JPS6151965A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS6151965A
JPS6151965A JP59174652A JP17465284A JPS6151965A JP S6151965 A JPS6151965 A JP S6151965A JP 59174652 A JP59174652 A JP 59174652A JP 17465284 A JP17465284 A JP 17465284A JP S6151965 A JPS6151965 A JP S6151965A
Authority
JP
Japan
Prior art keywords
film
thin film
semiconductor
groove
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59174652A
Other languages
Japanese (ja)
Inventor
Mitsuru Sakamoto
充 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59174652A priority Critical patent/JPS6151965A/en
Publication of JPS6151965A publication Critical patent/JPS6151965A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To facilitate the realization of dynamic RAMs of large capacitance by obtaining the formation and structure of new information accumulated parts, by a method wherein a dielectric thin film is formed on the side surface of a groove, and a semiconductor thin film is deposited in the form of its cover, thus making this thin film as the source-drain regions of the transistor of the cell part. CONSTITUTION:The groove 103 is formed in the surface of an Si substrate 101, and is coated with a thin dielectric film 104 after removal of the mask member. After the first Si thin film 105 containing an N type effective impurity is deposited, the Si thin film other than that buried in the groove 103 is entirely removed. The second P type Si thin film 106 is deposited, and an N type Si thin film 107 is formed by selectively introducing an N type effective impurity. An interlayer insulation film 108 is formed of an insulation film such as Si oxide film of the surface. Next, the gate film 109 of a MIS transistor is formed by thermal oxidation of the surface of the Si thin film 106, resulting in the formation of a gate electrode 110. Successively, an N<+> region 112 serving as the source-drain regions of the transistor is produced by forming an interlayer film 111 and a contact hole is opened.

Description

【発明の詳細な説明】 (技術分野) 本発明は、半導体記憶装置にかかり、特に半導体を使用
してなるICメモリの情報蓄積部の構造に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a semiconductor memory device, and particularly to the structure of an information storage section of an IC memory using a semiconductor.

(従来技術) 半導体基板、特にシリコン半導体基板上に形成する集積
回路は、高集積化、大容量化の方向をたどり、写真蝕刻
技術を使用した半導体表面の微細加工技術の開発が種々
になされている。このような中にあって、ICメモリを
搭載した半導体ベレット法の縮小化の可能性及び大容量
化の可能性も(重々に追求されている。これ等の目的達
成のために、回路面からの情報蓄積方法の検討、又は製
造材料物質、情報蓄積部の構造からの拙々の情報蓄積方
法の検討が進められ、現在ダイナミックR,AMのよう
なICメそりに於いては、情報蓄積部(以下セルと称す
)を1個のトランジスタと1個の情−報蓄積餐分部で構
成するのが最も上記目的1こ適したものと考えられてい
る。該方法での情報蓄積方式では、該半6体ペレットの
大部分を占めるのは前記セル部の情報蓄積容量部面積で
ある。この理由からこの方式によるダイナミックRAM
のペレット面積の縮小化を計るためには、該情報蓄積容
量部面積を小さくすることが一番効果的となる。
(Prior Art) Integrated circuits formed on semiconductor substrates, particularly silicon semiconductor substrates, are becoming more highly integrated and have larger capacities, and various microfabrication techniques for semiconductor surfaces using photolithographic techniques have been developed. There is. Under these circumstances, the possibility of downsizing and increasing the capacity of the semiconductor pellet method equipped with IC memory is also being actively pursued. Studies are progressing on information storage methods based on manufacturing materials and the structure of the information storage section, and currently in IC systems such as dynamic R and AM, the information storage section It is considered that a cell (hereinafter referred to as a cell) consisting of one transistor and one information storage section is most suitable for the above purpose.In the information storage method in this method, The area of the information storage capacity portion of the cell portion occupies most of the half-six-body pellet.For this reason, the dynamic RAM using this method
In order to reduce the area of the pellet, it is most effective to reduce the area of the information storage capacitor.

このような理由から、平面上での単位面積轟りの容量値
を大きくする方法として、信頼性の高い薄いシリコン酸
化膜を形成する方法、誘電率の高い誘電体簿膜の形成方
法、更には、半導体基板表面に溝を掘り溝の縦側面部も
容量部とした方法等穏々の方法が提案されている。しか
しダイナミックRAMで容量が大容量化され、4メガビ
ット以上となったデバイスlこ適用できる手法は未だ確
立されていない。
For these reasons, as a method to increase the capacitance value per unit area on a plane, there are methods for forming a highly reliable thin silicon oxide film, a method for forming a dielectric film with a high dielectric constant, and a method for forming a dielectric film with a high dielectric constant. Mild methods have been proposed, such as a method in which a trench is dug in the surface of a semiconductor substrate and the vertical side surfaces of the trench are also used as a capacitive part. However, no method has yet been established that can be applied to devices in which the capacity of dynamic RAM has been increased to 4 megabits or more.

斯くなる大容量になると、1セル当りの平面積は10μ
m′以下となり、容量部のシリコン酸化膜で且つ信頼性
の高い膜の形成は不可能である。更に又、高竹電率膜の
形成iこ於いてもg電率が高いと膜中を流れる漏洩電流
が増加し易くなるという現象があり実現が容易でない。
With such a large capacity, the flat area per cell is 10μ.
m' or less, and it is impossible to form a highly reliable silicon oxide film in the capacitive part. Furthermore, even in the formation of a film with a high electrical conductivity, there is a phenomenon in which the leakage current flowing through the film tends to increase when the electrical conductivity is high, making it difficult to realize this.

最後に半導体基板表面に溝を掘り溝の縦側面部も容量部
とした手法があるが、令息に提案された該方法では、セ
ル間の分離が困難となる。これは、各セル部に形成され
た溝間の電気的耐圧が、溝間距離の縮小と共に減少し、
あるセルの溝部に蓄えたf!を報が、該セルに隣接した
他のセルの溝部にあるtq報で擾乱され易くなる。この
ため大容量ダイナミックRAMに適した新規の情報蓄積
容量部の形成が望°まれる。
Finally, there is a method in which trenches are dug in the surface of the semiconductor substrate and the vertical side surfaces of the trenches are also used as capacitors, but in this recently proposed method, it is difficult to separate cells. This is because the electrical breakdown voltage between the grooves formed in each cell part decreases as the distance between the grooves decreases.
f! stored in the groove of a certain cell. The signal is likely to be disturbed by the tq signal in the groove of another cell adjacent to the cell. Therefore, it is desired to form a new information storage capacity section suitable for large-capacity dynamic RAM.

(発明の目的) 本発明は、新規の情報蓄積部の形成及び構造を提供し、
大容量ダイナミックRAMの実現を容易にぜんとしたも
のである。
(Object of the invention) The present invention provides the formation and structure of a new information storage unit,
This makes it easy to realize a large-capacity dynamic RAM.

(発明の構成) このために本発明に於いては、セル部の情報蓄積容量部
として半導体基板表面に溝を堀り、線溝の側面部に誘電
体範膜を形成し、該誘電体薄膜を被覆する姿態に半導体
薄膜を堆積し、該半導体薄膜が、セル部のトランジスタ
のノース/ドレイン領域となるようにする。斯くして蓄
積情報に対応する電荷は該半導体薄膜内に蓄えるように
する。
(Structure of the Invention) For this purpose, in the present invention, a groove is dug in the surface of the semiconductor substrate as the information storage capacitor part of the cell part, a dielectric base film is formed on the side surface of the line groove, and the dielectric thin film is formed on the side surface of the line groove. A semiconductor thin film is deposited in such a manner as to cover the semiconductor thin film, and the semiconductor thin film becomes the north/drain region of the transistor in the cell portion. Charges corresponding to the stored information are thus stored within the semiconductor thin film.

麩(′こ又MOSトランジスタは該半導体薄膜層上に形
成する。
A MOS transistor is formed on the semiconductor thin film layer.

本方式は、前述した既存の溝堀り容量と類似したところ
があるが、次の点で大きな相違かめる。
Although this method is similar to the existing ditch digging capacity described above, there are major differences in the following points.

即ち、既存の溝堀り容量の場合には、蓄積情報に対応す
る電荷は、溝形成された半導体基板の表面領域に蓄えら
れるが、本発明に於いては、先述したように、溝側面又
は半導体基板表面の誹電体薄膜上に形成した半導体薄膜
層上に該電荷1ri:〃積される。
That is, in the case of the existing grooved capacitor, the charge corresponding to the stored information is stored in the surface area of the semiconductor substrate where the groove is formed, but in the present invention, as described above, the charge corresponding to the stored information is stored in the groove side surface or The charges 1ri are accumulated on the semiconductor thin film layer formed on the dielectric thin film on the surface of the semiconductor substrate.

(発明の効果) 本発明に於いては、かくなる構造をもつため、通常の溝
掘り構造の場合に問題となった、セル間電気的耐圧の低
下に起因するセル間分配の困難が解消される。このため
溝間距離の近接は容易となり、高密度化はより容易とな
る。
(Effects of the Invention) Since the present invention has such a structure, the difficulty in inter-cell distribution caused by a decrease in inter-cell electrical withstand voltage, which was a problem in the case of a normal grooved structure, is solved. Ru. Therefore, the distance between the grooves can be easily shortened, making it easier to increase the density.

(実施例) 次に実施例でもって本発明の詳細な説明を行う以下p型
シリコン基板にセルを構成する場合について述べるが、
Lffiシリコン基板の場合でも、不純物の導冠氾が逆
になるだけで他は同様でめることに前身って言及してお
く。
(Example) Next, the present invention will be explained in detail using an example. Below, a case will be described in which a cell is constructed on a p-type silicon substrate.
It should be mentioned that even in the case of Lffi silicon substrates, everything else is the same except that the impurity capacitance is reversed.

第1図に示すように導電製がp況のシリコン基板101
表面に公知のホトレジスト技術を使ってシリコン基板表
面蝕刻用のマスク材102に窓開けを施し弓1き(光い
てプラズマガス中でのドライエッチ又は化学薬品液での
ウェットエッチで該シリコン基板表面に溝103を形成
する。斯くした後第2図に示すようにマスク材102を
蝕刻し全部除去した後、?”9103の形成されたシリ
コン基板表面に膜厚が50〜1ooofの泣いぴ電体v
104を被着する。ここで当誘電体膜104は、例えば
シリコン酸化膜等の一層の絶縁膜、又はシリコン酸化膜
/シリコンt、5化願等の二層の絶縁膜で構成さnる。
As shown in FIG. 1, a silicon substrate 101 whose conductivity is p-state
A window is made on the surface of the mask material 102 for etching the surface of the silicon substrate using a known photoresist technique. A groove 103 is formed. After this, the mask material 102 is etched and completely removed as shown in FIG.
104 is applied. Here, the dielectric film 104 is composed of a single-layer insulating film such as a silicon oxide film, or a two-layer insulating film such as a silicon oxide film/silicon film.

斯くした後第3図に示すようC(:無定形又は多結晶の
4電呈がn型の有効不純物を含有する市1のシリコン薄
膜105−3シリコン半導体浩板而に堆積後、第41に
示すようにr、i L Oa内に埋め込まれたシリコン
薄膜を残し、fl!lのシリコンrx71Aは全面除去
する。ここで埋め込まれたシリコン薄膜はシリサイド、
旨融点笠Jjiでもよい。つぎに第5図に示すようにテ
if報苺槓容に部となる領域の誘電体膜104−3残し
、油は除去す・5゜斯くしてp 4qの第2のシリコン
薄+i 106 ;2−エピタキシャル又はCVD法に
て膜厚10(JQ〜5000A堆積する。
After this, as shown in FIG. As shown, the silicon thin film embedded in r, i L Oa is left, and the silicon rx71A of fl!l is completely removed.The silicon thin film embedded here is made of silicide,
It may be the melting point Kasa Jji. Next, as shown in FIG. 5, the dielectric film 104-3 is left in the area that will become the contact area, and the oil is removed. 2 - A film thickness of 10 (JQ~5000A) is deposited by epitaxial or CVD method.

引き続いてイオン注入、熱拡散で4′厄型がn型の1効
不純物を選択的に該p型の第2のシリコン薄膜層10b
の一台す開成に尋人しrNJシリコン分膜107を形成
する。JIJr<シだ仮象n型シリコン薄膜107を公
知の蝕刻技術でエツチングし該n型シリコン溌膜107
表面1こシリコン酸化膜等の絶縁膜で層間絶縁膜108
を形成する。
Subsequently, by ion implantation and thermal diffusion, the 4' single-effect impurity, which is n-type, is selectively added to the p-type second silicon thin film layer 10b.
An RNJ silicon film 107 is formed by using one of the wafers. The virtual n-type silicon thin film 107 is etched using a known etching technique to form the n-type silicon exfoliated film 107.
An interlayer insulating film 108 is made of an insulating film such as a silicon oxide film on one surface.
form.

次に第7図に示すようにシリコン薄膜106表面を熱酸
化しr、40Sトランジスタのゲート膜109を形成し
、ポリシリコン高融点金属、クリサイド等でゲート電極
110を形成する。続いて第8図に示すように層間膜1
11を形成し、トランジスタのソース/ドレイン領域と
なる?領域112を作り、コンタクト開孔を施してアル
ミ配線113を行う。斯くして本発明のセル構造を具備
したICメモリーのセル部が構成される。
Next, as shown in FIG. 7, the surface of the silicon thin film 106 is thermally oxidized to form a gate film 109 of a 40S transistor, and a gate electrode 110 is formed of polysilicon, a high melting point metal, crystalide, or the like. Next, as shown in FIG.
11 and becomes the source/drain region of the transistor? A region 112 is created, a contact hole is formed, and an aluminum wiring 113 is formed. In this way, a cell portion of an IC memory having the cell structure of the present invention is constructed.

木刀式lこ於いては、情報の蓄積がn型シリコン?Lt
X膜107に行われるため情報電圧によって容量部の容
量値が変化する。これを防止する手法として 次に第9図乃至第12図に示す方法をとると斯くなる問
題は解消する。第9図に示すようにシリコン基板201
表面に第1の実施例の場合と同様lこ溝202を形成後
、第10図に示すように情報蓄積容量部となる領域のシ
リコン基板内に拡散用マスク材203をマスクにして選
択的にp型の不純物例えばボロンを拡散導入し、p 領
域204を溝202周辺部に形成する(第10図)。こ
こで該p 領域表面の不純物濃度は1016〜1010
20ato /(7d  と高濃度になる。斯くした後
拡散用マスク材203及び拡散時形成されたp型不純物
を含む酸化膜205を除去する。
In the wooden sword style, is the information stored in n-type silicon? Lt.
Since this is applied to the X film 107, the capacitance value of the capacitor section changes depending on the information voltage. If the method shown in FIGS. 9 to 12 is adopted as a method for preventing this, the problem will be solved. As shown in FIG. 9, a silicon substrate 201
After forming the groove 202 on the surface as in the first embodiment, selectively depositing the diffusion mask material 203 into the silicon substrate in the area that will become the information storage capacitor, as shown in FIG. A p-type impurity, such as boron, is diffused and introduced to form a p-type region 204 around the groove 202 (FIG. 10). Here, the impurity concentration on the surface of the p region is 1016 to 1010
The concentration is as high as 20ato/(7d).After this, the diffusion mask material 203 and the oxide film 205 containing p-type impurities formed during the diffusion are removed.

このようにした後、第11図に示すように先述した実施
例と同様、薄い誘電体膜206を形成し情報の蓄積され
る領域即ちn型シリコン薄膜207、MOS)ランジス
タの形成されるシリコン薄膜208、層間絶縁膜209
を設け、更にゲート膜210、ゲート電極211を形成
する。引き続いて第12図に示すように眉間膜212、
MOSトランジスタのソース/ドレイン領域となる層領
域213を作り、コンタクト開孔を施してアルミ配線2
14を行う。
After this, as shown in FIG. 11, a thin dielectric film 206 is formed in the same manner as in the previous embodiment, and an area where information is stored, that is, an n-type silicon thin film 207, a silicon thin film where MOS transistors are formed. 208, interlayer insulating film 209
A gate film 210 and a gate electrode 211 are further formed. Subsequently, as shown in FIG. 12, the glabellar membrane 212,
A layer region 213 that will become the source/drain region of the MOS transistor is created, contact holes are formed, and aluminum wiring 2 is formed.
Do step 14.

斯くして、先述した情報蓄積容量部の情報電圧による容
量値の変イヒは防止できる。これは、該情報蓄積容量部
のシリコン基板内に高濃度のpm不純物が導入されるた
め、該領域のシリコン基板の表面電圧降下がほとんど生
じなくなるためである。
In this way, the above-mentioned change in the capacitance value of the information storage capacitor section due to the information voltage can be prevented. This is because a high concentration of pm impurity is introduced into the silicon substrate of the information storage capacitor, so that almost no surface voltage drop occurs on the silicon substrate in this region.

このことについて第13図をもとに説明する。This will be explained based on FIG. 13.

同図は、p型シリコン基板301上に形成した100A
のシリコン酸化膜302上にアルミ電極303を形成し
MOSダイオードのゲート電圧VOと容量(if Cの
関係を示す。ここでCoは誘電体であるシリコン酸化膜
の単位面積当りの容量でありCdはシリコン基板表面電
圧降下による空乏層の容量で次式で表わされる。
The figure shows a 100A film formed on a p-type silicon substrate 301.
An aluminum electrode 303 is formed on the silicon oxide film 302 of the MOS diode, and the relationship between the gate voltage VO and the capacitance (if C) is shown. The capacitance of the depletion layer due to the silicon substrate surface voltage drop is expressed by the following equation.

但し、qけ紫電荷量、&siけSiの誘電率N入はp歴
不純物濃度、φSけシリコン基板表面電圧を表わす。か
くすると となる。図中A、Bの曲線はシリコン基板N人が約5 
X I Q” atoms/d、I X 10” at
om3./7の場合である。ho場合ゲー+、3圧VG
がOVと5Vで容量値Cが大きく変化するが、シリコン
基板濃度が犬さく)上るとBの様にゲート電圧;こ↓る
容量1直Cの変化は小さくなる。通常のダイナミックR
AMで使用する蓄積清報電圧は5■以下であるため、シ
リコン基板濃度が〜10 ” aiOrns /Cnl
  Tあれば、はとんど情報電圧による容量値の変化ば
みられなくなる。
However, q represents the violet charge amount, &si represents the dielectric constant of Si, N represents the p history impurity concentration, and φS represents the silicon substrate surface voltage. Thus, it becomes. The curves A and B in the figure are approximately 5
X I Q" atoms/d, I X 10" at
om3. /7 is the case. Ho case +, 3 pressure VG
The capacitance value C changes greatly between OV and 5V, but as the silicon substrate concentration increases, as shown in B, the change in the capacitance 1DC becomes smaller. normal dynamic R
Since the accumulation voltage used in AM is less than 5μ, the silicon substrate concentration is ~10” aiOrns/Cnl
If T is present, only the change in capacitance value due to the information voltage will be observed.

その他、該蓄積清報電圧による蓄積5咎量値の変化を防
止する方法としては、第9図乃至第2図に示したp 領
j或204域に相当する領域をN産Hにしてし1つこと
も有効である。値しこの場合りこは、該N型層領域に直
流の一定電圧を印加することが必要である。
In addition, as a method for preventing changes in the accumulated charge value due to the accumulated clearing voltage, the area corresponding to the p area j or the 204 area shown in FIGS. 9 to 2 is set to N output H. This is also effective. In this case, it is necessary to apply a constant DC voltage to the N-type layer region.

(発明の効果) 最後に本発明によれば、セル部に外部からアルファ線等
のイオンがおってもソフトエラーは生じない。これは、
債報蓄菫部が絶縁膜上に形成され空乏層が祇とんどない
ためである。このため本発明では、ベレット面積を犬き
くするよう;ケソフトエラ一対末が不要と7より高集積
化、犬容致化により適したものとなる。
(Effects of the Invention) Finally, according to the present invention, soft errors do not occur even if ions such as alpha rays enter the cell portion from the outside. this is,
This is because the depletion layer is formed on the insulating film and there is almost no depletion layer. For this reason, in the present invention, the bullet area is reduced; a pair of ends of the Kesoftera is unnecessary, and the present invention is more suitable for high integration and for dog-friendly use than 7.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第12図は本発明の実施例を断面図で示したも
のであり、第13図は、慣報蓄撰容量値を情報電圧の関
係を示す図でりる。 101・・・・・・シリコン基板、102・・・・・・
マスク材、103・・・・・・病、104・・・・・・
誘電体膜、105・・・・・・第1のシリコン薄膜、1
06・・・・・・第2のシリコン薄膜、107・・・・
・・nfiシリコン薄膜、108・・・・・・層間絶縁
膜、109・・・・・・ゲートJ漠、110・・・・・
・ゲ)’ui;Q、111・・・・・・層間膜、112
・・・・・・計 領域、113・・・・・・アルミ配線
、201・・・・・・シリコン基板、202・・・・・
・溝、203・・・・・・波数用マスク材、204・・
・・・・p゛88領域05・・・・・・p型不純物を含
む酸化膜、206・・・・・・誘電体膜、207・・・
・・・n型シリコン薄躾、208・・・・・・シリコン
#U、209・・・・・・層間絶g、膜、210・・・
・・・ゲート膜、211・・・・・・ゲート電極、 2
12・・・・・・J@間j換、213・・・・・・n十
領域、214・・・・・・アルミ配線、301・・・・
・・シリコン基板、302・・・・・・シリコン絃化膜
、303・・・・・・アルミしを、Vo・・・・・ゲー
ト電圧、C・・・・・・容量値、Co・−・・・シリコ
ン酸化膜8二、Ca・・・・・・空乏層の容量。 筋1図     第、51¥1 筋2し        第6図 IAり 筋4図      筋6図 心7図 第n図 第1ど図
1 to 12 are cross-sectional views of an embodiment of the present invention, and FIG. 13 is a diagram showing the relationship between the accumulated storage capacity value and the information voltage. 101...Silicon substrate, 102...
Mask material, 103...disease, 104...
Dielectric film, 105...First silicon thin film, 1
06...Second silicon thin film, 107...
...NFI silicon thin film, 108...Interlayer insulating film, 109...Gate J desert, 110...
・Ge)'ui;Q, 111... Interlayer film, 112
...Total area, 113 ... Aluminum wiring, 201 ... Silicon substrate, 202 ...
・Groove, 203... Wave number mask material, 204...
... p'88 region 05 ... oxide film containing p-type impurity, 206 ... dielectric film, 207 ...
...N-type silicon thin film, 208...Silicon #U, 209...Interlayer separation g, film, 210...
... Gate film, 211 ... Gate electrode, 2
12...J@j exchange, 213...n ten area, 214...aluminum wiring, 301...
...Silicon substrate, 302...Silicon film, 303...Aluminum film, Vo...Gate voltage, C...Capacitance value, Co...- ...Silicon oxide film 82, Ca...Capacity of depletion layer. Line 1 Figure 51¥1 Line 2 Figure 6 IA Line 4 Figure 6 Center Center Figure 7 Figure n Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)情報蓄積部の絶縁ゲート型電界効果トランジスタ
と、容量部とを含んでなる半導体記憶装置において、半
導体基板の一主面から該半導体基板内部に延在して形成
された溝の側面及び底面と該半導体基板の一主面の一部
上に積層して絶縁膜が形成され、更に該絶縁膜上と半導
体基板表面を被覆して半導体薄膜が形成され該半導体薄
膜層に上記絶縁ゲート型電界効果トランジスタが形成さ
れることを特徴とした半導体記憶装置。
(1) In a semiconductor memory device including an insulated gate field effect transistor of an information storage section and a capacitor section, a side surface of a trench formed extending from one main surface of a semiconductor substrate into the inside of the semiconductor substrate; An insulating film is laminated on the bottom surface and a part of the main surface of the semiconductor substrate, and a semiconductor thin film is formed to cover the insulating film and the surface of the semiconductor substrate, and the insulated gate type is formed on the semiconductor thin film layer. A semiconductor memory device characterized in that a field effect transistor is formed.
(2)少くとも前記溝の側面及び底面に積層した絶縁膜
した絶縁膜上に形成した半導体薄膜に有効不純物が注入
され、該絶縁膜が前記容量部の誘電体膜、半導体基板が
容量電極半導体薄膜の有効不純物を注入した領域が、情
報の電荷蓄積部となっていることを特徴とした特許請求
範囲(1)頂記載の半導体記憶装置。
(2) An effective impurity is injected into a semiconductor thin film formed on an insulating film laminated on at least the side and bottom surfaces of the groove, and the insulating film is a dielectric film of the capacitive part, and the semiconductor substrate is a capacitive electrode semiconductor. A semiconductor memory device according to claim 1, wherein the region of the thin film into which effective impurities are implanted serves as an information charge storage section.
JP59174652A 1984-08-22 1984-08-22 Semiconductor memory device Pending JPS6151965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59174652A JPS6151965A (en) 1984-08-22 1984-08-22 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59174652A JPS6151965A (en) 1984-08-22 1984-08-22 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS6151965A true JPS6151965A (en) 1986-03-14

Family

ID=15982333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59174652A Pending JPS6151965A (en) 1984-08-22 1984-08-22 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS6151965A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107571A (en) * 1980-01-30 1981-08-26 Fujitsu Ltd Semiconductor memory storage device
JPS56133866A (en) * 1980-03-21 1981-10-20 Fujitsu Ltd Manufacture of semiconductor memory
JPS58154256A (en) * 1982-03-10 1983-09-13 Hitachi Ltd Semiconductor memory and preparation thereof
JPS5982761A (en) * 1982-11-04 1984-05-12 Hitachi Ltd Semiconductor memory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107571A (en) * 1980-01-30 1981-08-26 Fujitsu Ltd Semiconductor memory storage device
JPS56133866A (en) * 1980-03-21 1981-10-20 Fujitsu Ltd Manufacture of semiconductor memory
JPS58154256A (en) * 1982-03-10 1983-09-13 Hitachi Ltd Semiconductor memory and preparation thereof
JPS5982761A (en) * 1982-11-04 1984-05-12 Hitachi Ltd Semiconductor memory

Similar Documents

Publication Publication Date Title
KR950003915B1 (en) Semiconductor integrated circuit device and manufacturing method thereof
JPH0616549B2 (en) Semiconductor integrated circuit device
JPS6187358A (en) Semiconductor memory and manufacture thereof
JPS61185965A (en) Memory cell and making thereof
JPS60152056A (en) Semiconductor memory device
US5459095A (en) Method for making capacitor for use in DRAM cell using triple layers of photoresist
JPS63310162A (en) Mis type semiconductor memory device
JPH0673368B2 (en) Semiconductor memory device and manufacturing method thereof
US7208799B2 (en) Floating body cell dynamic random access memory with optimized body geometry
JPS62259464A (en) Manufacture of semiconductor memory
JPS61108163A (en) Semiconductor memory device and manufacture thereof
JPS6151965A (en) Semiconductor memory device
EP0194682B1 (en) Semiconductor memory device
JPH0286165A (en) Semiconductor storage device and its manufacture
JPS60113461A (en) Manufacture of semiconductor device
JPS6058662A (en) Memory device for temporary storage of charge
JPH0329186B2 (en)
JPH0456160A (en) Semiconductor device
JP3234010B2 (en) Semiconductor memory device and method of manufacturing the same
JPS627152A (en) Semiconductor memory
JPS61234557A (en) Semiconductor memory device and manufacture thereof
JPS61184861A (en) Semiconductor device
JPS6254954A (en) Semiconductor memory
JPS60198770A (en) Semiconductor device
JPH0382156A (en) Semiconductor memory cell and manufacture thereof