JPS6151603B2 - - Google Patents

Info

Publication number
JPS6151603B2
JPS6151603B2 JP55165334A JP16533480A JPS6151603B2 JP S6151603 B2 JPS6151603 B2 JP S6151603B2 JP 55165334 A JP55165334 A JP 55165334A JP 16533480 A JP16533480 A JP 16533480A JP S6151603 B2 JPS6151603 B2 JP S6151603B2
Authority
JP
Japan
Prior art keywords
blowing
lance
furnace
tuyere
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55165334A
Other languages
Japanese (ja)
Other versions
JPS5789415A (en
Inventor
Akya Ozeki
Teruyuki Hasegawa
Yoichi Nimura
Kenzo Yamada
Tsutomu Usui
Konoshin Tamura
Toshio Edane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP16533480A priority Critical patent/JPS5789415A/en
Publication of JPS5789415A publication Critical patent/JPS5789415A/en
Publication of JPS6151603B2 publication Critical patent/JPS6151603B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は上吹き酸素ランスから酸素を吹込む
と共に、炉底より撹拌ガスを吹込む上下吹錬法に
関する。 近年転炉が大型化するに伴い上吹きランスから
吹込まれるO2ジエツトだけでは溶鋼の撹拌が十
分に行われず、そのため反応が遅れるという問題
が生じてきている。この点を解決するために炉底
に羽口を設けて、この羽口より撹拌ガスを吹込
み、これにより溶鋼の撹拌及び反応の促進を図つ
た上下吹錬法が行われるようになつてきている。 この上下吹錬法において、O2の上吹きは従前
の上吹き吹錬法によるものをそのまま行つている
のが現状であり、上下吹錬法における独自のO2
上吹き法はまだ開発、提案されていない。 すなわち、上吹き吹錬では鋼浴の撹拌を上吹き
O2ジエツトだけで行つているため、O2ジエツト
の鋼浴への侵入深さが鋼浴の深さの60〜90%必要
とされ、O2ジエツトの鋼浴面の垂線のなす角度
(以下O2ジジエツト角度とする)は通常小さく設
定されており、上下吹錬法においてもこれがその
まま踏襲されている。 現在上下吹錬において用いられている該O2
エツト角度を各規模の転炉について下表に示す。
なお、O2ジエツト角度は以下ランスノズルのス
ロートの中心線と鋼溶面の垂線のなす角度(以下
スロート角度とする)として表わす。
This invention relates to a top-bottom blowing method in which oxygen is blown from a top-blowing oxygen lance and stirring gas is blown from the bottom of the furnace. In recent years, as converters have become larger, the problem has arisen that the O 2 jet blown from the top blowing lance alone is not sufficient to stir the molten steel, resulting in delayed reactions. In order to solve this problem, the top-bottom blowing method, in which a tuyere is installed at the bottom of the furnace and stirring gas is blown into the tuyere to promote stirring and reaction of the molten steel, has come to be used. There is. In this top-bottom blowing method, the O 2 top-blowing is currently carried out in the same manner as the previous top-blowing method;
The top blowing method has not yet been developed or proposed. In other words, in top blowing, the stirring of the steel bath is
Since this is done using only an O 2 jet, the penetration depth of the O 2 jet into the steel bath is required to be 60 to 90% of the depth of the steel bath, and the angle formed by the perpendicular to the steel bath surface of the O 2 jet (hereinafter referred to as The O 2 jet angle) is normally set small, and this is followed in the top-bottom blowing method as well. The O 2 jet angles currently used in top and bottom blowing are shown in the table below for converters of various sizes.
The O 2 jet angle is hereinafter expressed as the angle between the center line of the throat of the lance nozzle and the perpendicular to the steel melting surface (hereinafter referred to as the throat angle).

【表】 しかし、本発明者らは上下吹錬法の経験を重ね
るうちに、このような従前の上吹き吹錬における
ランスノズルのスロート角度をそのまま適用する
と、主として生石灰等の副原料の初期の滓化が遅
れ、高炭素材の脱リングが悪化する傾向にあると
いう問題に直面した。これを第1図のグラフに示
す。各プロツトは次の通りである。 △……上下吹錬法の場合のスラグ塩基度 ▲……上吹き吹錬法の場合のスラグ塩基度 〇……上下吹錬法の場合の鋼中〔P〕% ●……上吹き吹錬法の場合の鋼中〔P〕% このグラフからわかるように吹錬初期において
は、スラグ塩基度及び溶鋼中〔P〕%ともに上下
吹錬法が劣つている。 この発明は上記したような従来の上下吹錬法の
欠点を改善するために種々の試験、研究を重ねた
結果なされたもので、ランスノズルのスロート角
度を特定な値にすることにより滓化の促進及び脱
リンの促進を図ろうとするものである。 本発明者らは、実炉及び水モデル等による実験
の結果、次のような知見を得た。まず上下吹錬に
おいて滓化の遅れや脱リンの悪化が生ずるのは、
第2図に示すように炉底に設けられた羽口3から
吹込まれる撹拌ガスにより、溶鋼4に矢印のよう
な流れが形成され、スラグ5は炉体1の炉壁周囲
に滞留し、スラグ5がO2ジエツト6による火点
外にあるためである。次に上下吹錬においては浴
鋼の撹拌は炉底羽口よりの底吹きガスにより十分
に達成されており、上吹きランスAは溶銑中への
酸素供給及びスラグの生成の役割りを分担してい
るだけである。 本発明者らは、このような知見に基づき本発明
を完成したもので、ランスノズルのスロート角度
を従来の上吹き吹錬の場合よりも拡げ、O2ジエ
ツトがスラグに効果的に当たるように前記スロー
トの最高角度を上吹きランス位置、鋼浴湯面の位
置、炉底羽口位置及び炉内径との関係において求
めたものである。 即ち、本発明による上下吹錬において、上吹き
ランスノズルのスロート角度θは次の条件を満た
すべく設定される。 d<(H+l)・tanθ<D ここで、d、H、l及びDは第3図に示すよう
に定義される。即ち、 H:ランスノズル2の下端から溶鋼4の湯面まで
の距離。 l:ランスノズル2の下端からランスノズルのス
ロート20の中心線20aとランスノズルの中
心線2aとの交点までの距離。 D:炉体中心1aから炉体の内壁10までの距
離。 d:炉体中心1aから羽口3までの距離。 ここで、d<(H+l)・tanθとしたのは、(H
+l)・tanθdであると、O2ジエツト6の火
点が羽口3位置より炉中心側となり、スラグ5が
炉壁周囲に滞留して撹拌が促進されないためであ
る。この条件を満たす具体的な数値としては一般
的にθ12°好ましくはθ15゜である。 次に(H+l)・tanθ<Dとしたのは、(H+
l)・tanθDであると、O2ジエツト6が炉体
の内壁10に当たり、炉体の耐火物のO2ジエツ
トによる溶損が助長されるためである。 次に実施例を示す。 実施例 180TON転炉を用いて本発明による上下吹錬と
従来法による上下吹錬とを行つた。副原料等の使
用量は従来法及び本発明法全く同様とした。各寸
法は次の通りであつた。 H:2000mm l:550mm D:2200mm d:500mm これを本発明の条件式に代入すると、 500<2550・tanθ<2200 が得られる。 本発明方法においてはθ=25゜、従来法におい
てはθ=6゜とした。 この結果を下掲第2表に示す。
[Table] However, as the inventors have accumulated experience with the top-bottom blowing method, we have found that if the throat angle of the lance nozzle used in the conventional top-blowing method is applied as is, the initial The problem faced was that slag formation was delayed and deringing of high carbon materials tended to worsen. This is shown in the graph of FIG. Each plot is as follows. △...Slag basicity in the case of the top-bottom blowing method▲...Slag basicity in the case of the top-blowing method〇......[P]% in steel in the case of the top-bottom blowing method ●...Slag basicity in the case of the top-bottom blowing method As can be seen from this graph, in the early stage of blowing, the top-bottom blowing method is inferior in both slag basicity and [P]% in molten steel. This invention was made as a result of various tests and studies to improve the shortcomings of the conventional top-bottom blowing method as described above, and it is possible to prevent slag formation by setting the throat angle of the lance nozzle to a specific value. The aim is to promote dephosphorization and dephosphorization. The present inventors obtained the following knowledge as a result of experiments using an actual reactor, a water model, etc. First of all, the reason for the delay in slag formation and worsening of dephosphorization in upper and lower blowing is that
As shown in FIG. 2, the stirring gas blown in from the tuyere 3 provided at the bottom of the furnace forms a flow in the molten steel 4 as shown by the arrow, and the slag 5 stays around the furnace wall of the furnace body 1. This is because the slag 5 is outside the ignition point caused by the O 2 jet 6. Next, in top-bottom blowing, agitation of the bath steel is sufficiently achieved by bottom-blowing gas from the bottom tuyere, and top-blowing lance A takes on the role of supplying oxygen into the hot metal and generating slag. It's just that. The present inventors completed the present invention based on such knowledge, and the throat angle of the lance nozzle was made wider than in the case of conventional top-blowing, and the O 2 jet was made to hit the slag effectively. The maximum throat angle was determined in relation to the top blow lance position, the steel bath surface position, the furnace bottom tuyere position, and the furnace inner diameter. That is, in the top-bottom blowing according to the present invention, the throat angle θ of the top-blowing lance nozzle is set to satisfy the following condition. d<(H+l)・tanθ<D Here, d, H, l, and D are defined as shown in FIG. That is, H: distance from the lower end of the lance nozzle 2 to the surface of the molten steel 4. l: Distance from the lower end of the lance nozzle 2 to the intersection of the center line 20a of the throat 20 of the lance nozzle and the center line 2a of the lance nozzle. D: Distance from the center 1a of the furnace body to the inner wall 10 of the furnace body. d: Distance from the center 1a of the furnace body to the tuyere 3. Here, d<(H+l)・tanθ is set as (H
+l)·tanθd, the fire point of the O 2 jet 6 will be closer to the furnace center than the tuyere 3 position, and the slag 5 will stay around the furnace wall and stirring will not be promoted. A specific value that satisfies this condition is generally θ12°, preferably θ15°. Next, we set (H+l)・tanθ<D because (H+
This is because, if l)·tan θD, the O 2 jet 6 hits the inner wall 10 of the furnace body, and the melting of the refractory of the furnace body by the O 2 jet is promoted. Next, examples will be shown. Example A 180 TON converter was used to perform top and bottom blowing according to the present invention and top and bottom blowing according to the conventional method. The amounts of auxiliary raw materials used were exactly the same as in the conventional method and the present invention method. Each dimension was as follows. H: 2000mm l: 550mm D: 2200mm d: 500mm Substituting this into the conditional expression of the present invention yields 500<2550·tanθ<2200. In the method of the present invention, θ=25°, and in the conventional method, θ=6°. The results are shown in Table 2 below.

【表】 上掲表からわかるように、本発明方法の場合、
0.26%の終点〔C〕であつても〔P〕レベルは従
来の0.045%に比較し、0.022%まで低下し良好な
結果を示している。
[Table] As can be seen from the above table, in the case of the method of the present invention,
Even at the end point [C] of 0.26%, the [P] level was reduced to 0.022% compared to the conventional 0.045%, showing good results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吹錬時間とスラグ塩基度及び溶鋼中
〔P〕との関係を示すグラフ、第2図は従来の上
下吹錬法の説明図、第3図は本発明による上下吹
錬法の説明図である。 図中、Aは上吹きランス、1は炉体、2は上吹
きランスノズル、3は炉底羽口、4は溶鋼、5は
スラグ、6はO2ジエツト、10は内壁、20は
上吹きランスノズルのスロートを各示す。
Fig. 1 is a graph showing the relationship between blowing time, slag basicity, and molten steel [P], Fig. 2 is an explanatory diagram of the conventional top-bottom blowing method, and Fig. 3 is a graph showing the top-bottom blowing method according to the present invention. It is an explanatory diagram. In the figure, A is the top blowing lance, 1 is the furnace body, 2 is the top blowing lance nozzle, 3 is the bottom tuyere, 4 is the molten steel, 5 is the slag, 6 is the O 2 jet, 10 is the inner wall, and 20 is the top blowing The throat of the lance nozzle is shown.

Claims (1)

【特許請求の範囲】 1 上吹きランスノズルよりO2ジエツトを鋼浴
に吹込むと共に、炉底に羽口を設けてこの羽口よ
り撹拌ガスを吹込む上下吹錬法において、前記上
吹きランスノズルのスロートの中心線と鋼浴面の
垂線のなす角度θが下記条件を満たすように吹錬
を行うことを特徴とする上下吹錬法。 d<(H+l)・tanθ<D 但し、 H:ランスノズル下端から鋼浴湯面までの距離。 l:ランスノズルのスロートの中心線の延長とラ
ンスの中心線の交点からランスノズル下端まで
の距離。 D:炉体中心から炉内壁までの距離。 d:炉体中心から炉底羽口までの距離。
[Scope of Claims] 1 In the top-bottom blowing method in which O 2 jet is blown into the steel bath from a top-blowing lance nozzle, and a tuyere is provided at the bottom of the furnace and stirring gas is blown from the tuyere, the above-mentioned top-blowing lance A top-down blowing method characterized by performing blowing so that the angle θ between the center line of the nozzle throat and the perpendicular to the steel bath surface satisfies the following conditions. d<(H+l)・tanθ<D However, H: Distance from the lower end of the lance nozzle to the steel bath surface. l: Distance from the intersection of the extension of the center line of the throat of the lance nozzle and the center line of the lance to the lower end of the lance nozzle. D: Distance from the center of the furnace body to the inner wall of the furnace. d: Distance from the center of the furnace body to the bottom tuyere.
JP16533480A 1980-11-26 1980-11-26 Top and bottom blowing method Granted JPS5789415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16533480A JPS5789415A (en) 1980-11-26 1980-11-26 Top and bottom blowing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16533480A JPS5789415A (en) 1980-11-26 1980-11-26 Top and bottom blowing method

Publications (2)

Publication Number Publication Date
JPS5789415A JPS5789415A (en) 1982-06-03
JPS6151603B2 true JPS6151603B2 (en) 1986-11-10

Family

ID=15810352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16533480A Granted JPS5789415A (en) 1980-11-26 1980-11-26 Top and bottom blowing method

Country Status (1)

Country Link
JP (1) JPS5789415A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334638U (en) * 1986-08-21 1988-03-05
JPH0439313U (en) * 1990-07-27 1992-04-03
JPH0514889Y2 (en) * 1986-05-15 1993-04-20

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113714A (en) * 1973-02-12 1974-10-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113714A (en) * 1973-02-12 1974-10-30

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514889Y2 (en) * 1986-05-15 1993-04-20
JPS6334638U (en) * 1986-08-21 1988-03-05
JPH0439313U (en) * 1990-07-27 1992-04-03

Also Published As

Publication number Publication date
JPS5789415A (en) 1982-06-03

Similar Documents

Publication Publication Date Title
US3701519A (en) Apparatus for the continuous refining of metals
JPS6151603B2 (en)
US4462825A (en) Method for increasing the scrap melting capability of metal refining processes
EP0060305B1 (en) Method for smelting using top-and bottom-blown converter
JP4686880B2 (en) Hot phosphorus dephosphorization method
JPH0416526B2 (en)
JPS5743919A (en) Method for blow refining in top and/or bottom-blown converter
JP2013209746A (en) Method for refining molten iron in converter type refining furnace
JP2890428B2 (en) Smelting reduction method
JPH0543924A (en) Secondary combustion blow-refining method
JPS6056009A (en) Steel making method
US4292073A (en) Steel making process
JPH1192815A (en) Converter blowing for restraining generation of dust
JPH1192814A (en) Converter blowing for restraining generation of dust
JPS6152212B2 (en)
JPH0598331A (en) Blowing operation method for oxygen converter
JPH065406Y2 (en) Converter blowing lance
JPS6154081B2 (en)
JP2627103B2 (en) Decarburization refining method of chromium-containing molten steel
JPH0469204B2 (en)
JPS6152210B2 (en)
JPH01172504A (en) Smelting reduction method for cr raw ore
JPH01129923A (en) Bottom blowing nozzle
JPH0535842U (en) Converter type metallurgical reactor
JPH01172547A (en) Smelting reduction furnace for cr material