JPS6151756B2 - - Google Patents

Info

Publication number
JPS6151756B2
JPS6151756B2 JP14108679A JP14108679A JPS6151756B2 JP S6151756 B2 JPS6151756 B2 JP S6151756B2 JP 14108679 A JP14108679 A JP 14108679A JP 14108679 A JP14108679 A JP 14108679A JP S6151756 B2 JPS6151756 B2 JP S6151756B2
Authority
JP
Japan
Prior art keywords
chamber
pallet
drive mechanism
heating chamber
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14108679A
Other languages
Japanese (ja)
Other versions
JPS5665490A (en
Inventor
Yoshihiko Kanamori
Yutaka Nakamori
Tsuneo Muranaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Mitsui Zosen KK
Original Assignee
Toshiba Corp
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Mitsui Zosen KK filed Critical Toshiba Corp
Priority to JP14108679A priority Critical patent/JPS5665490A/en
Publication of JPS5665490A publication Critical patent/JPS5665490A/en
Publication of JPS6151756B2 publication Critical patent/JPS6151756B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

【発明の詳細な説明】 本発明はマイクロ波を利用した使用済核燃料含
有溶液の再処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for reprocessing a solution containing spent nuclear fuel using microwaves.

一般に加熱乾燥機、もしくは分解炉等の加熱機
においては、ガスや電気ヒーター等を用いて熱風
を発生させ、該熱風により被加熱物中の水分を蒸
発させる方式が採られている。しかしながらかか
る加熱機においては熱風発生のため所定時間を必
要とし、被加熱物の処理時間が長くかかることと
なつていた。
Generally, in a heating device such as a heating dryer or a decomposition furnace, a method is adopted in which hot air is generated using a gas or electric heater, and the water in the heated object is evaporated by the hot air. However, such a heating machine requires a certain amount of time to generate hot air, resulting in a long processing time for the object to be heated.

かかることから、最近マイクロ波を用いた加熱
機が提案実施されている。即ち、かかるマイクロ
波加熱機は該加熱機の作動と同時にマイクロ波が
発生するよう構成され、該マイクロ波が被加熱物
内を一様に透過し、該加熱物に含まれる水や塩類
等の物質の誘電体損失のため発熱し、乾燥もしく
は熱分解されるものである。
For this reason, heating devices using microwaves have recently been proposed and implemented. That is, such a microwave heating machine is constructed so that microwaves are generated simultaneously with the operation of the heating machine, and the microwaves are uniformly transmitted through the object to be heated, thereby removing water, salts, etc. contained in the object to be heated. It generates heat due to the dielectric loss of the substance and dries or thermally decomposes.

したがつて、処理時間を大巾に短縮出来るとい
う効果を有するものではあるが、一方ではマイク
ロ波の漏れによる損失や危険性の問題から加熱室
を密閉構造としなければならなかつた。そのた
め、被加熱物が大量である場合は、該被加熱物を
加熱室内に搬入、搬出する作業が面倒となり、し
たがつて処理時間が長くかかることとなつてい
た。
Therefore, although it has the effect of greatly shortening the processing time, on the other hand, the heating chamber has to be of a sealed structure due to problems of loss and danger due to leakage of microwaves. Therefore, when there is a large amount of objects to be heated, it becomes troublesome to carry the objects into and out of the heating chamber, and therefore, the processing time becomes long.

本発明はかかる欠点を除去したマイクロ波加熱
による使用済核燃料含有溶液の再処理装置を提供
することを目的とする。
An object of the present invention is to provide an apparatus for reprocessing a solution containing spent nuclear fuel by microwave heating, which eliminates such drawbacks.

このため、本発明は、上部に複数個のマイクロ
波発生器を設けると共に底部に開口を設けた加熱
室の底部に、無端鎖チエーンで支持したパレツト
群を取付けて前記開口を該パレツト群で閉塞し、
前記加熱室の内部を蒸発室と昇温室と脱硝反応室
とに順次的に区画して、これら区画された各々の
室の上部には少なくとも1個のマイクロ波発生器
をそれぞれ位置せしめ、前記無端鎖チエーンに前
記パレツト群を一つのパレツト毎に間歇移動させ
るための駆動機構を連設し、該駆動機構の作動時
に前記複数個のマイクロ波発生器の作動を停止さ
せるための検出器を前記駆動機構に取付け、さら
に、該駆動機構の停止時に前記加熱室の外部のパ
レツトに使用済核燃料含有溶液を供給する手段を
設けてなる使用済核燃料含有溶液の再処理装置を
要旨とするものである。
Therefore, in the present invention, a group of pallets supported by an endless chain is attached to the bottom of a heating chamber having a plurality of microwave generators at the top and an opening at the bottom, and the opening is closed with the group of pallets. death,
The interior of the heating chamber is sequentially divided into an evaporation chamber, a warming chamber, and a denitrification reaction chamber, and at least one microwave generator is located above each of the divided chambers, and the endless A drive mechanism for moving the pallet group intermittently one pallet at a time is connected to the chain chain, and the detector for stopping the operation of the plurality of microwave generators when the drive mechanism is operated is driven. The gist of the present invention is to provide a reprocessing device for a solution containing spent nuclear fuel, which is attached to a mechanism and further includes means for supplying the solution containing spent nuclear fuel to a pallet outside the heating chamber when the drive mechanism is stopped.

以下図面により本発明の一実施例を説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において1は底部に開口を有する加熱室
Aを構成する壁で、上壁1′には複数個のマイク
ロ波発生器2と図示しないブロワーにより加熱室
A内の蒸気もしくは分解ガスを吸引排出するため
の排出ライン3が設けられると共に、側壁1″の
下端周囲には漏止め部材4が設けられている。こ
の漏止め部材4は第3図にその詳細を示すように
複数のスリツト状溝5を形成すると共にその厚さ
Tは後述するパレツト6の縁部7の幅Wとほゞ同
一に形成されている。
In Fig. 1, reference numeral 1 denotes a wall constituting a heating chamber A having an opening at the bottom, and an upper wall 1' includes a plurality of microwave generators 2 and a blower (not shown) to suck in steam or decomposed gas in the heating chamber A. A discharge line 3 is provided for discharging water, and a leak-proofing member 4 is provided around the lower end of the side wall 1''.This leak-proofing member 4 has a plurality of slits as shown in detail in FIG. The groove 5 is formed so that its thickness T is substantially the same as the width W of the edge 7 of the pallet 6, which will be described later.

8は無端鎖チエーン14が巻廻されたチエンホ
イールでモータの如き駆動機構9によりベルト1
0を介して駆動される。
8 is a chain wheel around which an endless chain 14 is wound, and the belt 1 is driven by a drive mechanism 9 such as a motor.
Driven through 0.

パレツト6は、第4図および第5図に示すよう
に中央部に使用済核燃料含有溶液である被加熱物
Bを収容する凹部11と縁部7が形成され。そし
てパレツト6の進行方向の前後辺縁部7′の幅
W′は両側辺縁部7″の幅Wの1/2に選定してあ
る。両側辺縁部7″の下部には長孔12を有する
支持片13が固着され、該長孔12に無端鎖チエ
ーン14の側部に設けられたピン15が挿入され
ている。この長孔12の長さlはパレツト6がチ
エーンホイール8を通過するときの距離的変化を
逃す範囲で決定される。
As shown in FIGS. 4 and 5, the pallet 6 has a recess 11 and an edge 7 formed in the center to accommodate the object to be heated B, which is a solution containing spent nuclear fuel. and the width of the front and rear edges 7' of the pallet 6 in the advancing direction.
W′ is selected to be 1/2 of the width W of both side edge portions 7″. A support piece 13 having a long hole 12 is fixed to the lower part of both side edge portions 7″, and the long hole 12 is endless. A pin 15 provided on the side of the chain chain 14 is inserted. The length l of this elongated hole 12 is determined within a range that allows for a change in distance when the pallet 6 passes through the chain wheel 8.

かかる構成により複数個のパレツト6が無端鎖
チエーン14に支持連結されパレツト群Pが形成
される。そしてこれらパレツト群Pは、第2図に
示されるように加熱室Aの底部開口を閉塞するよ
うに配置される。即ち、パレツト6の縁部7と漏
止め部材4の間隙Dを必要最少限に設定すると共
に保持部材16によりパレツト6、被加熱物B、
無端鎖チエーン14の荷重を受け、間隙Dの一定
保持とパレツト6および無端鎖チエーン14の構
造的補強を計つている。
With this configuration, a plurality of pallets 6 are supported and connected to the endless chain 14 to form a pallet group P. These pallet groups P are arranged so as to close the bottom opening of the heating chamber A, as shown in FIG. That is, the gap D between the edge 7 of the pallet 6 and the leakage prevention member 4 is set to the minimum necessary, and the holding member 16 holds the pallet 6, the object to be heated B,
Under the load of the endless chain 14, the gap D is kept constant and the pallet 6 and the endless chain 14 are structurally reinforced.

17は、駆動機構9の停止時に加熱室Aの外部
のパレツト6に使用済核燃料含有溶液を供給する
手段、すなわち図示しない貯蔵タンク等に連なる
被加熱物供給ラインであつてバルブ18を有す
る。19は駆動機構9の作動状態を検出する検出
器であつて、該検出器19の信号によりマイクロ
波発信器2およびバルブ18を操作する。即ち、
駆動機構9の停止時にマイクロ波発信器2を作動
させるとともにバルブ18を開放させるものであ
る。
Reference numeral 17 denotes means for supplying a spent nuclear fuel-containing solution to the pallet 6 outside the heating chamber A when the drive mechanism 9 is stopped, that is, a heated material supply line connected to a storage tank (not shown), etc., and has a valve 18. A detector 19 detects the operating state of the drive mechanism 9, and a signal from the detector 19 operates the microwave transmitter 2 and the valve 18. That is,
When the drive mechanism 9 is stopped, the microwave transmitter 2 is activated and the valve 18 is opened.

加熱室Aの内部は、第6図に示すように、蒸発
室A−1と昇温室A−2と脱硝反応室A−3とに
順次的に区画されており、これら区画された各々
の室の上部には少なくとも1個のマイクロ波発生
器2がそれぞれ配置されている。
As shown in Fig. 6, the inside of the heating chamber A is sequentially divided into an evaporation chamber A-1, a heating chamber A-2, and a denitrification reaction chamber A-3. At least one microwave generator 2 is arranged on top of each.

かかる構成において、一つのパレツト6の長さ
Lを間歇的に移動させるように駆動機構9を駆動
すれば、パレツト6の凹部11が漏止め部材4の
下部を通過するときこの間隙からマイクロ波が漏
れる恐れはない。
In such a configuration, if the drive mechanism 9 is driven to intermittently move the length L of one pallet 6, when the recess 11 of the pallet 6 passes the lower part of the leakage prevention member 4, microwaves will be emitted from this gap. There is no risk of leakage.

使用済核燃料を再処理する工程にウラン、プル
トニウム回収工程(転換プロセス)があり、この
一つの方法として直接脱硝法がある。この方法
は、使用済核燃料を硝酸に浸漬してウラン、プル
トニウム等を含有する硝酸溶液とし、該溶液を化
学的処理等により不純物を除去した後加熱し、熱
分解させて粉末状のウランおよびプルトニウムを
回収するものである。そしてこのウランおよびプ
ルトニウム回収工程は大別して蒸発工程、昇温工
程および脱硝反応工程に分けられる。
The process of reprocessing spent nuclear fuel includes a uranium and plutonium recovery process (conversion process), and one of these methods is the direct denitrification method. In this method, spent nuclear fuel is immersed in nitric acid to create a nitric acid solution containing uranium, plutonium, etc. After removing impurities through chemical treatment, the solution is heated and thermally decomposed to form powdered uranium and plutonium. The purpose is to collect This uranium and plutonium recovery process can be broadly divided into an evaporation process, a temperature raising process, and a denitration reaction process.

更に100gu/、100gpu/、4.6MHNO3を含
有する硝酸溶液5を加熱有効出力7.5K.W.で処
理する場合を例にとつてこれら各工程について詳
述すれば、蒸発工程においては該溶液中の約3.5
Kgと水分と約1.5Kgの硝酸分が蒸発し、約1.5Kgの
硝酸ウラニルと約1Kgの硝酸プルトニウムの結晶
が晶出する。この場合の蒸発熱量は約2000Kcal
である。
Furthermore, to explain each of these steps in detail using an example in which a nitric acid solution 5 containing 100 gpu/, 100 gpu/, and 4.6 MHNO 3 is treated with an effective heating output of 7.5 KW, in the evaporation step, about 3.5
Kg, water, and about 1.5 Kg of nitric acid evaporate, and about 1.5 Kg of uranyl nitrate and about 1 Kg of plutonium nitrate crystallize. In this case, the amount of heat of evaporation is approximately 2000Kcal
It is.

かかる状態で晶出された結晶は、昇温工程にお
いて加熱昇温され結晶粒子間の付着水あるいは結
晶水が蒸発する。この場合の熱量は約150Kcalで
ある。
The crystals crystallized in such a state are heated and heated in a temperature raising step to evaporate adhering water between crystal particles or water of crystallization. The amount of heat in this case is approximately 150Kcal.

この昇温工程を経た結晶は、脱硝反応工程にお
いて熱分解しNOxガスを放出して酸化ウラン、
酸化プルトニウムがカルメラ焼状の発泡ケークと
して生成される。この場合の熱量は約450Kcalで
ある。そして該生成物を粉砕して夫々約1Kgの粉
末状のウラン、プルトニウムが回収される。この
例における加熱室内の温度変化を示すと第7図の
とおりとなる。即ち蒸発工程は、時間的にみて全
工程の約7割強を要しかつ加熱室内温度も約120
℃程度であり、他の工程より低いものとなる。
The crystals that have undergone this temperature raising process are thermally decomposed in the denitrification reaction process, releasing NOx gas and producing uranium oxide and
Plutonium oxide is produced as a carmelite-like foam cake. The amount of heat in this case is approximately 450Kcal. The product is then crushed to recover approximately 1 kg of powdered uranium and plutonium, respectively. FIG. 7 shows the temperature change inside the heating chamber in this example. In other words, the evaporation process takes about 70% of the total process in terms of time, and the heating chamber temperature is about 120℃.
℃, which is lower than other processes.

また、マイクロ波吸収効率は、各工程における
物質の状態が異なつたものとなるために各工程
夫々異なつたものとなる。
Furthermore, the microwave absorption efficiency differs in each step because the state of the substance in each step is different.

したがつて、かかる特性を有するウラン、プル
トニウム回収工程に、第1図に示す如き内部が区
画されていない加熱室を適用すると、 (1) 硝酸溶液の蒸発工程、昇温工程、脱硝反応工
程のそれぞれの物質の性状、特に損失係数
(tanδ・εr)が異なるためマイクロ波電力吸
収にアンバランスが生じる。
Therefore, if a heating chamber with an undivided interior as shown in Figure 1 is applied to the uranium and plutonium recovery process with such characteristics, (1) the nitric acid solution evaporation process, temperature raising process, and denitrification reaction process will be Since the properties of each substance, especially the loss coefficient (tan δ·εr), are different, an imbalance occurs in microwave power absorption.

(2) かつ各工程の温度と時間の関係が任意に設定
しにくく、前段の液状のものにマイクロ波エネ
ルギーの大部分が吸収されて後段の乾燥が所望
に進行せず、良質な製品を回収することが望め
ない。
(2) Also, it is difficult to arbitrarily set the relationship between temperature and time in each process, and most of the microwave energy is absorbed by the liquid in the first stage, preventing drying in the second stage from progressing as desired, making it difficult to recover high-quality products. I can't hope to.

(3) 前記(1)が進行するとマイクロ波加熱特有のラ
ンナウエイと称する局部加熱が発生したり放電
することがあり、目的外のウラン、プルトニウ
ムの酸化物ができる可能性がある。
(3) When the above (1) progresses, local heating called runaway, which is unique to microwave heating, may occur or discharge may occur, and unintended oxides of uranium and plutonium may be formed.

などの欠点がある。There are drawbacks such as.

かかることから、本発明においては、加熱室A
内に横壁21,22を設け、該横壁21,22下
部にマイクロ波のまわり込防止部材4を固着し
て、蒸発室A−1、昇温室A−2および脱硝反応
室A−3を形成させ、各々の室に独立にマイクロ
波エネルギーを投入できるようになつている。そ
して、この蒸発室A−1、昇温室A−2および脱
硝反応室A−3の各長さH1,H2,H3は、第7図
に示されるような蒸発、昇温および脱硝反応工程
の温度となるようにマイクロ波エネルギー強度を
定める。更に、蒸発室A−1、昇温室A−2およ
び脱硝反応室A−3には各々蒸気および分解ガス
排出ラインを設けると共に、昇温室A−2、脱硝
反応室A−3には、それぞれ温度計、照度計など
の検出器23を設けている。
Therefore, in the present invention, heating chamber A
Horizontal walls 21 and 22 are provided inside, and a microwave wraparound prevention member 4 is fixed to the lower part of the horizontal walls 21 and 22 to form an evaporation chamber A-1, a heating chamber A-2, and a denitrification reaction chamber A-3. , microwave energy can be input independently to each chamber. The lengths H 1 , H 2 , and H 3 of the evaporation chamber A-1, heating chamber A-2, and denitrification reaction chamber A- 3 correspond to the evaporation, temperature raising, and denitrification reactions shown in FIG. The microwave energy intensity is determined to match the process temperature. Furthermore, steam and cracked gas discharge lines are provided in each of the evaporation chamber A-1, heating chamber A-2, and denitrification reaction chamber A-3, and temperature control A detector 23 such as a meter or an illuminance meter is provided.

この検出器23により各室内の加熱状態を検出
し、該検出器23の出力信号により、マイクロ波
電力を自動制御するようになつている。このよう
にとくに後段の昇温室A−2、脱硝反応室A−3
を独立した部室として設け、それぞれの部室の物
質に合つた最適マイクロ波電力および時間を独立
に制御投入可能にしたのが本発明の特長である。
This detector 23 detects the heating state in each room, and the microwave power is automatically controlled based on the output signal of the detector 23. In this way, especially the latter heating chamber A-2 and denitrification reaction chamber A-3
A feature of the present invention is that each chamber is provided as an independent chamber, and the optimal microwave power and time suitable for the substance in each chamber can be independently controlled.

このような装置を用いて、ウラン、プルトニウ
ム硝酸溶液のような使用済核燃料含有溶液を処理
する場合、蒸発、昇温終了後、脱硝反応工程で急
激な温度上昇をもたらすと良質な製品を得ること
ができた。この処理終了点を求めるのは温度計、
照度計などを用いて非接触状態で被加熱物よりの
輻射エネルギーを検出すれば、各バケツトに入る
被加熱物の量、性状などが変つても、いつもほゞ
同一条件で処理終了点を求めることが可能であ
る。本装置を用いて実際に前述のウラン、プルト
ニウム溶液の脱硝処理を行ない、単位重量当りの
投入マイクロ波電力量を蒸発、昇温工程より高め
て脱硝反応工程に与えて処理したところ、より良
い品質の発泡したケーク状の製品を回収すること
ができた。
When using such equipment to process spent nuclear fuel solutions such as uranium and plutonium nitric acid solutions, it is difficult to obtain high-quality products if a rapid temperature rise occurs in the denitrification reaction process after evaporation and temperature rise. was completed. The end point of this process is determined using a thermometer.
If the radiant energy from the object to be heated is detected in a non-contact manner using an illumination meter, etc., the processing end point can always be determined under almost the same conditions even if the amount and properties of the object to be heated in each bucket change. Is possible. When this device was used to actually denitrify the uranium and plutonium solutions mentioned above, the input microwave power per unit weight was higher than that of the evaporation and temperature raising processes, and the denitrification process was performed, resulting in better quality. A foamed cake-like product was recovered.

以上説明のように、本発明によれば (1) マイクロ波による加熱を行なうため従来の熱
風方式に比べて早期処理が可能となる。
As explained above, according to the present invention, (1) heating is performed using microwaves, which enables earlier treatment than in the conventional hot air method;

(2) 連続して処理出来るため被加熱物が大量に存
する場合には好適である。
(2) Since it can be processed continuously, it is suitable when there is a large amount of material to be heated.

(3) パレツトに縁部を形成し、該縁部とスリツト
状部材を必要最少限の間隙を置いて配置すると
共に、前記縁部の幅と前記スリツト状部材の幅
をほぼ同一とし、かつパレツト移動時にはマイ
クロ波の発生を停止するよう制御するためマイ
クロ波の漏れが防止出来、かつ加熱室を構成す
る下部の摩耗や破損を防止出来る。
(3) An edge is formed on the pallet, and the edge and the slit-like member are arranged with the minimum necessary gap, and the width of the edge and the width of the slit-like member are approximately the same, and the pallet is Since the generation of microwaves is controlled to be stopped during movement, leakage of microwaves can be prevented, and wear and tear on the lower part of the heating chamber can be prevented.

(4) 駆動機構9の作動状態を検出してマイクロ波
発生器2を制御するようにすれば容易に自動化
が可能となり、省力化を計ることができる。
(4) If the operating state of the drive mechanism 9 is detected and the microwave generator 2 is controlled, automation can be easily achieved and labor can be saved.

(5) 加熱室の内部が蒸発室と昇温室と脱硝反応室
とに区画され、これら各々の室の上部には少な
くとも1個のマイクロ波発生器がそれぞれ配置
されているので、使用済核燃料含有溶液をこれ
らの室で順次的に十分に加熱処理できるから、
一貫して極めて効率的に使用済核燃料含有溶液
の再処理を行うことができる。
(5) The interior of the heating chamber is divided into an evaporation chamber, a warming chamber, and a denitrification reaction chamber, and at least one microwave generator is placed above each of these chambers, so that the heating chamber containing spent nuclear fuel is Since the solution can be sufficiently heated sequentially in these chambers,
The spent nuclear fuel-containing solution can be consistently and extremely efficiently reprocessed.

(6) 使用済核燃料含有溶液を収容するパレツトが
無端鎖チエーンと一体化しているため、装置自
体をコンパクトにまとめることができるので、
装置の小型化をはかることができる。
(6) Since the pallet containing the solution containing spent nuclear fuel is integrated with the endless chain, the device itself can be made compact.
The device can be made smaller.

(7) 駆動機構の停止時に加熱室の外部のパレツト
に使用済核燃料含有溶液を供給する手段を設け
ているので、使用済核燃料含有溶液の供給が容
易となり、これにより装置運転時の作業性を高
めることができる。
(7) Since a means is provided to supply the spent nuclear fuel containing solution to the pallet outside the heating chamber when the drive mechanism is stopped, the spent nuclear fuel containing solution can be easily supplied, thereby improving workability during equipment operation. can be increased.

(8) 駆動機構によりパレツトを間歇移動させると
共に、該駆動機構の作動時にマイクロ波発生器
の作動を停止させるため、マイクロ波の漏洩を
十分に防止できるから装置運転時の安全性の確
保が可能となる。
(8) The pallet is moved intermittently by the drive mechanism, and the microwave generator stops operating when the drive mechanism is activated, so leakage of microwaves can be sufficiently prevented, ensuring safety during equipment operation. becomes.

(9) 加熱室の内部が蒸発室と昇温室と脱硝反応室
とに区画されていて、加熱を各室内で独自に十
分に行うことができるから、均一性の高い品質
のよい回収品を得ることができる。
(9) The interior of the heating chamber is divided into an evaporation chamber, a warming chamber, and a denitrification reaction chamber, and each chamber can be heated independently and sufficiently, so recovered products of highly uniform quality can be obtained. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の再処理装置における加熱室の
説明図、第2図は第1図C部拡大図、第3図は第
1図E−E矢視図、第4図は本発明の再処理装置
において使用されるパレツトの一実施例の斜視
図、第5図はパレツトの支持機構の一実施例の説
明図、第6図は本発明の再処理装置の説明図、第
7図は加熱室内の温度曲線を示す説明図である。 1……壁、2……マイクロ波発生器、3……排
出ライン、4……漏止め部材、5……スリツト状
溝、6……パレツト、7……縁部、8……チエー
ンホイール、9……駆動機構、10……ベルト、
11……パレツト凹部、12……長穴、13……
支持部材、14……無端鎖チエーン、15……ピ
ン、16……保持部材、17……被加熱物供給ラ
イン、18……バルブ、19……検出器、21,
22……横壁、23……検知器、A……加熱室、
A−1……蒸発室、A−2……昇温室、A−3…
…脱硝反応室、B……被加熱物。
FIG. 1 is an explanatory diagram of the heating chamber in the reprocessing apparatus of the present invention, FIG. 2 is an enlarged view of section C in FIG. A perspective view of an embodiment of a pallet used in a reprocessing device, FIG. 5 is an explanatory diagram of an embodiment of a pallet support mechanism, FIG. 6 is an explanatory diagram of the reprocessing device of the present invention, and FIG. It is an explanatory view showing a temperature curve inside a heating chamber. DESCRIPTION OF SYMBOLS 1...Wall, 2...Microwave generator, 3...Discharge line, 4...Leakproof member, 5...Slit-shaped groove, 6...Pallet, 7...Edge, 8...Chain wheel, 9... Drive mechanism, 10... Belt,
11...Pallet recess, 12...Elongated hole, 13...
Support member, 14...Endless chain, 15...Pin, 16...Holding member, 17...Heated object supply line, 18...Valve, 19...Detector, 21,
22... Side wall, 23... Detector, A... Heating chamber,
A-1...Evaporation chamber, A-2...Heating chamber, A-3...
...Denitrification reaction chamber, B...Object to be heated.

Claims (1)

【特許請求の範囲】[Claims] 1 上部に複数個のマイクロ波発生器を設けると
共に底部に開口を設けた加熱室の底部に、無端鎖
チエーンで支持したパレツト群を取付けて前記開
口を該パレツト群で閉塞し、前記加熱室の内部を
蒸発室と昇温室と脱硝反応室とに順次的に区画し
て、これら区画された各々の室の上部には少なく
とも1個のマイクロ波発生器をそれぞれ位置せし
め、前記無端鎖チエーンに前記パレツト群を一つ
のパレツト毎に間歇移動させるための駆動機構を
連設し、該駆動機構の作動時に前記複数個のマイ
クロ波発生器の作動を停止させるための検出器を
前記駆動機構に取付け、さらに、該駆動機構の停
止時に前記加熱室の外部のパレツトに使用済核燃
料含有溶液を供給する手段を設けてなる使用済核
燃料含有溶液の再処理装置。
1. Attach a group of pallets supported by an endless chain to the bottom of a heating chamber, which has a plurality of microwave generators at the top and an opening at the bottom, and close the opening with the group of pallets. The interior is sequentially divided into an evaporation chamber, a warming chamber, and a denitrification reaction chamber, and at least one microwave generator is located above each of these divided chambers, and the endless chain is connected to the a drive mechanism for moving the pallet group intermittently one pallet at a time, and a detector for stopping the operation of the plurality of microwave generators when the drive mechanism is activated is attached to the drive mechanism; The apparatus for reprocessing a solution containing spent nuclear fuel further comprises means for supplying the solution containing spent nuclear fuel to a pallet outside the heating chamber when the drive mechanism is stopped.
JP14108679A 1979-10-31 1979-10-31 Microwave continuous heating machine and control mechanism therefor Granted JPS5665490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14108679A JPS5665490A (en) 1979-10-31 1979-10-31 Microwave continuous heating machine and control mechanism therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14108679A JPS5665490A (en) 1979-10-31 1979-10-31 Microwave continuous heating machine and control mechanism therefor

Publications (2)

Publication Number Publication Date
JPS5665490A JPS5665490A (en) 1981-06-03
JPS6151756B2 true JPS6151756B2 (en) 1986-11-10

Family

ID=15283872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14108679A Granted JPS5665490A (en) 1979-10-31 1979-10-31 Microwave continuous heating machine and control mechanism therefor

Country Status (1)

Country Link
JP (1) JPS5665490A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607903A (en) * 1983-06-28 1985-01-16 Kobe Steel Ltd Separation by crystallization
JPS6325491U (en) * 1986-07-31 1988-02-19

Also Published As

Publication number Publication date
JPS5665490A (en) 1981-06-03

Similar Documents

Publication Publication Date Title
US4444723A (en) Denitration systems
US4393671A (en) Apparatus for dyeing fiber by utilizing microwaves
JPS6317494B2 (en)
JPS5825860A (en) Method and device for heating of casting
JPS6279394A (en) Microwave heating denitrating method and device
JPS6151756B2 (en)
JP2798856B2 (en) Continuous denitration equipment
US5278379A (en) Continuous denitration apparatus which uses microwave heating
DE3574367D1 (en) Process and apparatus for the treatment of sewage sludge
JPS6046399B2 (en) Incineration treatment method for radioactive waste ion exchange resin, etc.
JPS594431A (en) Fluidized bed reactor by microwave heating
JPS5823337B2 (en) conversion device
EP0364209A1 (en) Method of dissolving spent nuclear fuel
JPS56145105A (en) Apparatus for thermal denitration of metal nitrate
JPS5930653B2 (en) Microwave heating denitrification equipment
JPS623369Y2 (en)
JPS6218485B2 (en)
JPS58128140A (en) Reacting device with fluidized bed by microwave heating
JPS6218486B2 (en)
RU15070U1 (en) MICROWAVE
US3709999A (en) Vacuum induction heat treatment of long tubular products
SU1597160A2 (en) Fruit blanching device
JPH0339019B2 (en)
JPS5451969A (en) Method of removing nox in exhaust gas
JPS5921525A (en) Denitrating apparatus