JPS6152900B2 - - Google Patents

Info

Publication number
JPS6152900B2
JPS6152900B2 JP55131469A JP13146980A JPS6152900B2 JP S6152900 B2 JPS6152900 B2 JP S6152900B2 JP 55131469 A JP55131469 A JP 55131469A JP 13146980 A JP13146980 A JP 13146980A JP S6152900 B2 JPS6152900 B2 JP S6152900B2
Authority
JP
Japan
Prior art keywords
heat
heat exchange
heat medium
pipe
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55131469A
Other languages
Japanese (ja)
Other versions
JPS5758024A (en
Inventor
Tadashi Hanaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Misawa Homes Co Ltd
Original Assignee
Misawa Homes Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Misawa Homes Co Ltd filed Critical Misawa Homes Co Ltd
Priority to JP55131469A priority Critical patent/JPS5758024A/en
Publication of JPS5758024A publication Critical patent/JPS5758024A/en
Publication of JPS6152900B2 publication Critical patent/JPS6152900B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 本発明は地中蓄熱装置に関し、特に地中に設置
される熱交換器の設置構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an underground heat storage device, and particularly to an installation structure for a heat exchanger installed underground.

近年、太陽熱等を回収して熱媒体を介して地中
に蓄熱し、該蓄熱された熱を適時利用する地中蓄
熱装置の一般家庭用としての実用化が検討されて
いるが、地中に熱媒体が通流する熱交換器を設置
する場合に種々の問題点があつた。
In recent years, the practical application of underground thermal storage devices for general household use, which collects solar heat, stores it underground via a heat medium, and uses the stored heat in a timely manner, has been considered. Various problems have arisen when installing a heat exchanger through which a heat medium flows.

即ち、従来の一般的な工法によれば、床下にあ
たる地面を適当な深さ例えば1.5〜2m(深く配管
するほど蓄熱量及び蓄熱期間を大きくすることが
できる。)掘削し、そこに熱交換器としてのパイ
プを蛇行させて敷き詰めた後、土を埋め戻すので
あるが、この工法では土の移動量が大となり、蓄
しく工事費が嵩む。また、配管後の埋め戻し作業
後、土の圧着沈下が発生し、掘削した面上への家
屋の建設が可能になるまで時間を要す。
That is, according to the conventional general construction method, the ground beneath the floor is excavated to an appropriate depth, for example, 1.5 to 2 m (the deeper the piping, the greater the heat storage amount and heat storage period), and the heat exchanger is installed there. After the pipes are laid in a meandering manner, they are backfilled with soil, but this construction method requires a large amount of soil to be moved, which increases construction costs. Furthermore, after backfilling after piping, the soil presses and settles, and it takes time until it is possible to construct a house on the excavated surface.

そこで特開昭50−161049号公報に示されるよう
に、地中蓄熱用の熱交換器を、内筒を熱媒体往き
側、外筒を熱媒体還り側とした2重構造で直状の
パイプ状部材により熱交換パイプとして形成し、
この熱交換パイプを多数本地中に対しその深さ方
向に挿入して設置するようにしたものがある。
Therefore, as shown in Japanese Patent Application Laid-open No. 50-161049, a heat exchanger for underground heat storage is a straight pipe with a double structure, with an inner cylinder on the heat medium sending side and an outer cylinder on the heat medium return side. Formed as a heat exchange pipe by a shaped member,
Some heat exchange pipes are installed by inserting a large number of these heat exchange pipes into the ground in the direction of its depth.

しかしながら、このものでは多数の熱交換パイ
プをすべて平行にして鉛直方向に挿入して設置し
ていたため、施工面積を更に小さくして、土地を
有効利用する点などから見ると尚改善の余地があ
り、また熱交換パイプ間の配管を効率良く1箇所
に集中させることができないものであつた。
However, in this system, a large number of heat exchange pipes were all placed in parallel and inserted vertically, so there is still room for improvement in terms of further reducing the construction area and making effective use of the land. Moreover, it was not possible to efficiently concentrate the piping between the heat exchange pipes in one place.

本発明は、このような従来の問題点を解決する
ためになされたもので、2重構造の直状のパイプ
状部材よりなる多数の熱交換パイプのうち1本を
鉛直方向に配設し、その他を前記1本の熱交換パ
イプの上端部付近を同一の頂点として底面が同心
円状をなす複数の円錐体の母線上に軸線を配して
配設し、熱媒体供給管を前記1本の熱交換パイプ
の上端部の熱媒体入口部に接続し、その上端部の
熱媒体出口部をギヤラリを介して内円側の熱交換
パイプ群の上端部の熱媒体入口部に接続し、内円
側の熱交換パイプ群の上端部の熱媒体出口部をギ
ヤラリを介して外円側の熱交換パイプ群の上端部
の熱媒体入口部に接続し、外円側の熱交換パイプ
群の上端部の熱媒体出口部をギヤラリを介して熱
媒体戻し管に接続するようにしたものである。
The present invention was made in order to solve such conventional problems, and one of the many heat exchange pipes made of straight pipe-shaped members with a double structure is arranged in the vertical direction, The other heat medium supply pipes are arranged with their axes on the generatrix lines of a plurality of cones whose bottom surfaces are concentric with the same apex near the upper end of the one heat exchange pipe, and the heat medium supply pipe is connected to the one heat exchange pipe. Connect the heat medium inlet at the upper end of the heat exchange pipe, and connect the heat medium outlet at the upper end to the heat medium inlet at the upper end of the group of heat exchange pipes on the inner circle side through a gear. The heat medium outlet part of the upper end of the heat exchange pipe group on the side is connected to the heat medium inlet part of the upper end of the heat exchange pipe group on the outer circle side through a gear, and the upper end of the heat exchange pipe group on the outer circle side The heat medium outlet portion of the heat medium is connected to the heat medium return pipe via a gear.

以下に本発明を図示の一実施例に基づいて説明
する。
The present invention will be explained below based on an illustrated embodiment.

第1図は本発明に係る地中蓄熱装置を備えた家
屋のモデルを示したもので、家屋の屋根部に太陽
熱回収用の空気層1が形成され、その中央部にヒ
ートポンプ2の蒸発器3が設置されている。従つ
て、夏、秋期には空気層1の空気が暖められてそ
の熱が蒸発器3にて奪われ、凝縮器4にて放熱さ
れて熱交換器5を介して熱媒体に伝えられる。こ
の熱媒体の熱は直接利用し得ると共に、床下にお
いて地中に挿入された熱交換パイプ6にて地中に
蓄熱される。また、冬、春期にはヒートポンプ2
から熱交換器5を介して熱媒体に伝えられる熱量
は少なくなるが、不足分は地中に蓄熱されていた
熱が熱交換パイプ6を介して放出されることによ
り補充され、これにより十分な熱が利用できる。
FIG. 1 shows a model of a house equipped with an underground heat storage device according to the present invention, in which an air layer 1 for solar heat recovery is formed on the roof of the house, and an evaporator 3 of a heat pump 2 is located in the center of the air layer 1. is installed. Therefore, in summer and autumn, the air in the air layer 1 is heated, and the heat is removed by the evaporator 3, radiated by the condenser 4, and transferred to the heat medium via the heat exchanger 5. The heat of this heat medium can be used directly and is also stored underground through a heat exchange pipe 6 inserted underground under the floor. In addition, heat pump 2 is installed in winter and spring.
The amount of heat transferred to the heat medium through the heat exchanger 5 decreases, but the shortage is made up by the heat stored in the ground being released through the heat exchange pipe 6. Heat is available.

ここで、熱交換パイプ6は、直状に形成された
ものを複数本使用し、それぞれ地中にその深さ方
向に挿入して設置するが、上端部付近を同一の頂
点として円錐放射形状に配設する。詳しくは、中
央部に真直ぐに挿入された熱交換パイプ6−1を
中心とし、その周辺に熱交換パイプ6−1の上端
部付近を同一の頂点とし底面が同心円状をなす2
つの円錐体の母線上に軸線を配して熱交換パイプ
6−2群(内円側)及び6−3群(外円側)を円
錐放射形状に設置してある。尚、地中への挿入に
際しては、アースドリルにより孔をあけた後、そ
の孔に挿入する。また、これらの熱交換パイプ6
は上端部にて熱媒体循環回路のヘツダー7により
適宜連絡させてあり、前記熱交換器5からの熱媒
体がヘツダー7を経てこれらの熱交換パイプ6へ
流れた後、ヘツダー7からポンプ8により熱交換
器5へ戻るようにしてある。
Here, a plurality of straight heat exchange pipes 6 are used, each of which is inserted into the ground in the depth direction, and is installed in a conical radial shape with the same apex near the upper end. Arrange. Specifically, the heat exchange pipe 6-1 inserted straight into the center is the center, and around the heat exchange pipe 6-1, the upper end of the heat exchange pipe 6-1 is the same apex, and the bottom surface is concentric circles.
The heat exchange pipes 6-2 group (inner circle side) and 6-3 group (outer circle side) are arranged in a conical radial shape with their axes on the generatrix of the two cones. In addition, when inserting into the ground, after drilling a hole with an earth drill, insert it into the hole. In addition, these heat exchange pipes 6
are appropriately connected at the upper end by a header 7 of a heat medium circulation circuit, and after the heat medium from the heat exchanger 5 flows through the header 7 to these heat exchange pipes 6, it is transferred from the header 7 by a pump 8. It is arranged to return to the heat exchanger 5.

また、前記熱交換パイプ6の構造例について第
2図を参照して説明すれば、熱交換パイプ6は、
下端部が開放された発泡プラスチツク等の断熱性
の高い材料からなる内筒11と、この内筒11を
囲繞する下端部が閉塞された伝熱性の高い材料か
らなる外筒12とにより2重構造となつている。
そして、外筒12の上端部にはキヤツプ13が接
着され、このキヤツプ13に内筒11の上端部と
連通する入口部14と、外筒12と内筒11との
間の流路に開口する出口部15とが形成されてい
る。尚、外筒12とその周囲の土壌との間には必
要に応じコンクリート16を流し込んで両者の密
着性を高めるとよい。
Further, an example of the structure of the heat exchange pipe 6 will be described with reference to FIG.
It has a double structure with an inner cylinder 11 made of a highly insulating material such as foamed plastic with an open bottom end, and an outer cylinder 12 surrounding this inner cylinder 11 and made of a highly heat conductive material with a closed bottom end. It is becoming.
A cap 13 is bonded to the upper end of the outer cylinder 12, and the cap 13 has an inlet 14 that communicates with the upper end of the inner cylinder 11 and an opening into the flow path between the outer cylinder 12 and the inner cylinder 11. An outlet portion 15 is formed. Incidentally, if necessary, concrete 16 may be poured between the outer cylinder 12 and the surrounding soil to improve the adhesion between the two.

さらに、このような2重構造の熱交換パイプ6
は、前述のように複数重の円錐放射形状に地中に
挿入された状態で、第3図に配管例を示すよう
に、前記熱交換器5からの熱媒体供給管21を中
応部の熱交換パイプ6−1の入口部14に接続
し、その出口部15を連絡管22を介して環状の
ギヤラリ23に接続する。そして、このギヤラリ
23を連絡管24を介して熱交換パイプ6−2群
の各入口部14に接続し、それらの各出口部15
を連絡管25を介して環状のギヤラリ26に接続
する。そして、このギヤラリ26を連絡管27を
介して熱交換パイプ6−3群の各入口部14に接
続し、それらの各出口部15を連絡管28を介し
て環状のギヤラリ29に接続する。そして、この
ギヤラリ29に熱媒体戻し管30を接続し、前記
ポンプ8を介して前記熱交換器5につなげてあ
る。従つて、前記ヘツダー7は、熱媒体供給管2
1、連絡管22,24,25,27,28、ギヤ
ラリ23,26,29及び熱媒体戻し管30を含
んで構成される。尚、地表面には必要に応じて断
熱材31を敷設する。
Furthermore, such a double structure heat exchange pipe 6
As described above, the heat medium supply pipe 21 from the heat exchanger 5 is inserted into the ground in a multiple conical radial shape, as shown in FIG. It is connected to the inlet part 14 of the heat exchange pipe 6-1, and its outlet part 15 is connected to the annular gear gallery 23 via the communication pipe 22. Then, this gear rally 23 is connected to each inlet portion 14 of the heat exchange pipe 6-2 group through a communication pipe 24, and each of the outlet portions 15 of the heat exchange pipe 6-2 group is connected to the
is connected to an annular gear 26 via a connecting pipe 25. This gear assembly 26 is connected to each inlet section 14 of the heat exchange pipe 6-3 group through a communication pipe 27, and each outlet section 15 thereof is connected to an annular gear assembly 29 via a communication pipe 28. A heat medium return pipe 30 is connected to this gear gallery 29 and connected to the heat exchanger 5 via the pump 8. Therefore, the header 7 is connected to the heat medium supply pipe 2.
1, communication pipes 22, 24, 25, 27, 28, gears 23, 26, 29, and a heat medium return pipe 30. Incidentally, a heat insulating material 31 is laid on the ground surface as necessary.

かくして、熱媒体戻し管30の途中に介装した
前記ポンプ8の作用により、前記熱交換器5から
の熱媒体(例えば不凍液を混入したブライン)は
熱媒体供給管21から中央部の熱交換パイプ6−
1へ流れた後、連絡管22、ギヤラリ23、連絡
管24を経て熱交換パイプ6−2群へ流れ、さら
に連絡管25、ギヤラリ26、連絡管27を経て
熱交換パイプ6−3群へ流れる。そしてさらに連
絡管28、ギヤラリ29を経て熱媒体戻し管30
より前記熱交換器5に戻される。尚、この熱媒体
は熱媒体供給管21の途中より適時取出して使用
可能である。
Thus, by the action of the pump 8 interposed in the middle of the heat medium return pipe 30, the heat medium (for example, brine mixed with antifreeze) from the heat exchanger 5 is transferred from the heat medium supply pipe 21 to the central heat exchange pipe. 6-
1, flows to the heat exchange pipe 6-2 group via the communication pipe 22, geararry 23, and communication pipe 24, and further flows to the heat exchange pipe 6-3 group via the communication pipe 25, geararry 26, and communication pipe 27. . Further, the heat medium return pipe 30 passes through the communication pipe 28 and the gear gallery 29.
It is then returned to the heat exchanger 5. Note that this heat medium can be taken out from the middle of the heat medium supply pipe 21 and used.

各熱交換パイプ6において、熱媒体は入口部1
4から流入して断熱材からなる内筒11内の流路
を流下し、その下端部の開放口より外筒12内に
解放され、外筒12と内筒11との間に形成され
る流路を上昇する。そして、この上昇過程で熱媒
体は外筒12を介して周囲の土壌と熱交換、即ち
熱媒体の熱を土壌に与えて蓄熱又は該蓄熱された
熱を熱媒体により吸収し、出口部から流出する。
ここで、外筒12と内筒11との間に形成される
流路の断面積は内筒11内の流路の断面積より十
分に大きく、外筒12と内筒11との間を上昇す
る熱媒体の流速は著しく遅くなるので、これによ
り伝熱時間が大となつて熱交換効率が向上する。
また、表面積の大きな外筒12を介して熱交換が
行われるので、伝熱面積も大きく、これによつて
も熱交換効率が向上する。尚、外筒12の断面形
状は円形に限らず、多角形、星形などにして伝熱
面積をより大きくするようにしてもよい。従つ
て、熱交換パイプ6はそれほど長さを長くしなく
ても済む。
In each heat exchange pipe 6, the heat medium is at the inlet 1
4, flows down the flow path in the inner cylinder 11 made of a heat insulating material, is released into the outer cylinder 12 from the opening at the lower end, and is formed between the outer cylinder 12 and the inner cylinder 11. Rise up the road. During this rising process, the heat medium exchanges heat with the surrounding soil through the outer cylinder 12, that is, the heat of the heat medium is given to the soil to store heat, or the stored heat is absorbed by the heat medium and flows out from the outlet. do.
Here, the cross-sectional area of the flow path formed between the outer cylinder 12 and the inner cylinder 11 is sufficiently larger than the cross-sectional area of the flow path within the inner cylinder 11, and the flow path between the outer cylinder 12 and the inner cylinder 11 is Since the flow rate of the heating medium is significantly reduced, the heat transfer time is increased and the heat exchange efficiency is improved.
Further, since heat exchange is performed through the outer cylinder 12 having a large surface area, the heat transfer area is also large, which also improves the heat exchange efficiency. Note that the cross-sectional shape of the outer cylinder 12 is not limited to a circular shape, but may be polygonal, star-shaped, or the like to further increase the heat transfer area. Therefore, the heat exchange pipe 6 does not need to be very long.

以上説明したように本発明によれば、地中蓄熱
用の熱交換器を直状の熱交換パイプとして形成
し、地中に対しその深さ方向に挿入するようにし
たため、簡単に施工できて工事費を低減すること
ができると共に、家屋等の基礎材の接する地盤を
破壊しないで済むという効果が得られる他、多数
の熱交換パイプを上端部付近を頂点として円錐放
射形状に配設するようにしたため、施工面積が小
さくて済み、土地を有効利用できると共に、アー
スドリル使用時等の作業性が良いという効果が得
られる。また、熱交換パイプ間の配管(ヘツダ
ー)を1箇所に集中させることができるという効
果も得られる。
As explained above, according to the present invention, the heat exchanger for underground heat storage is formed as a straight heat exchange pipe and is inserted into the ground in the depth direction, so it can be easily constructed. In addition to being able to reduce construction costs and avoid destroying the ground that the foundation materials of houses and other buildings are in contact with, it is also possible to arrange a large number of heat exchange pipes in a conical radial shape with the apex near the upper end. As a result, the construction area is small, land can be used effectively, and workability is improved when using an earth drill. Moreover, the effect that the piping (header) between the heat exchange pipes can be concentrated in one place can also be obtained.

また、多数の熱交換パイプを複数の円錐体母線
上に配してあるので、外円側で囲まれた区域内は
熱の分布上からはバランスよく蓄熱することがで
きる。すなわち、一重円ではパイプ周囲しか蓄熱
できず、その囲まれた中心部は配設円が大きいほ
ど蓄熱されにくくなつてしまうからである。
Further, since a large number of heat exchange pipes are arranged on a plurality of cone generating lines, heat can be stored in a well-balanced manner in terms of heat distribution within the area surrounded by the outer circle. That is, in a single circle, heat can be stored only around the pipe, and the larger the circle is, the harder it is to store heat in the enclosed center.

更に、熱媒体を中央の熱交換パイプに流通させ
次いで内円側から外円側の熱交換パイプへと流通
させるようにしてあるので、1回の循環で複数の
熱交換パイプにより地中との熱交換がなされると
共に、外円側での蓄熱量は他の地中部との温度差
が著しく大きくない程度の量分になり、従つて熱
拡散(放散)率を低下し得て、より有効な蓄熱
(温・冷熱共)ができる。
Furthermore, since the heat medium is made to flow through the central heat exchange pipe and then from the inner circle side to the outer circle side heat exchange pipes, it is possible to connect underground with multiple heat exchange pipes in one circulation. As heat is exchanged, the amount of heat stored on the outer ring side is such that the temperature difference with other underground parts is not significantly large, and therefore the heat diffusion (dissipation) rate can be lowered, making it more effective. It can store heat (both hot and cold).

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示し、第1図は本発明
に係る地中蓄熱装置を備えた家屋のモデルを示す
概略図、第2図は熱交換パイプの構造例を示す断
面図、第3図は熱交換パイプ間の配管例を示す断
面図である。 1……空気層、2……ヒートポンプ、3……蒸
発器、4……凝縮器、5……熱交換器、6,6―
1,6―2,6―3……熱交換パイプ、7……ヘ
ツダー、11……内筒、12……外筒、14……
入口部、15……出口部、21……熱媒体供給
管、23,26,29……ギヤラリ、30……熱
媒体戻し管。
The figures show one embodiment of the present invention, and Fig. 1 is a schematic diagram showing a model of a house equipped with an underground heat storage device according to the present invention. Fig. 2 is a sectional view showing an example of the structure of a heat exchange pipe. FIG. 3 is a sectional view showing an example of piping between heat exchange pipes. 1...Air layer, 2...Heat pump, 3...Evaporator, 4...Condenser, 5...Heat exchanger, 6,6-
1, 6-2, 6-3... Heat exchange pipe, 7... Header, 11... Inner cylinder, 12... Outer cylinder, 14...
Inlet part, 15... Outlet part, 21... Heat medium supply pipe, 23, 26, 29... Gear gallery, 30... Heat medium return pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 地中蓄熱用の熱交換器を、内筒を熱媒体往き
側、外筒を熱媒体還り側とした2重構造で直状の
パイプ状部材により熱交換パイプとして形成し、
この熱交換パイプを多数本地中に対しその深さ方
向に挿入して設置し、熱媒体を流通せしめて地中
に蓄熱するようにした地中蓄熱装置において前記
多数の熱交換パイプのうち1本を鉛直方向に配設
し、その他を前記1本の熱交換パイプの上端部付
近を同一の頂点として底面が同心円状をなす複数
の円錐体の母線上に軸線を配して配設し、熱媒体
供給管を前記1本の熱交換パイプの上端部の熱媒
体入口部に接続し、その上端部の熱媒体出口部を
ギヤラリを介して内円側の熱交換パイプ群の上端
部の熱媒体入口部に接続し、内円側の熱交換パイ
プ群の上端部の熱媒体出口部をギヤラリを介して
外円側の熱交換パイプ群の上端部の熱媒体入口部
に接続し、外円側の熱交換パイプ群の上端部の熱
媒体出口部をギヤラリを介して熱媒体戻し管に接
続したことを特徴とする地中蓄熱装置。
1. A heat exchanger for underground heat storage is formed as a heat exchange pipe by a straight pipe-shaped member with a double structure, with an inner cylinder on the heat medium sending side and an outer cylinder on the heat medium return side,
In an underground heat storage device in which a large number of these heat exchange pipes are inserted into the ground in the depth direction, and a heat medium is circulated to store heat underground, one of the heat exchange pipes is installed. are arranged in the vertical direction, and the others are arranged with their axes on the generatrix lines of a plurality of cones whose bottom surfaces are concentric circles with the same apex near the upper end of the one heat exchange pipe. The medium supply pipe is connected to the heat medium inlet at the upper end of the one heat exchange pipe, and the heat medium outlet at the upper end is connected to the heat medium at the upper end of the group of heat exchange pipes on the inner circle side through the gear. The heat medium outlet at the upper end of the heat exchange pipe group on the inner circle side is connected to the heat medium inlet at the upper end of the heat exchange pipe group on the outer circle side via a gear; An underground heat storage device characterized in that a heat medium outlet portion at an upper end of a group of heat exchange pipes is connected to a heat medium return pipe via a gear.
JP55131469A 1980-09-24 1980-09-24 Underground heat accumulating device Granted JPS5758024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55131469A JPS5758024A (en) 1980-09-24 1980-09-24 Underground heat accumulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55131469A JPS5758024A (en) 1980-09-24 1980-09-24 Underground heat accumulating device

Publications (2)

Publication Number Publication Date
JPS5758024A JPS5758024A (en) 1982-04-07
JPS6152900B2 true JPS6152900B2 (en) 1986-11-15

Family

ID=15058684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55131469A Granted JPS5758024A (en) 1980-09-24 1980-09-24 Underground heat accumulating device

Country Status (1)

Country Link
JP (1) JPS5758024A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030680Y2 (en) * 1982-04-16 1985-09-13 サンウェ−ブ工業株式会社 underground heat exchanger
JPS59131854A (en) * 1983-01-17 1984-07-28 Misawa Homes Co Ltd Heat exchanger
GB2450754B8 (en) * 2007-07-06 2013-02-06 Greenfield Energy Ltd Geothermal energy system and method of operation
GB2450755B (en) 2007-07-06 2012-02-29 Greenfield Energy Ltd Geothermal energy system and method of operation
GB2461029B (en) 2008-06-16 2011-10-26 Greenfield Energy Ltd Thermal energy system and method of operation
GB2488797A (en) 2011-03-08 2012-09-12 Greenfield Master Ipco Ltd Thermal Energy System and Method of Operation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134264A (en) * 1979-03-30 1980-10-18 Schmidt Paul Heat pump facility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134264A (en) * 1979-03-30 1980-10-18 Schmidt Paul Heat pump facility

Also Published As

Publication number Publication date
JPS5758024A (en) 1982-04-07

Similar Documents

Publication Publication Date Title
JP5693219B2 (en) Geothermal energy system and method of operation
CN106168418B (en) A kind of CCHP diaphram wall device and its construction method
WO2018014604A1 (en) Cast-in-place pile apparatus for combined cooling, heat and power generation and construction method therefor
CN106225269A (en) A kind of CCHP PCC stake device and preparation method thereof
WO2018014605A1 (en) Prestressed pipe pile apparatus for combined cooling, heat and power generation and manufacturing method therefor
JPS5818087A (en) Structure of heat exchanger pipe used for air conditioning system
JP5103070B2 (en) Support pile system for heat exchange for residential and architectural use using geothermal heat
EP3118558B1 (en) Ground heat accumulator
JPH08184063A (en) Underground heat storage device
CN205561615U (en) Ground depth of origin well energy storage exchange system land used buries heat exchange tube
JPS6152900B2 (en)
CN2830984Y (en) Vertical buried geothermal heat exchanger
CN1840984A (en) Buried reflux casing type circulating geothermal heat exchanger and use thereof
JP4609946B2 (en) Underground heat storage system and reserve water source for seasonal energy use
EP1006331A1 (en) Heat storage systems using ground heat exchangers
JP2003307353A (en) Antifreeze circulation-type device for utilizing underground heat
JPS5932728A (en) Room cooling/heating, greenhouse-cultivating and snow-sawing device utilizing underground heat
JP3438093B2 (en) Manufacturing method of building air-conditioning equipment
JPS6335327Y2 (en)
CN105651093A (en) Underground heat exchange tube for energy exchange system of ground-source deep well
CN208846521U (en) Solar cross-season accumulation of energy and earth source heat pump combined heating system
CA1166242A (en) Geothermal heat transfer
JP2700998B2 (en) Circulation type geothermal utilization equipment
JPH0417353B2 (en)
CN211782093U (en) Backfill heat exchange ground pipe for ground source heat pump