合部、7,37・・・・・・
基準接合部、8,38・・・・・・信号取出し電極、2
2・川・・オプチヵルコ−7,39・・・・・・電気的
・熱的絶縁層、40・・・・・・熱的良伝−1li層。
Figure 1 (al, (bl) shows an example of a conventional thermopile-type infrared detection element;
The figure is a cross-sectional side view showing an example of a conventional thermopile-type infrared detection element using an optical cone;
b) is a plan view and a person-to-person sectional view showing the configuration of a thermopile type infrared detection element according to the present invention. IT 2+ 311 32... Kinki thin layer, 3.2
1; 33... Infrared absorbing layer, 4, 34...
・Substrate thin film, 5°35...Substrate thin film support, 6
, 36... Temperature-sensitive junction, 7, 37...
Reference junction, 8, 38...Signal extraction electrode, 2
2. River... Optical Co-7, 39... Electrical/thermal insulating layer, 40... Thermal good conduction-1li layer.

Claims (5)

【特許請求の範囲】[Claims] (1)基板薄膜上に二種類の金属薄層が交互にその両端
が重なるように直列に配置され、前記二種類の金属層の
接合部がひとつおきに、感温接合部と基準接合部に分離
配置されており、前記感温接合部配列上に、電気的、熱
的絶縁層、熱的良伝導層および赤外吸収層を順次重畳し
て配置されていることを特徴とする熱電堆型赤外検出素
子。
(1) Two types of metal thin layers are alternately arranged in series on a substrate thin film so that their ends overlap, and every other joint between the two types of metal layers is connected to a temperature-sensitive junction and a reference junction. A thermopile type, characterized in that the thermoelectric stack type is arranged separately, and an electrically and thermally insulating layer, a thermally conductive layer, and an infrared absorbing layer are sequentially superimposed on the temperature-sensitive junction array. Infrared detection element.
(2)二種類の金属薄層により形成された感温接合部が
0.1mm以下のピッチ間隔で並んでいることを特徴と
する特許請求の範囲第1項記載の熱電堆型赤外検出素子
(2) The thermopile-type infrared detection element according to claim 1, characterized in that the temperature-sensitive junctions formed by two types of metal thin layers are arranged at a pitch interval of 0.1 mm or less. .
(3)電気的・熱的絶縁層の厚さが5μm〜50μmで
あることを特徴とする特許請求の範囲第1項記載の熱電
堆型赤外検出素子。
(3) The thermopile-type infrared detection element according to claim 1, wherein the electrically/thermal insulating layer has a thickness of 5 μm to 50 μm.
(4)熱的良伝導層の熱伝導度が150cal/(mm
.Hr.deg)であることを特徴とする特許請求の範
囲第1項記載の熱電堆型赤外検出素子。
(4) The thermal conductivity of the thermally conductive layer is 150 cal/(mm)
.. Hr. The thermopile type infrared detection element according to claim 1, characterized in that the thermopile type infrared detection element is
(5)基板薄膜が耐熱性有機フィルムであることを特徴
とする特許請求の範囲第1項記載の熱電堆型赤外検出素
子。
(5) The thermopile-type infrared detection element according to claim 1, wherein the substrate thin film is a heat-resistant organic film.
JP59175915A 1984-08-24 1984-08-24 Thermocouple type infrared detection element Granted JPS6153530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59175915A JPS6153530A (en) 1984-08-24 1984-08-24 Thermocouple type infrared detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59175915A JPS6153530A (en) 1984-08-24 1984-08-24 Thermocouple type infrared detection element

Publications (2)

Publication Number Publication Date
JPS6153530A true JPS6153530A (en) 1986-03-17
JPH0445056B2 JPH0445056B2 (en) 1992-07-23

Family

ID=16004470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59175915A Granted JPS6153530A (en) 1984-08-24 1984-08-24 Thermocouple type infrared detection element

Country Status (1)

Country Link
JP (1) JPS6153530A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318171A (en) * 1987-06-19 1988-12-27 Seiichi Tanuma Infrared sensor
US5393351A (en) * 1993-01-13 1995-02-28 The United States Of America As Represented By The Secretary Of Commerce Multilayer film multijunction thermal converters
JP2010261908A (en) * 2009-05-11 2010-11-18 Geomatec Co Ltd Laser power sensor
CN104764535A (en) * 2015-03-13 2015-07-08 东莞捷荣技术股份有限公司 Temperature measuring device and intelligent milk bottle sleeve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318171A (en) * 1987-06-19 1988-12-27 Seiichi Tanuma Infrared sensor
US5393351A (en) * 1993-01-13 1995-02-28 The United States Of America As Represented By The Secretary Of Commerce Multilayer film multijunction thermal converters
JP2010261908A (en) * 2009-05-11 2010-11-18 Geomatec Co Ltd Laser power sensor
CN104764535A (en) * 2015-03-13 2015-07-08 东莞捷荣技术股份有限公司 Temperature measuring device and intelligent milk bottle sleeve

Also Published As

Publication number Publication date
JPH0445056B2 (en) 1992-07-23

Similar Documents

Publication Publication Date Title
JP4137196B2 (en) Infrared detector and manufacturing method thereof
US9140611B2 (en) Infrared ray detector and method of detecting infrared rays by using the same
RU2356017C2 (en) Bolometric detector, ir radiation detection device incorporating aforesaid detector and method of its production
TWI443317B (en) Photodetector
JPH09505400A (en) Infrared radiation imaging array with composite sensor forming each pixel
US7208734B2 (en) Infrared array detection device
JP5255873B2 (en) Photodetector
US9494471B2 (en) Fast response thermopile power sensor
JPH03110427A (en) Infrared detecting device based on pyroelectric material
JP4084306B2 (en) Heat flux comparator
JPS6153530A (en) Thermocouple type infrared detection element
JPH0590646A (en) Thermopile type infrared sensor and its manufacture
US3745360A (en) Radiation circuit radiation detector
JP6269612B2 (en) Radiant heat sensor
US3293082A (en) Thermo-electric device for measuring thermal radiation energy
JP2929204B2 (en) Thermopile
US11322672B2 (en) Integrated thermoelectric structure, method for manufacturing an integrated thermoelectric structure, method for operating same as a detector, thermoelectric generator and thermoelectric Peltier element
JPS6140523A (en) Thermocouple type infrared detection element
JP3775830B2 (en) Infrared detector
JP2001041818A (en) Bolometer type infrared ray detection element and infrared ray image sensor using the same
US3866046A (en) Device for digital detection of optical radiation
JP2011018689A (en) Laminate structure for thermoelectric conversion, thermoelectric conversion element, infrared sensor and method for manufacturing the laminate structure for thermoelectric conversion
JPS5922502Y2 (en) molar irradiance meter
JP3824075B2 (en) Radiation detector
JP2564939Y2 (en) Thermopile infrared detector