JPS6151569A - Cell identifying device - Google Patents

Cell identifying device

Info

Publication number
JPS6151569A
JPS6151569A JP59174505A JP17450584A JPS6151569A JP S6151569 A JPS6151569 A JP S6151569A JP 59174505 A JP59174505 A JP 59174505A JP 17450584 A JP17450584 A JP 17450584A JP S6151569 A JPS6151569 A JP S6151569A
Authority
JP
Japan
Prior art keywords
fluorescence
spectral distribution
scattered light
light
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59174505A
Other languages
Japanese (ja)
Inventor
Toshio Sakane
敏夫 坂根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59174505A priority Critical patent/JPS6151569A/en
Publication of JPS6151569A publication Critical patent/JPS6151569A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To decrease noise to measuring objects of a wide range and to obtain a spectral distribution of fluorescence with high accuracy by measuring repeatedly the spectral distribution of slight fluorescence in a single flow part. CONSTITUTION:The fluorescence emitted from the cells excited by an irradiating beam Lb which is controlled in the width of the X-direction and Z-direction by a circular columnar concave lens 10 and circular columnar convex lenses 11, 12 is condensed by an optical fiber group 13. When the cells labeled by the fluorescence enter the inside of the rectangular irradiating beam Lb, the intensity of the forward scattered light and the intensity of the backward scattered light are first measured by a means for measuring the scattered light and are taken through an interface 20 into a microprocessor unit MPU21. On the other hand, a one-dimensional photosensor array 17 is repeatedly scanned and the fluorescence spectral distribution is added 19 until the cells leave the beam Lb. The fluorescence spectral data of high S/N is taken through the interface 20 into the MPU 21. The repeatedly obtd. data on the scattered light and the data on the spectral distribution of the fluorescence are analyzed in the MPU21 and the result thereof is displayed 22.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フローサイトメータ等に用いられ、蛍光剤に
よって標識された細胞を識別するだめの細胞識別装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cell identification device used in a flow cytometer or the like to identify cells labeled with a fluorescent agent.

[従来の技術] フローサイトメータとは医学分野で近年注目されている
測定装ガであり、高速で流れる細胞浮遊溶液にレーザー
ビーム等を照射し、そのnk乱先による光電信号を検出
し、細胞の性質・構造等を解明する装置である。
[Prior art] A flow cytometer is a measurement instrument that has recently attracted attention in the medical field.It irradiates a rapidly flowing cell suspension solution with a laser beam, etc., detects the photoelectric signal from the NK scattering end, and detects cells. This is a device that elucidates the properties and structure of

従来の細胞識別装置は流通部を通過しシース液に包まれ
た細胞にレーザービームを照射し、その結果生ずる前方
及び側方散乱光により、細胞の形状・大きさ・屈折率等
の粒子的性質を11)ることができる、また、1゛11
°光剤により染色され得る細胞に対しては、照射光と直
角な方向の側方散乱光から細胞の蛍光を検出することに
より、細胞解析のための重要な情報を求めることができ
る。
Conventional cell identification devices irradiate laser beams onto cells that pass through a flow section and are wrapped in sheath liquid, and the resulting forward and side scattered light is used to determine particle properties such as cell shape, size, and refractive index. 11) can be done, and 1゛11
For cells that can be stained with photoreagents, important information for cell analysis can be obtained by detecting cell fluorescence from side-scattered light in a direction perpendicular to the irradiated light.

一般的に、細胞から放射される蛍光をグイロイツクミラ
ーにより赤色と緑色の蛍光に分解し、緑色蛍光強度でデ
オキシリポ核酸(D N A)量を、赤色蛍光強度でリ
ポ核酸(RNA)量、タンパク質量を計測する。このよ
うに、従来の装置〆Lはキ11°光を赤/緑(又は赤/
青)の2色によって区別する2色法で測定し、それらの
強度及びその比、或いはこれらと前記散乱光による粒子
的性質とを組み合わせて、細胞を識別するための情報と
している。
Generally, the fluorescence emitted from cells is separated into red and green fluorescence using a gray mirror, and the green fluorescence intensity is used to determine the amount of deoxyliponucleic acid (DNA), the red fluorescence intensity is used to determine the amount of liponucleic acid (RNA), Measure the amount of protein. In this way, the conventional device 〆L converts the 11° light into red/green (or red/green).
It is measured using a two-color method that distinguishes cells by two colors (blue), and their intensities and their ratios, or a combination of these and the particle properties of the scattered light, are used as information for identifying cells.

ところで、このような測定を行う場合に、流れている細
胞に入射するレーザービームの大きさは、細胞と同程度
か或いは少し太き目にしている。つまり、細胞の流れに
昨直な方向をX方向、流れに平行な方向をZ方向とする
と、レーザービームの照射域はX方向では流通部の壁間
の凹陥よりも小さく、かつ流通部を通過中の細胞のlQ
れのゆらぎ、即ち流れの中心軸からのずれによる影響が
無視できる程度の長さ1例えば100〜200 pmに
なるようにしている。また、Z方向には通常は細胞の大
きさ程度1例えば10〜3071m、或いはスリットス
キャンニング方式の場合では細胞よりも十分小さい1〜
2kLm程度に集光するようにしている。そのために、
第1図の従来の励起光学系の構成図に示すように、2枚
の凸円柱レンズl、2を組み合わせて、流通部における
レーザービームの照射域Fを調整するようになっている
By the way, when performing such measurements, the size of the laser beam incident on the flowing cells is set to be about the same size as the cells, or a little thicker. In other words, if the direction perpendicular to the flow of cells is the X direction, and the direction parallel to the flow is the Z direction, the irradiation area of the laser beam is smaller than the depression between the walls of the flow section in the X direction, and it passes through the flow section. lQ of cells in
The length 1, for example, 100 to 200 pm is made such that the influence of fluctuations in the flow, that is, the influence of deviation from the central axis of the flow can be ignored. In addition, in the Z direction, normally the size of the cell is 1, for example, 10 to 3071 m, or in the case of the slit scanning method, the size is 1 to 3,071 m, which is sufficiently smaller than the cell.
The light is focused to about 2 kLm. for that,
As shown in the configuration diagram of a conventional excitation optical system in FIG. 1, two convex cylindrical lenses 1 and 2 are combined to adjust the irradiation area F of the laser beam in the flow section.

このような従来の2色法では、検出する蛍光の波長帯が
限られるために、対象とする細胞に適した蛍光剤が限定
される上に、多種類の細胞が混在する検出に対してはそ
の分解能が低下する。また、最近注目を集めている癌細
胞に選択的に集まるヘマトポルフィリン誘導体(HPD
)による腫瘍細胞の識別では、対象細胞によって2峰性
又は3II+¥性を示すので正確な検出が不可能となる
。更に、強い励起光には殺細胞効果があるため、励起光
強度には限界があって強い蛍光が得られないことなど幾
つかの欠点がある。
In such conventional two-color methods, the wavelength band of fluorescence to be detected is limited, which limits the number of fluorescent agents suitable for the target cells, and it is difficult to detect a mixture of many types of cells. Its resolution decreases. In addition, hematoporphyrin derivatives (HPD), which selectively gather in cancer cells, have recently attracted attention.
), accurate detection becomes impossible because the target cells exhibit bimodal or 3II+\ characteristics. Furthermore, since strong excitation light has a cell-killing effect, there is a limit to the intensity of the excitation light and there are several drawbacks, such as the inability to obtain strong fluorescence.

[発明の目的] 本発明のI−1的は、上述のような従来装置の欠点を除
去するために、流れている細胞の蛍光1111定I11
を間を長くする手段と、連続的に蛍光波長を測定する手
段とを設け、微弱蛍光の分光分布を単−流通部中で繰り
返し測定し、その結果を演算することにより雑音の少な
い精度の高い蛍光の分光分布が得られ、AI6定対象を
広範囲にできる細胞識別装置を提供することにある。
[Objective of the Invention] I-1 of the present invention is to eliminate the drawbacks of the conventional device as described above.
By providing a means for increasing the time interval and a means for continuously measuring the fluorescence wavelength, the spectral distribution of weak fluorescence is repeatedly measured in a single flow section, and the results are calculated, thereby achieving high accuracy with less noise. An object of the present invention is to provide a cell identification device that can obtain a spectral distribution of fluorescence and can target a wide range of AI6 targets.

[発明の411要] この目的を達成するための本発明の要旨は、検体に照射
する励起用光ビームの照射域の形状を、検体の流れの方
向を長辺とし流れに垂直な方向を短辺とする長方形とす
る励起手段と、検体から発する蛍光を前記長辺に沿って
律わ夕的に測光する集光手段と、該集光手段によって得
られる光の分光分布を測定する分光分布測定手段とを具
備することを特徴とする細胞識別装置である。
[411 Summary of the Invention] The gist of the present invention to achieve this object is to set the shape of the irradiation area of the excitation light beam irradiated to the specimen so that the long side is in the direction of the flow of the specimen and the short side is in the direction perpendicular to the flow. excitation means having a rectangular shape as sides; light collecting means for uniformly measuring fluorescence emitted from the specimen along the long sides; and spectral distribution measurement for measuring the spectral distribution of light obtained by the light collecting means. A cell identification device characterized by comprising: means.

[発明の実施例] 次に、本発明をft5z図以下に図示の実施例に基づい
て詳細に説明する。
[Embodiments of the Invention] Next, the present invention will be described in detail based on embodiments illustrated below with ft5z diagrams.

本発明の実施例は流れている細胞上にその流れ方向を長
手方向とする長方形の形状に集光するための励起手段、
細胞から発せられる蛍光を測定器に集光するための集光
手段、この集光手段によって集光された蛍光を測定する
ための分光分布測定手段、前方及び側方散乱光を測定す
る散乱光測定子役とから構成されている。
An embodiment of the present invention includes an excitation means for focusing light onto flowing cells in a rectangular shape whose longitudinal direction is the flow direction;
A condensing means for concentrating fluorescence emitted from cells onto a measuring device, a spectral distribution measuring means for measuring the fluorescence condensed by the condensing means, and a scattered light measurement for measuring forward and side scattered light. It is made up of child actors.

励起手段は第2図に示すように入射ビームLaと流通部
Sとの間に、Z方向の照射ビームの幅を規定する凹円柱
レンズ10と凸円柱レンズ11が光源側から順次に配列
され、更にX方向の照射ビ−1、Lbの’N+fを規ル
°するための凸円柱レンズ12が設置されている。
As shown in FIG. 2, the excitation means includes a concave cylindrical lens 10 and a convex cylindrical lens 11 that define the width of the irradiation beam in the Z direction, which are sequentially arranged from the light source side between the incident beam La and the circulation part S. Furthermore, a convex cylindrical lens 12 is installed for regulating 'N+f' of the irradiation beam 1, Lb in the X direction.

集光手段は流通部Sにおいて照射ビームしbにより励起
された細胞から発せられる蛍光を集光するために、Z方
向に並べたオプティカルファイバ群13と集光機能を有
する1本のファイバ14とから成り、ファイ/<群13
は末端で1束とされファイバ14に結合されている。
The condensing means includes a group of optical fibers 13 arranged in the Z direction and one fiber 14 having a condensing function in order to condense the fluorescence emitted from the cells excited by the irradiation beam b in the flow section S. becomes, phi/<group 13
are combined into one bundle at the end and coupled to the fiber 14.

分光分布+!III定手段は第3図に示すように、分光
W l 5、チャンネルプレートl 6 、−次元フ第
1・センサアレイ17とから構成されており、ファイバ
14は分光器15に接続され、その射出面にチャンネル
プレート16が設けられ、更に一次元フオドセンサアレ
イ17の受光面がチャンネルプレート16の出力面に接
続されている。
Spectral distribution +! As shown in FIG. 3, the III determining means is composed of a spectrometer W l 5, a channel plate l 6, and a -dimensional first sensor array 17, and the fiber 14 is connected to a spectrometer 15, and its output A channel plate 16 is provided on the surface, and a light receiving surface of a one-dimensional food sensor array 17 is connected to the output surface of the channel plate 16.

分光分布測定手段によって得られたデータを演算処理す
るために、センサアレイ17に高速アナログ・デジタル
変換器16、記憶加算装置19゜インターフェイス20
.MPU (マイクロプロセッサユニット)21、表示
装置22が順次に直列的に接り′シされている。またイ
ンターフェイス20には、前方散乱光データ部23と側
方散乱光データ部24が接続されている。
In order to process the data obtained by the spectral distribution measuring means, the sensor array 17 includes a high-speed analog-to-digital converter 16, a storage adder 19 and an interface 20.
.. An MPU (microprocessor unit) 21 and a display device 22 are sequentially connected in series. Further, a forward scattered light data section 23 and a side scattered light data section 24 are connected to the interface 20.

散乱光測定手段は第4図に示すように、流通部Sの近傍
に設置され、照射ビームLbの細胞番こより散乱された
散乱光の一部を集光するための対物レンズ25の直前と
、この対物レンズ25の焦点位置のそれぞれにリング状
スリット26.27が配置され、スリット27の直後に
受光面の小さなフォトダイオード28が配置されている
。このJull定手段は前方散乱光用と側方散乱光用に
2組用し1られ、前方散乱光の測定結果は前方散乱光デ
ータ部23に、側方散乱光による結果は側方散乱光デー
タ部24に出力される。
As shown in FIG. 4, the scattered light measuring means is installed near the flow section S, and is located immediately before an objective lens 25 for condensing a part of the scattered light scattered by the cell number of the irradiation beam Lb. Ring-shaped slits 26 and 27 are arranged at each focal point of the objective lens 25, and a photodiode 28 with a small light-receiving surface is arranged immediately after the slits 27. Two sets of this Jull determination means are used, one for forward scattered light and one for side scattered light, and the measurement results for forward scattered light are stored in the forward scattered light data section 23, and the results for side scattered light are stored in side scattered light data. It is output to section 24.

励起手段においては、照射ビームLbのZ方向の幅は円
柱レンズ10、llにより細胞流の層流が乱れない範囲
で、かつ測定に十分な長さ1例えば10mm程度のもの
とされている。X方向は円柱レンズto、ttでは入射
ビームLaと同じ幅で通過し、円柱レンズ12により従
来例と同程度の幅の約100〜200JLmのビーム幅
とされている。このように、円柱レンズ10.11,1
2を組合わせることにより、流通部Sに所定の形状の平
面波による照射ビームLbが形成される。流通部Sを通
過する細胞は、細胞流の圧力、流速、細胞濃度等を調整
することにより、照射ビームLb中をZ方向に2個以上
重なって入らないようになっている。また、照射ビーム
Lbを通過中の細胞は連続的に励起され、蛍光はほぼ定
常状態で発光されることになる。
In the excitation means, the width of the irradiation beam Lb in the Z direction is within a range where the laminar flow of the cell flow is not disturbed by the cylindrical lenses 10 and 11, and the length is sufficient for measurement, for example, about 10 mm. In the X direction, the beam passes through the cylindrical lenses to and tt with the same width as the incident beam La, and the cylindrical lens 12 makes the beam width about 100 to 200 JLm, which is about the same width as the conventional example. In this way, the cylindrical lens 10.11,1
By combining 2, an irradiation beam Lb of a plane wave having a predetermined shape is formed in the circulation portion S. By adjusting the pressure, flow rate, cell concentration, etc. of the cell flow, two or more cells passing through the flow section S are prevented from entering the irradiation beam Lb in an overlapping manner in the Z direction. Further, cells passing through the irradiation beam Lb are continuously excited, and fluorescence is emitted in a substantially steady state.

集光手段においては、オプティカルファイバ群13の個
々のファイバは、受光域が互いに重なり合うように配列
されている。即ち、励起手段と集光手段とにより、照射
ビームLb中を通過するM+1胞は、常に11光を発し
、そのイi¥光はその位置に応じたオプティカルファイ
バ群↑13の何れかのファイバで集められ、ファイバ1
4からは連続した”It光がイ1#られることになる。
In the light condensing means, the individual fibers of the optical fiber group 13 are arranged so that their light receiving areas overlap with each other. That is, due to the excitation means and the condensing means, the M+1 cell that passes through the irradiation beam Lb always emits 11 lights, and the 1 light is sent to any one of the optical fiber groups ↑13 depending on its position. collected, fiber 1
From 4 onwards, continuous "It light" will be emitted.

分光分布1111 足手段においては、分光器15で回
折された波長成分がチャンネルプレー)16の対応する
チャンネルに入射し、そこで増幅されて一次元フオドセ
ンサアレイ17の対応する画素に入力される。この一次
元フォトセンサアレイ17は高速で走査されるため、細
胞が照射ビームLb中を通過中に繰り返し分光データを
得ることができる。一次元フォトセンサアレイ17の出
力は高速アナログ・デジタル変換器18によりデジタル
量に変換され、記憶加算装置19において波長ごとに前
走査データに加算され記憶される。このように、走査ご
との各波長での信号を高速でデジタル変換して記憶して
おき走査ごとに加算すれば、微弱な蛍光であってもその
分光分布特性を高いS/N比で測定することが可能とな
る。
Spectral Distribution 1111 In the foot means, the wavelength components diffracted by the spectrometer 15 enter the corresponding channels of the channel plate 16, where they are amplified and input to the corresponding pixels of the one-dimensional food sensor array 17. Since this one-dimensional photosensor array 17 is scanned at high speed, spectral data can be repeatedly obtained while the cells are passing through the irradiation beam Lb. The output of the one-dimensional photosensor array 17 is converted into a digital quantity by a high-speed analog-to-digital converter 18, which is added to the previous scan data for each wavelength in a storage adder 19 and stored. In this way, if the signals at each wavelength for each scan are digitally converted at high speed and stored, and then added for each scan, the spectral distribution characteristics of even weak fluorescence can be measured with a high S/N ratio. becomes possible.

散乱光測定手段においては詳細な説明は省略するが、従
来と同様な0.2〜2度程度の角度の散乱光を他の影響
を受けずに測定し、散乱光データを11#ることができ
る。
Although a detailed explanation of the scattered light measurement means will be omitted, it is possible to measure scattered light at an angle of about 0.2 to 2 degrees without being influenced by other factors, and to convert the scattered light data into 11#s, similar to conventional methods. can.

照射ビームLb中の細胞の通過が終了した時点で、蛍光
データはインターフェイス20を介してMPU21に取
り込まれる。この終了時点はここでは説明しない検出手
段により、照射ビームしb[[1への細胞の出入りを検
知し、その検知信号を用いて容易に知ることができる。
When the passage of the cells in the irradiation beam Lb is completed, the fluorescence data is taken into the MPU 21 via the interface 20. This end point can be easily determined by detecting the entry and exit of cells into the irradiation beam b[[1 by a detection means not described here, and using the detection signal.

MPU21では異なるタイミングでインターフェイス2
0を介してlid乱光データt:1123.24から取
り込んだ散乱光データを、蛍光データと合わせて解析を
行い、その結果を表示装置/(22に出力する。
MPU21 uses interface 2 at different timings.
The scattered light data taken in from the lid scattered light data t: 1123.24 through 0 is analyzed together with the fluorescence data, and the results are output to the display device/(22).

以北のことをまとめると、蛍光標識された細胞が長方形
の照射ビームLb中に入ると、先ず散乱光測定手段によ
り前方散乱光強度、側方散乱光強度が7111定され、
インターフェイス20を介してMPU21に取り込まれ
る。一方、照射ビームLb中に細胞が入ったことが検知
されると蛍光分布測定が開始され、一次元フォトセンサ
アレイ17が繰り返し走査され、走査ごとに得られる蛍
光分光分布を細胞が照射ビームLbから抜は出るまで加
算する。その結果、得られた高いS/N比の蛍光分光分
布データが、インターフェイス20を介してMPU21
に取り込まれる。この一連の動作は細胞が照射ビームL
b中を通過するごとに繰り返される。MPU21では、
繰り返し得られるlid乱光データとイ1?光分光分布
データとを解析し、その結果を表示装置22に表示する
To summarize further, when a fluorescently labeled cell enters the rectangular irradiation beam Lb, the forward scattered light intensity and side scattered light intensity are first determined by the scattered light measuring means,
The data is taken into the MPU 21 via the interface 20. On the other hand, when it is detected that a cell has entered the irradiation beam Lb, fluorescence distribution measurement is started, and the one-dimensional photosensor array 17 is repeatedly scanned, and the fluorescence spectral distribution obtained for each scan is detected when the cell is exposed to the irradiation beam Lb. Add the number until it is removed. As a result, the obtained fluorescence spectral distribution data with a high S/N ratio is transmitted to the MPU 21 via the interface 20.
be taken in. This series of operations causes the cells to be exposed to the irradiated beam L.
It is repeated each time it passes through b. In MPU21,
Lid scattering data obtained repeatedly and i1? The optical spectral distribution data is analyzed and the results are displayed on the display device 22.

この装置は上述のような作用を行う励起手段と集光手段
と分光分布I!11定手段定石段ていればよく、例えば
集光手段は実施例のように、オプチカルファイバではな
くレンズにより構成することも可能である。
This device consists of an excitation means, a light condensing means, and a spectral distribution I! For example, the condensing means may be composed of a lens instead of an optical fiber as in the embodiment.

[発明の効果] 以上説明したように本発明に係る細胞識別装置は、微弱
な蛍光であっても連続的に高いS/N比で分光分布11
11定を可能としたことにより、従来の2色法による計
測結果に比較して得られる情報が飛躍的に増大し、測定
対象を広範囲にすることができ、より多種類の細胞が混
在する検体の識別が可能となり、特にHP誘導体による
腫瘍細胞の分類に好適に用いることができる。
[Effects of the Invention] As explained above, the cell identification device according to the present invention continuously analyzes the spectral distribution 11 with a high S/N ratio even with weak fluorescence.
By making it possible to measure 11 constants, the amount of information obtained is dramatically increased compared to measurement results using the conventional two-color method, and the measurement target can be expanded to a wider range, allowing samples containing a wider variety of cells to be measured. It can be used particularly for classifying tumor cells based on HP derivatives.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の励起光学系の構成図、第2図以下は本発
明に係る細胞識別装置の一実施例を示し、第2図はその
励起手段及び集光手段の構成図、第3図は分光分布AI
4定手段のブロック回路構成図、第4図はll&乱光測
定手段の構成図である。 符号10.11.12は円柱レンズ、13はオプティカ
ルファイバ群、14はファイバ、15は分光器、16は
チャンネルプレート、17は一次元フオドセンサアレイ
、18は高速アナログ・デジタル変換器、19は記憶加
算装置、20はインクフェイス、21はMPU、22は
表示装置、23は前方散乱光データ部、24は側方散乱
光データ部、425は対物レンズ、28はフォトダイオ
ードである。 特許出願人   キャノン株式会社 代 理 人 弁理士 U 比 谷 征 彦゛・1  。
FIG. 1 is a configuration diagram of a conventional excitation optical system, FIG. 2 and the following diagrams show an embodiment of the cell identification device according to the present invention, FIG. is the spectral distribution AI
FIG. 4 is a block circuit diagram of the 4 constant means, and FIG. 10, 11, 12 are cylindrical lenses, 13 is an optical fiber group, 14 is a fiber, 15 is a spectrometer, 16 is a channel plate, 17 is a one-dimensional food sensor array, 18 is a high-speed analog-to-digital converter, and 19 is a 20 is an ink face, 21 is an MPU, 22 is a display device, 23 is a forward scattered light data section, 24 is a side scattered light data section, 425 is an objective lens, and 28 is a photodiode. Patent applicant: Canon Co., Ltd. Representative Patent attorney: Yukihiko Hitani 1.

Claims (1)

【特許請求の範囲】 1、検体に照射する励起用光ビームの照射域の形状を、
検体の流れの方向を長辺とし流れに垂直な方向を短辺と
する長方形とする励起手段と、検体から発する蛍光を前
記長辺に沿って連続的に測光する集光手段と、該集光手
段によって得られる光の分光分布を測定する分光分布測
定手段とを具備することを特徴とする細胞識別装置。 2、前記照射域の長辺の長さは、検体の層流が乱されな
い範囲とした特許請求の範囲第1項に記載の細胞識別装
置。 3、前記励起手段は、検体の流れの方向への照射光拡大
光学系と、流れに垂直な方向への照射光集光光学系とか
ら構成した特許請求の範囲第1項に記載の細胞識別装置
。 4、前記集光手段は、前記長方形照射域の長辺に沿って
直線状に配列したファイバ列と、該ファイバ列の出力を
集束するための他の1本のファイバとから構成した特許
請求の範囲第1項に記載の細胞識別装置。 5、前記分光分布測定手段は、分光器、光増幅器、一次
元フォトセンサアレイから構成した特許請求の範囲第1
項に記載の細胞識別装置。 6、前記一次元フォトセンサアレイは高速で繰り返して
走査するようにした特許請求の範囲第5項に記載の細胞
識別装置。
[Claims] 1. The shape of the irradiation area of the excitation light beam irradiated onto the specimen is
an excitation means having a rectangular shape with a long side in the direction of the flow of the specimen and a short side in the direction perpendicular to the flow; a light collecting means for continuously measuring fluorescence emitted from the specimen along the long side; and the light collecting means. 1. A cell identification device comprising: spectral distribution measuring means for measuring the spectral distribution of light obtained by the means. 2. The cell identification device according to claim 1, wherein the length of the long side of the irradiation area is within a range where the laminar flow of the sample is not disturbed. 3. Cell identification according to claim 1, wherein the excitation means comprises an optical system for expanding the irradiated light in the direction of the flow of the specimen and an optical system for concentrating the irradiated light in the direction perpendicular to the flow. Device. 4. The light focusing means is constituted by a fiber array arranged in a straight line along the long side of the rectangular irradiation area, and another fiber for focusing the output of the fiber array. The cell identification device according to scope 1. 5. Claim 1, wherein the spectral distribution measuring means comprises a spectrometer, an optical amplifier, and a one-dimensional photosensor array.
The cell identification device described in section. 6. The cell identification device according to claim 5, wherein the one-dimensional photosensor array scans repeatedly at high speed.
JP59174505A 1984-08-22 1984-08-22 Cell identifying device Pending JPS6151569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59174505A JPS6151569A (en) 1984-08-22 1984-08-22 Cell identifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59174505A JPS6151569A (en) 1984-08-22 1984-08-22 Cell identifying device

Publications (1)

Publication Number Publication Date
JPS6151569A true JPS6151569A (en) 1986-03-14

Family

ID=15979674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59174505A Pending JPS6151569A (en) 1984-08-22 1984-08-22 Cell identifying device

Country Status (1)

Country Link
JP (1) JPS6151569A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336147A (en) * 1986-07-30 1988-02-16 Shimadzu Corp Gel electrophotographic device
JPH03170846A (en) * 1989-11-09 1991-07-24 General Atomic Co Micropipette adapter and optical measuring method using the same
JPH04335135A (en) * 1991-05-11 1992-11-24 Horiba Ltd Particulate counter
US5428451A (en) * 1989-12-07 1995-06-27 Diatec Instruments A/S Process and apparatus for counting particles
US6731100B1 (en) * 1997-05-05 2004-05-04 Chemometec A/S Method and a system for determination of somatic cells in milk
JP2006250686A (en) * 2005-03-10 2006-09-21 Mitsui Eng & Shipbuild Co Ltd Flow site meter and laser beam irradiation method
JP2007527997A (en) * 2004-03-06 2007-10-04 マイケル トレイナー, Method and apparatus for determining particle size and shape
JP2011503551A (en) * 2007-11-05 2011-01-27 アボット・ラボラトリーズ Method and apparatus for rapidly counting and identifying biological particles in a stream
JP2016522409A (en) * 2013-06-03 2016-07-28 エックストラリス・テクノロジーズ・リミテッド Particle detection system and related method
JP2019148504A (en) * 2018-02-27 2019-09-05 シスメックス株式会社 Particle measuring apparatus and particle measuring method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336147A (en) * 1986-07-30 1988-02-16 Shimadzu Corp Gel electrophotographic device
JPH03170846A (en) * 1989-11-09 1991-07-24 General Atomic Co Micropipette adapter and optical measuring method using the same
US5428451A (en) * 1989-12-07 1995-06-27 Diatec Instruments A/S Process and apparatus for counting particles
JPH04335135A (en) * 1991-05-11 1992-11-24 Horiba Ltd Particulate counter
US6731100B1 (en) * 1997-05-05 2004-05-04 Chemometec A/S Method and a system for determination of somatic cells in milk
JP2007527997A (en) * 2004-03-06 2007-10-04 マイケル トレイナー, Method and apparatus for determining particle size and shape
JP2012103259A (en) * 2004-03-06 2012-05-31 Michael Trainer Methods and apparatus for determining size and shape of particles
JP2016026301A (en) * 2004-03-06 2016-02-12 トレイナー, マイケルTRAINER, Michael Method and apparatus for determining size and shape of particles
JP2006250686A (en) * 2005-03-10 2006-09-21 Mitsui Eng & Shipbuild Co Ltd Flow site meter and laser beam irradiation method
JP2011503551A (en) * 2007-11-05 2011-01-27 アボット・ラボラトリーズ Method and apparatus for rapidly counting and identifying biological particles in a stream
JP2016522409A (en) * 2013-06-03 2016-07-28 エックストラリス・テクノロジーズ・リミテッド Particle detection system and related method
JP2019148504A (en) * 2018-02-27 2019-09-05 シスメックス株式会社 Particle measuring apparatus and particle measuring method
WO2019167499A1 (en) * 2018-02-27 2019-09-06 シスメックス株式会社 Particle measuring device and particle measuring method

Similar Documents

Publication Publication Date Title
JP3145487B2 (en) Particle analyzer
US8885153B2 (en) Differentiation of flow cytometry pulses and applications
CN101187621B (en) Method and systems for dynamic range expansion
US20040080748A1 (en) Multipass cavity for illumination and excitation of moving objects
CN1041128C (en) Particle analysing equipment
JPH06186155A (en) Particle analyzer
US20190391067A1 (en) Flow Cytometer With Multiple Intensity Peak Design
JPS6151569A (en) Cell identifying device
JPH10253624A (en) Particle measuring device
JP3102925B2 (en) Particle analyzer
JPH0224535A (en) Particle analyzing apparatus
US6104490A (en) Multiple pathlength sensor for determining small particle size distribution in high particle concentrations
JPS61173141A (en) Particle analyzing instrument
EP1936359A2 (en) System and Method for Removing Auto-Fluorescence Through The Use Of Multiple Detection Channels
JPH03154850A (en) Specimen inspecting device
JPH0792076A (en) Grain analyzing device
JPS6244650A (en) Particle analyzing device
JP2756298B2 (en) Sample test equipment
JPH01270644A (en) Particle analyser
JP2749928B2 (en) Sample measuring method and sample measuring device
JPS63201554A (en) Particle analyzing device
JP2749912B2 (en) Sample measuring device and sample measuring method
JPH03146848A (en) Inspection sample measuring instrument with alignment mechanism
JPH03221838A (en) Method and device for measuring body to be tested
JPS6244649A (en) Particle analyzing device