JPS6151241B2 - - Google Patents

Info

Publication number
JPS6151241B2
JPS6151241B2 JP52052746A JP5274677A JPS6151241B2 JP S6151241 B2 JPS6151241 B2 JP S6151241B2 JP 52052746 A JP52052746 A JP 52052746A JP 5274677 A JP5274677 A JP 5274677A JP S6151241 B2 JPS6151241 B2 JP S6151241B2
Authority
JP
Japan
Prior art keywords
interference
lens
gap
light
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52052746A
Other languages
Japanese (ja)
Other versions
JPS52143052A (en
Inventor
Jaaritsushu Uorutaa
Makotsushu Gyuntaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JPS52143052A publication Critical patent/JPS52143052A/en
Publication of JPS6151241B2 publication Critical patent/JPS6151241B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

多くの技術分野特に半導体集積回路の製造工程
に於て、原料または半製品の規格値を連続的に監
視しさらに製造工程中の各ステツプ後または各ス
テツプ中頻繁に被処理部品の許容誤差からの偏差
を制御するため高感度の測定器が要求される。半
導体集積回路の製造に於て特に重要なのは半導体
ウエーフアの平面性の検査およびフオトレジスト
を塗布した半導体ウエーフアと各段階に使用され
る露光マスクとの間隙の制御である。 集積回路の製造は経済上その殆んどが大量生産
方式で行なわれるため、ランダムチエツクのみで
充分と見倣される場合を除き複雑かつ時間を要す
る方法は排除される。また外乱を受け易い方法あ
るいは必要な信頼度を得るため試料の損傷または
破壊を不可避的に伴う方法も同様である。近代の
大量生産に常時認められる如く処理速度が非常に
大であるため、平面性及び間隔は非常に短時間内
に測定せねばならず、これは要求精度上殆んど独
占的に使用された来た従来の干渉測定法では不可
能であつた。 ドイツ特許1447253号には移動するフイルムの
厚さまたは屈折率を干渉により連続的に測定する
ため相互に干渉する二光束の光路差を周期的に変
化させ、同一時間内に多数の時間マークを発生さ
せる方法及び装置が記載されている。時間マーク
発生と白色干渉縞発生との時間差は層厚および
(または)屈折率の関数となる。この方法では被
検査面を一点ずつ、また一線ずつ走査し、予め定
められた位相差を各点ごとに行なわねばならぬた
め、かかる方法を実施する装置は上記問題に対す
る解決となり得ない。さらに該方法は外乱を受け
易くまた構成が複雑である。 これは「透明フイルムの厚さ及び屈折率の非破
壊測定」(W.A.Pliskin & E.E.Konrad、IBM
Journal、1964年1月、43−51ページ)と題する
文献に記載された方法についても同様である。こ
の方法は周期的位相変化の代りに測定光束が試料
に当る角度を周期的に変化させるものである。 また「エリプソメトリによる極薄フイルムの厚
さ及び屈折率ならびに表面の光学的性質の測定」
(Frank L.McCrakin他、A.Physics and
Chemistry、Vol.67A、1963年7/8月号、363−
377ページ)と題する文献は直線偏光光束の偏光
面を周期的に廻転させ得られる値を周期的に評価
する方法および装置を記載している。この方法を
実施する装置は処理速度が比較的低速であるのみ
ならず、不適切に技術的に複雑であり、さらに多
数の部品を要しまた正確な測定のためには正確な
調整を要するため著しく外乱を受け易い。 かかる理由から上記文献記載の方法及び装置は
前述の問題解決には不適切である。 本発明の目的は最少量の装置および容積により
非常に頑丈な装置を用いて二面間の間隔または平
面性を決定するに必要な光学値を高速で提供しう
る方法ならびにこれを実施する装置を提供するこ
とにある。本発明の特徴は比較的近接した多数の
点を同時に測定する点にある。 従来既知の干渉測定機器に於ては平行二面間の
間隔測定は全く不可能であるかあるいは測定光束
の入射角を変化させて数回の測定を順次行なう必
要があり、また結果は数学的に評価せねばならな
かつた。所要時間が長い欠点の他にかかる方法を
実施する装置は技術的に非常に複雑であり従つて
外乱を受け易い。即ち干渉光学上の精度で作動す
る装置は測定光の入射角を一定周期で変化させこ
れを正確に測定することが必要とされる。 これに反し本発明に於ては必要な入射角をすべ
て同時に含む測定光束が使用され、この結果装置
が著しく簡略化されまた測定工程が迅速化され
る。さらに測定工程中に同時に評価される干渉縞
または干渉輪の数は事実上距離の一次関数であ
り、従つて距離決定に複雑な計算を行なう必要が
ない。本発明を実施する装置が著しく簡単化され
る結果本発明の著しい利点として数百または数千
個の非常に小さくかつ近接するレンズ素子によつ
て比較的大面積を同時に走査し、各点について得
られた干渉縞を各点の間隔または平面性のデータ
に変換することが可能となつた。かかる目的のた
め使用される装置は容積が小さく、簡単かつ安価
であり、また可動部分がないため強固に調整可能
であつて故障し難い。 以下、本発明を付図により説明する。 第1図の装置に於て光源1により発生されレン
ズ2,3により拡張された平行コヒーレント光束
Lは例えば半透鏡から成るビームスプリツタ4に
より下方へ反射され、円錐状空気間隙8を有する
二枚のガラス板5,6へと向けられる。ガラス板
6を通過する光は空気間隙8に接する面により既
知の如く何度も反射されて干渉パターンを形成
し、これはレンズ10を介してスクリーン11上
に一連の干渉縞12として投映される。最左端の
干渉縞はガラス板5,6間の間隔λ/2に対応す
るので、点9におけるガラス板間の間隔は既知の
如く最初の干渉縞から該点に対応する干渉縞まで
の縞数を数えることにより知られる。即ち垂直入
射測定光束の場合、干渉場に接する面間の間隔は
λ/2×干渉縞数に等しいので、点9周囲におけ
る板5,6の間隔はλ/2×5となる。ここでλ
は使用光の波長、また5は板5,6の接触点から
点9迄の干渉縞数である。 相互に接触しない二面間の間隔測定には特別の
手段が必要となる。第2図に示す装置の場合、光
源1たとえばレーザにより発生されレンズ2,3
により拡大されたコリメートかつコヒーレント単
色光束Lは軸Aの周囲で振動するミラーMにより
下方に曲げられ、レンズ13,14を経て被測定
間隙8を包囲するガラス板5,6に入射する。ミ
ラーMが実線位置の場合、下向きに反射された光
束Lは実線の光路に従いレンズ13,14の光軸
に対称に進行する。光束がわずかに右に偏位した
場合、ガラス板5,6間の干渉場は既知の方法に
よりレンズ14,15を経てスクリーン19上に
投映される。該スクリーンは干渉縞の直径にほぼ
対応する孔を有し、その背後に光検出器18が設
けられる。ミラーMが点線位置の場合、光束は点
線の光路を進行し被測定間隙を包囲するガラス板
5,6に角度αで入射する。第2図に示される如
く空気間隙8の上下面で反射される光の一部17
は相互に干渉し、レンズ14,15を介して光検
出器18の前に設けられたスクリーン19上に線
状パターンを形成するが、板5,6が相互に接触
していないためこれ自身では間隙8の厚さにつき
何ら情報を含んでいない。しかしミラーMを実線
位置から点線位置に、あるいはこの逆に移動させ
るとミラーMの回転により間隙8を通過する光の
光路長が変化するためスクリーン19上の干渉パ
ターンには時間的に明から暗への複数回の変化が
生じ、この回数が光路長の変化量に対応する。ス
クリーン19の孔に於て明暗の変化が生じる度に
光検出器18の出力20に電気パルスが発生され
る。 空気間隙の厚さが測定光の該間隙内の光路長と
入射角αの余弦との積に等しいことは明らかであ
る。また孔19に現われる強度変化の回数が次式
に比例することが示される。 但しdは間隙8の厚さ、λは波長、αは最大入
射角、nは間隙8内の空気の屈折率である。 正確な干渉測定を行なうにはレンズ13,14
の支持方法、及び特にミラーMの支持方法及び駆
動方法に非常に高い精度が要求され、各素子の軸
方向及び角度方向の位置にわずかでも狂いがある
と測定結果に悪影響をもたらす。また間隙または
層の測定に比較的長時間を要する。これは間隔ま
たは層厚測定のためには近接した多数の点につき
測定を行なう必要があり、各測定毎にミラーMを
一端から他端へ移動させてスクリーン19上の孔
に現われる強度変化を計数し各点ごとに光検出器
18の出力20に現われるパルスを評価せねばな
らぬためである。さらに装置は一定角を非常に正
確に回転することを要求されるミラーを有するた
め衝撃に対し脆弱である。 これらの欠点は第3図の装置に於て回避され
る。光源1たとえばレーザにより発生されレンズ
2,3により拡大されたコヒーレントかつコリメ
ート単色光束Lは固設されるビームスプリツタ4
により下方に曲げられ、レンズ30を介して空気
間隙8を規定するガラス板5,6へ向けられる。
ガラス板5,6のレンズ30に対する位置は該レ
ンズの焦点がレンズとガラス板のほぼ中央に位置
するよう定められる。レンズ30の上面に入射す
る平行光はその焦点31に収歛する光束となり、
該焦点から発散する。該レンスが高性能のもので
あれば、円錐32を形成する発散光が0゜から発
散光により形成される円錐外周に対応する光束の
入射角に到るあらゆる入射角を含むことは明らか
である。間隙8内に形成される干渉場は同一レン
ズ30によりビームスプリツタ4を介してスクリ
ーン11上に投影され、間隙8の厚さに依存する
数の干渉縞を示す。各被測定部分における間隙8
の厚さは次式により示される: 但しδは小間隙においては無視しうる補正因
子、i,jは選ばれた二個の干渉環の次数、α
i,αjは各干渉環の半径ri,rjに関連して定め
られる角度である。この方法では1μmを超える
精度で間隙測定が可能である。 上述の式は次のようにして導き出される。第7
図は収束光の場合を示す。 第7図において、角度θiで入射する光線i
と、角度θi′で入射する光線i′との干渉について
見ると、光線iは面で反射され、光線i′は面
で反射され、どちらの光線も点Pを通過するの
で、点Pで光線iと光線i′が干渉する。 点Pに至るまでの光線iと光線i′との光路差Δ
は、Δ=+−である。ただし面にお
ける反射は密度の高い媒体による反射である。ゆ
えに、光の波長をλとすると、λ/2の位相シフ
トを考慮する必要があるので、光路差Δは、 Δ=+−+λ/2である。 さて、面との間の距離をdとすると、 ==d/cosθ′=dFA/lであり、 FA=√22で、=ri+2dtanθi′であ
る。ところで、tanθi′=OA/lであるから、 となり、よつて、 である。 また、=−√2i であり、=
であるから、=−√2i である。 以上から、光路差Δは、 となる。 このとき、d≪lであり、よつて 1−2d/l≒1となるので、 Δ=2d/l√i 2+λ/2となる。 一方、
In many technical fields, especially in the manufacturing process of semiconductor integrated circuits, the specification values of raw materials or semi-finished products are continuously monitored, and the tolerances of the processed parts are frequently checked after or during each step in the manufacturing process. Highly sensitive measuring instruments are required to control deviations. Particularly important in the manufacture of semiconductor integrated circuits are the inspection of the flatness of the semiconductor wafer and the control of the gap between the semiconductor wafer coated with photoresist and the exposure mask used in each step. Since the manufacture of integrated circuits is mostly carried out on a mass production basis for economic reasons, complicated and time-consuming methods are excluded except in cases where random checking alone is considered sufficient. The same applies to methods that are susceptible to disturbances or methods that unavoidably involve damage or destruction of the sample in order to obtain the necessary reliability. Due to the very high processing speeds always present in modern mass production, flatness and spacing must be measured within a very short time, and this is used almost exclusively due to the required accuracy. This was not possible using conventional interferometry methods. German Patent No. 1447253 describes a method to continuously measure the thickness or refractive index of a moving film by interference, by periodically changing the optical path difference between two mutually interfering beams, and generating a large number of time marks within the same time period. A method and apparatus are described. The time difference between time mark occurrence and white interference fringe occurrence is a function of layer thickness and/or refractive index. In this method, the surface to be inspected must be scanned point by point or line by line, and a predetermined phase difference must be determined for each point, so that an apparatus implementing such a method cannot be a solution to the above problem. Furthermore, the method is susceptible to disturbances and is complex. This is “Non-destructive measurement of thickness and refractive index of transparent films” (WAPliskin & EEKonrad, IBM
The same is true for the method described in the article entitled, Journal, January 1964, pages 43-51). In this method, instead of periodic phase changes, the angle at which the measurement light beam strikes the sample is changed periodically. Also, "Measurement of the thickness, refractive index, and surface optical properties of ultrathin films by ellipsometry"
(Frank L. McCrackin et al., A. Physics and
Chemistry, Vol.67A, July/August 1963, 363−
377 pages) describes a method and apparatus for periodically rotating the plane of polarization of a linearly polarized beam and periodically evaluating the values obtained. The equipment implementing this method is not only relatively slow, but also unduly technically complex, requires a large number of parts, and requires precise adjustments for accurate measurements. Extremely susceptible to external disturbances. For this reason, the method and apparatus described in the above-mentioned document are inappropriate for solving the above-mentioned problem. The object of the present invention is to provide a method and an apparatus for carrying out the method, which can rapidly provide the optical values necessary for determining the spacing or planarity between two surfaces using a very robust device with a minimum amount of equipment and volume. It is about providing. A feature of the present invention is that a large number of points relatively close to each other are measured simultaneously. With conventionally known interference measuring instruments, it is either impossible to measure the distance between two parallel planes at all, or it is necessary to perform several measurements in sequence by changing the angle of incidence of the measuring beam, and the results are mathematically difficult to measure. I had to evaluate it. In addition to the drawback of the long duration required, the equipment implementing such a method is technically very complex and is therefore susceptible to disturbances. That is, a device that operates with the precision of interference optics is required to change the incident angle of measurement light at regular intervals and measure it accurately. In contrast, according to the invention a measuring beam is used which simultaneously contains all the necessary angles of incidence, which significantly simplifies the device and speeds up the measuring process. Furthermore, the number of interference fringes or rings evaluated simultaneously during the measurement process is effectively a linear function of the distance, so that no complex calculations need to be carried out to determine the distance. As a result of the considerable simplification of the apparatus for carrying out the invention, a significant advantage of the invention is that a relatively large area can be simultaneously scanned by hundreds or even thousands of very small and closely spaced lens elements, allowing the acquisition of information for each point. It has become possible to convert the interference fringes obtained into data on the spacing or flatness of each point. The devices used for this purpose are small in volume, simple and inexpensive, and because they have no moving parts, they are strongly adjustable and difficult to break down. Hereinafter, the present invention will be explained with reference to the accompanying drawings. In the apparatus of FIG. 1, a parallel coherent light beam L generated by a light source 1 and expanded by lenses 2 and 3 is reflected downward by a beam splitter 4 consisting of, for example, a semi-transparent mirror, and is split into two beams with a conical air gap 8. glass plates 5 and 6. The light passing through the glass plate 6 is reflected many times by the surface in contact with the air gap 8 in a known manner to form an interference pattern, which is projected as a series of interference fringes 12 onto the screen 11 via the lens 10. . Since the leftmost interference fringe corresponds to the spacing λ/2 between the glass plates 5 and 6, the spacing between the glass plates at point 9 is the number of fringes from the first interference fringe to the interference fringe corresponding to that point, as is known. It is known by counting. That is, in the case of a normal incident measurement beam, the distance between the surfaces in contact with the interference field is equal to λ/2×the number of interference fringes, so the distance between the plates 5 and 6 around the point 9 is λ/2×5. Here λ
is the wavelength of the light used, and 5 is the number of interference fringes from the contact point of plates 5 and 6 to point 9. Special means are required to measure the distance between two surfaces that do not touch each other. In the case of the apparatus shown in FIG. 2, a light source 1 is generated, for example by a laser, and
The collimated and coherent monochromatic light beam L expanded by is bent downward by a mirror M vibrating around the axis A, passes through lenses 13 and 14, and enters glass plates 5 and 6 surrounding the gap 8 to be measured. When the mirror M is at the solid line position, the downwardly reflected light beam L travels symmetrically to the optical axes of the lenses 13 and 14 following the solid line optical path. If the light beam is shifted slightly to the right, the interference field between the glass plates 5, 6 is projected onto the screen 19 via lenses 14, 15 in a known manner. The screen has an aperture approximately corresponding to the diameter of the interference fringes, behind which a photodetector 18 is provided. When the mirror M is in the position shown by the dotted line, the light beam travels along the optical path shown by the dotted line and is incident on the glass plates 5 and 6 surrounding the gap to be measured at an angle α. A portion 17 of the light reflected on the upper and lower surfaces of the air gap 8 as shown in FIG.
interfere with each other and form a linear pattern on the screen 19 provided in front of the photodetector 18 through the lenses 14 and 15, but since the plates 5 and 6 are not in contact with each other, It does not contain any information about the thickness of the gap 8. However, when the mirror M is moved from the solid line position to the dotted line position or vice versa, the optical path length of the light passing through the gap 8 changes due to the rotation of the mirror M, so that the interference pattern on the screen 19 changes from bright to dark in time. A plurality of changes occur, and this number of times corresponds to the amount of change in the optical path length. An electrical pulse is generated at the output 20 of the photodetector 18 each time a change in brightness or darkness occurs in the apertures of the screen 19. It is clear that the thickness of the air gap is equal to the product of the optical path length of the measuring light in the gap and the cosine of the angle of incidence α. It is also shown that the number of intensity changes appearing in the hole 19 is proportional to the following equation. Here, d is the thickness of the gap 8, λ is the wavelength, α is the maximum angle of incidence, and n is the refractive index of the air within the gap 8. Lenses 13 and 14 are required for accurate interference measurement.
Extremely high precision is required for the supporting method of the mirror M, and particularly for the supporting method and driving method of the mirror M, and even the slightest deviation in the axial and angular positions of each element will adversely affect the measurement results. Also, it takes a relatively long time to measure gaps or layers. This is because in order to measure the spacing or layer thickness, it is necessary to measure many points in close proximity, and for each measurement, the mirror M must be moved from one end to the other and the intensity change appearing in the hole on the screen 19 must be counted. This is because the pulse appearing at the output 20 of the photodetector 18 must be evaluated for each point. Furthermore, the device is vulnerable to shocks because it has a mirror that is required to be rotated very accurately through a certain angle. These drawbacks are avoided in the apparatus of FIG. A coherent and collimated monochromatic light beam L generated by a light source 1, for example a laser, and expanded by lenses 2 and 3 is transmitted to a fixed beam splitter 4.
is bent downwards by the lens 30 and directed through the lens 30 towards the glass plates 5, 6 defining the air gap 8.
The positions of the glass plates 5 and 6 with respect to the lens 30 are determined so that the focal point of the lens is located approximately at the center between the lens and the glass plate. The parallel light incident on the upper surface of the lens 30 becomes a luminous flux that converges on the focal point 31,
diverge from the focal point. If the lens is of high performance, it is clear that the diverging light forming the cone 32 includes all incident angles from 0° to the incident angle of the light beam corresponding to the outer circumference of the cone formed by the diverging light. . The interference field formed in the gap 8 is projected by the same lens 30 via the beam splitter 4 onto the screen 11 and exhibits a number of interference fringes depending on the thickness of the gap 8. Gap 8 in each measured part
The thickness of is given by: However, δ is a correction factor that can be ignored in small gaps, i and j are the orders of the two selected interference rings, and α
i and α j are angles determined in relation to the radii r i and r j of each interference ring. This method allows gap measurement with an accuracy of over 1 μm. The above equation is derived as follows. 7th
The figure shows the case of convergent light. In Figure 7, a ray i entering at an angle θ i
When we look at the interference between the ray and the ray i′ incident at angle θ i ′, ray i is reflected by the surface, ray i′ is reflected by the surface, and both rays pass through point P, so at point P Ray i and ray i' interfere. Optical path difference Δ between ray i and ray i′ up to point P
is Δ=+−. However, reflection on a surface is a reflection from a dense medium. Therefore, if the wavelength of light is λ, it is necessary to consider the phase shift of λ/2, so the optical path difference Δ is Δ=+−+λ/2. Now, if the distance to the surface is d, then ==d/cosθ i ′=dFA/l, FA=√ 2 + 2 , and = r i +2dtanθ i ′. By the way, since tanθ i ′=OA/l, Then, It is. Also, = −√ 2 + i 2 , and =
Therefore, =−√ 2 + i 2 . From the above, the optical path difference Δ is becomes. At this time, d<<l, and therefore 1-2d/l≒1, so Δ=2d/l√ i 2 + 2 +λ/2. on the other hand,

【式】であるから、 Δ=2d/cosθ+λ/2で示される。 干渉縞が生じるのは、Δ=(n+1/2)λ(n= 0、1、2………)のときである。よつて、干渉
縞を生じる光線iの入射角θiは、nλ=2d/cos
θと いう式をみたす。 次に、上で得られた式を用いて、パターンの中
心から、光線の入射角αの範囲内に何本の干渉縞
が存在するかを求める。パターンの中心ではα=
0である。上で得られた式によれば、干渉縞を生
じる光線の入射角αは、cosα=2d/nλであらわさ れる。 |cosα|≦1なので2d/nλ≦1でなくてはなら ない。そこで、2d/nλ≦1をみたす最小の整数nを mとすると、cosα=2d/mλをみたす角度αで最も 内側の干渉縞があらわれる。 このような角度αをαとおくと、cosα
2d/mλとあらわされる。すると、一般に、内側から k番目にあらわれる干渉縞の角度αkは、 cosαk=2d/〔m+(k−1)〕λとあらわすことが
でき る。 このことは、第8図を参照することにより、一
層よく理解される。すなわち、点下に収束する方
向の光線Lによつて、板6の上面に、最も内側の
角度αの干渉縞t1などの複数の干渉縞があらわ
れる。 さて、第8図において、内側からi番目の干渉
縞t1が角度αiにあらわれ、内側からj番目(j>
i)の干渉縞tjが角度αjにあらわれたとする
と、干渉縞ti及びtjにつきそれぞれ、 cosαi=2d/〔m+(i−1)λ〕及び cosαj=2d/〔m+(j−1)λ〕が成立する。これ
らの 式をそれぞれ 〔m+(i−1)〕λ=2d/cosα及び 〔m+(j−1)〕λ=2d/cosαと変形してそ
れらの 差をとり、dについてまとめると、 が得られ、この式を用いて間隙dの値を求めるこ
とができる。すなわち、第8図に示すような複数
の干渉縞からなるパターンの2つの干渉縞ti
jにつき、その干渉縞が内側から何番目のパタ
ーンi,jであるか、及びその干渉縞があらわれ
る角度αi,αjを測定することにより間隙dの値
が求められる。尚、上述の関係式は、発散光を用
いた場合にも同様に成立する。こうして、第8図
の板6上に生じた干渉縞の像は、第3図に示され
たようなレンズ30によつてスクリーン11上に
投影される。 第4図に示す本発明の実施態様に於ては、光源
1たとえばレーザにより発生されレンズ2,3に
より拡大されたコヒーレントかつコリメート単色
光束Lがビームスプリツタ4により下方に反射さ
れて多数のレンズ状部材37を有するガラス板3
6に導かれる。該レンズ状部材は好ましくはフレ
ネルレンズとして形成され、適宜に干渉する二光
束にフオトレジストを露光して写真的に形成され
る。ガラス板36の下方約100μmの位置に空気
間隙を規定するガラス板5,6が設けられ、該間
隙を近接した多数の点に於て測定することが目的
である。ガラス板5,6はX、Y−テーブル35
上に配置される。ガラス板5,6と板36の間隔
はレンズ37の焦点距離の約2倍とされる。板3
6の面上に入射する平行光束はレンズ状部材37
によつて対応する数の円錐状の収歛・発散光とさ
れ、その収歛点31は板5,6の上方に位置す
る。前出各図につき説明した如く板6の下面と板
5の上面との間で各レンズの視野内に干渉場が形
成され、これは該レンズおよび別のレンズ10を
介してフオトセル41の格子から成る部材40
(第4C図)の下面に一連の干渉環として投影さ
れる。該部材は各レンズ37に対してフオトセル
格子41一個が対応するよう構成され、その上に
該レンズの視野内に形成される一連の干渉環が結
像される各フオトセル格子41は紛数個の感光性
素子から成る。各格子41内の各フオトダイオー
ドの出力に現われる電気信号をたとえば評価装置
に直結しあるいは既知方法により走査して評価す
ることにより各格子上に結像される干渉環の数を
知ることが出来る。前述の如く干渉環数は二参照
面間の間隔の関数であり、従つて第4図の装置は
板5,6間の間隙に関するすべてのデータを各レ
ンズ37の視野内に於て数ミリ秒で決定すること
が出来る。第5図は第4図の装置に使用されるフ
レネルレンズ集合体の一部を示し、レンズ直径お
よび相互間隔は約50μmである。 第6図は第4図の装置により区画41に得られ
る干渉環の典型例を示す。また各例の下に対応す
る板5,6の間隔を表記する。 尚、第6図の干渉環を得るために使用された光
源は、波長632.8nmのネオン・ヘリウム・レーザ
ーである。 また被測定物に面し該レンズ37を有する板3
6の面を参照面として使用し近傍面の平面性を測
定することも可能である。 本発明の方法を用いまた第3,4図に示した如
き装置を用いれば凹凸、間隙距離を高精度で測定
することが出来る。第4図の装置によれば相互に
20〜50μmの間隔で配列された数百または数千の
点についてこれらの値を数ミリ秒で同時に得るこ
とが出来る。板36の下面が高度の平面性を有す
る場合、板36の下面とその下の面との間隔を測
定すれば該面の平面性が判明し、従つて第4図の
装置は集積回路の製造に於て半導体ウエーフアの
平面性を監視するのに最適である。もし使用マス
クにたとえば位置合せマークの部分に於て写真的
に形成されたフルネルレンズを設ければ、本発明
方法は近接式プリンタにおいてマスクと半導体ウ
エーフアの間隔を定めるのに使用でき、あるいは
投影式プリンタに於て半導体ウエーフアの水準合
せに使用できる。また評価面40に於て各レンズ
37による像内に光検出器一個のみを設け、光偏
向器により各レンズ37による像を検出器上で移
動させて干渉環を計数することも可能である。 連続的に移動する物体を検査する場合には移動
方向に垂直に数列のみのレンズ及び光検出器を設
け、各列のレンズ及び検出器を隣接列に対してず
らして配置することにより全検出器数に対応する
トラツクで走査を行なうのが好ましい。 本発明は構成が簡単で調整を必要とする可動部
分がないため半導体集積回路大量生産の監視用、
各工程の管理用、また半製品または完成品の品質
管理用として特に好ましい。
Since [Formula], it is expressed as Δ=2d/cosθ i +λ/2. Interference fringes occur when Δ=(n+1/2)λ (n=0, 1, 2...). Therefore, the incident angle θ i of the ray i that produces interference fringes is nλ=2d/cos
It satisfies the expression θ i . Next, using the equation obtained above, it is determined how many interference fringes exist within the range of the incident angle α of the light beam from the center of the pattern. At the center of the pattern α=
It is 0. According to the equation obtained above, the incident angle α of the light ray that produces interference fringes is expressed by cosα=2d/nλ. Since |cosα|≦1, 2d/nλ≦1 must be satisfied. Therefore, if m is the minimum integer n that satisfies 2d/nλ≦1, the innermost interference fringe appears at an angle α that satisfies cosα=2d/mλ. Letting such an angle α be α 1 , cosα 1 =
It is expressed as 2d/mλ. Then, in general, the angle α k of the k-th interference fringe from the inside can be expressed as cos α k =2d/[m+(k-1)]λ. This can be better understood by referring to FIG. That is, a plurality of interference fringes appear on the upper surface of the plate 6, such as the interference fringes t 1 at the innermost angle α 1 , due to the light rays L converging below the point. Now, in FIG. 8, the i-th interference fringe t 1 from the inside appears at an angle α i , and the j-th interference fringe from the inside (j >
If the interference fringe t j of i) appears at the angle α j , cosα i = 2d /[m+(i-1)λ ] and cosα j =2d/[m+(j -1) λ] holds true. Transforming these equations into [m+(i-1)]λ=2d/cosα i and [m+(j-1)]λ=2d/cosα j , taking the difference between them, and summarizing for d, we get: is obtained, and the value of the gap d can be determined using this equation. That is, two interference fringes ti, of a pattern consisting of a plurality of interference fringes as shown in FIG.
For each t j , the value of the gap d is determined by measuring the number of patterns i and j from the inside of the interference fringe and the angles α i and α j at which the interference fringe appears. Incidentally, the above-mentioned relational expression is similarly established when using diverging light. The image of the interference fringes thus generated on the plate 6 of FIG. 8 is projected onto the screen 11 by the lens 30 as shown in FIG. In the embodiment of the invention shown in FIG. 4, a coherent and collimated monochromatic beam L generated by a light source 1, e.g. a laser, and expanded by lenses 2 and 3 is reflected downward by a beam splitter 4 and transmitted through a number of lenses. Glass plate 3 having a shaped member 37
6. The lenticular element is preferably formed as a Fresnel lens and is formed photographically by exposing a photoresist to two suitably interfering beams of light. Glass plates 5 and 6 are provided approximately 100 μm below the glass plate 36 to define an air gap, and the purpose is to measure this gap at a number of points close to each other. Glass plates 5 and 6 are X and Y table 35
placed on top. The distance between the glass plates 5 and 6 and the plate 36 is approximately twice the focal length of the lens 37. Board 3
The parallel light beam incident on the surface of 6 is a lens-like member 37
The convergence point 31 is located above the plates 5 and 6. As explained with reference to the previous figures, an interference field is formed between the lower surface of plate 6 and the upper surface of plate 5 in the field of view of each lens, which is transmitted from the grating of photocell 41 via this lens and another lens 10. member 40 consisting of
It is projected as a series of interference rings on the bottom surface (FIG. 4C). The member is constructed such that one photocell grating 41 corresponds to each lens 37, and each photocell grating 41 has several photocell gratings on which a series of interference rings formed within the field of view of the lens are imaged. It consists of a photosensitive element. By evaluating the electric signal appearing at the output of each photodiode in each grating 41, for example by directly connecting it to an evaluation device or by scanning it using known methods, it is possible to determine the number of interference rings imaged on each grating. As mentioned above, the number of interference rings is a function of the spacing between the two reference planes, and therefore the apparatus of FIG. It can be determined by FIG. 5 shows a portion of the Fresnel lens assembly used in the apparatus of FIG. 4, the lens diameter and mutual spacing being approximately 50 μm. FIG. 6 shows a typical example of the interference ring obtained in section 41 by the apparatus of FIG. Furthermore, the distance between the corresponding plates 5 and 6 is written below each example. The light source used to obtain the interference ring shown in FIG. 6 is a neon helium laser with a wavelength of 632.8 nm. Also, a plate 3 facing the object to be measured and having the lens 37
It is also possible to use the surface No. 6 as a reference surface to measure the flatness of neighboring surfaces. By using the method of the present invention and the apparatus shown in FIGS. 3 and 4, it is possible to measure irregularities and gap distances with high precision. According to the device shown in Figure 4, mutual
These values can be obtained simultaneously in a few milliseconds for hundreds or thousands of points arranged at intervals of 20-50 μm. If the lower surface of the plate 36 has a high degree of flatness, the flatness of the surface can be determined by measuring the distance between the lower surface of the plate 36 and the surface below it, and therefore the apparatus of FIG. It is ideal for monitoring the flatness of semiconductor wafers. If the mask used is provided with a photographically formed Fresnel lens, for example in the area of the alignment mark, the method of the invention can be used to determine the spacing between the mask and the semiconductor wafer in a proximity printer, or for projection. Can be used for leveling semiconductor wafers in type printers. It is also possible to provide only one photodetector within the image formed by each lens 37 on the evaluation surface 40 and to count the interference rings by moving the image formed by each lens 37 on the detector using a light deflector. When inspecting a continuously moving object, only a few rows of lenses and photodetectors are provided perpendicular to the direction of movement, and the lenses and detectors of each row are shifted relative to the adjacent rows so that all the detectors can be inspected. Preferably, the scanning is carried out in tracks corresponding to the number. The present invention has a simple configuration and has no moving parts that require adjustment, so it can be used for monitoring mass production of semiconductor integrated circuits.
It is particularly preferred for controlling each process and for quality control of semi-finished products or finished products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の干渉法間隔測定装置における光
路の略図、第2図は他の従来技術による干渉法間
隔測定装置の略図、第3図は本発明の方法におけ
る発散光を用いた実施例を示す図、第4図は、本
発明の方法における多数のレンズを用いた他の実
施例を示す図、第4A図は第4図における多数の
レンズの配列を示す図、第4B図はフレネルレン
ズの光路の拡大側面図、第4C図は第4図におけ
るフオトダイオード配列の一部の平面図、第5図
は第4図の実施例において複数個のレンズの各々
に干渉縞があらわれた状態を示す図、第6図は異
なる間隙に対する異なる干渉縞パターンを示す
図、第7図は収束光を用いた場合に干渉縞があら
われる原理を示す図、第8図は光の焦点Fに対す
る各干渉縞の角度関係をあらわす図である。 1……光源、2,3……レンズ、30……レン
ズ、4……半透鏡、5,6……ガラス板、8……
被測定間隙、11……スクリーン、12……干渉
縞。
FIG. 1 is a schematic diagram of an optical path in a conventional interferometric distance measuring device, FIG. 2 is a schematic diagram of another prior art interferometric distance measuring device, and FIG. 3 is an embodiment using divergent light in the method of the present invention. FIG. 4 is a diagram showing another embodiment using a large number of lenses in the method of the present invention, FIG. 4A is a diagram showing an arrangement of a large number of lenses in FIG. 4, and FIG. 4B is a diagram showing a Fresnel lens. 4C is a plan view of a part of the photodiode array in FIG. 4, and FIG. 5 shows a state in which interference fringes appear on each of a plurality of lenses in the embodiment of FIG. 4. Figure 6 is a diagram showing different interference fringe patterns for different gaps, Figure 7 is a diagram showing the principle of how interference fringes appear when convergent light is used, and Figure 8 is a diagram showing each interference fringe pattern for the focal point F of light. FIG. 1... Light source, 2, 3... Lens, 30... Lens, 4... Semi-transparent mirror, 5, 6... Glass plate, 8...
Gap to be measured, 11...Screen, 12...Interference fringes.

Claims (1)

【特許請求の範囲】 1 収束または発散する波長λの単色の光束を該
光束の焦点が被検査物の表面に位置しない様に、
実質的に平行な間隙をもつ被検査領域全面に指向
し、該被検査領域から反射される干渉縞パターン
を該被検査領域に平行なスクリーン上で観察し、
該焦点に対して該被検査領域上で該パターンの中
心からそれぞれ角度αi,αj(αj>αi)の範囲
内にある干渉縞の数i,jを数え、 により間隙dを測定する干渉による間隙測定法。
[Claims] 1. A monochromatic light beam with a wavelength λ that converges or diverges so that the focus of the light beam is not located on the surface of the object to be inspected.
Observing an interference fringe pattern directed over the entire surface of a region to be inspected with a substantially parallel gap and reflected from the region to be inspected on a screen parallel to the region to be inspected;
Counting the numbers i and j of interference fringes within the range of angles α i and α jji ) from the center of the pattern on the inspection area with respect to the focal point, Interferometric gap measurement method that measures the gap d.
JP5274677A 1976-05-21 1977-05-10 Method of measuring gap* thickness* and flatness by interference Granted JPS52143052A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19762622787 DE2622787C2 (en) 1976-05-21 1976-05-21 Method for interferometric distance, thickness or flatness measurement

Publications (2)

Publication Number Publication Date
JPS52143052A JPS52143052A (en) 1977-11-29
JPS6151241B2 true JPS6151241B2 (en) 1986-11-07

Family

ID=5978663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5274677A Granted JPS52143052A (en) 1976-05-21 1977-05-10 Method of measuring gap* thickness* and flatness by interference

Country Status (3)

Country Link
JP (1) JPS52143052A (en)
DE (1) DE2622787C2 (en)
FR (1) FR2352279A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2851750B1 (en) * 1978-11-30 1980-03-06 Ibm Deutschland Method and device for measuring the flatness of the roughness or the radius of curvature of a measuring surface
DE3175207D1 (en) * 1981-05-29 1986-10-02 Ibm Deutschland Process and device for interferometric evenness measurement
US4560280A (en) * 1982-08-31 1985-12-24 Tokyo Shibaura Denki Kabushiki Kaisha Apparatus for optically measuring the distance between two grating-like structures and the size of periodic pattern elements forming one of the grating-like structures
JPS6121391A (en) * 1984-06-30 1986-01-30 日産車体株式会社 Vacuum liquid feeder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953067A (en) * 1972-09-20 1974-05-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953067A (en) * 1972-09-20 1974-05-23

Also Published As

Publication number Publication date
DE2622787C2 (en) 1978-05-18
JPS52143052A (en) 1977-11-29
FR2352279B1 (en) 1979-03-09
FR2352279A1 (en) 1977-12-16
DE2622787B1 (en) 1977-09-22

Similar Documents

Publication Publication Date Title
US4070116A (en) Gap measuring device for defining the distance between two or more surfaces
US3885875A (en) Noncontact surface profilometer
US4964726A (en) Apparatus and method for optical dimension measurement using interference of scattered electromagnetic energy
US4703434A (en) Apparatus for measuring overlay error
JP4302512B2 (en) Interferometric scanning for aspheric surfaces and wavefronts
US3804521A (en) Optical device for measuring surface roughness
US4131365A (en) Method and apparatus for determining object position and dimension using a diffraction wave
US6724475B2 (en) Apparatus for rapidly measuring angle-dependent diffraction effects on finely patterned surfaces
JP2002532696A (en) Method and apparatus for optically controlling the manufacturing process of a microstructured surface in semiconductor manufacturing
JPH0317505A (en) Method and device for measuring thickness of thin-film
US3858981A (en) Method of measuring irregularities in the evenness of surfaces
JP2012518185A (en) Method and apparatus for measuring substrate shape or thickness information
US4452534A (en) Method of determining geometric parameters of object&#39;s surface and device therefor
US4009965A (en) Method and apparatus for determining object dimension and other characteristics using diffraction waves
US6806959B2 (en) Measurement of surface defects on a movable surface
US4221486A (en) Interferometric measurement with λ/4 resolution
US4653922A (en) Interferometric thickness analyzer and measuring method
JPS6233541B2 (en)
US4429992A (en) Method and device for testing optical imaging systems
US3843261A (en) Method and apparatus for analyzing the spatial relationship of members
JPS6151241B2 (en)
US4395123A (en) Interferometric angle monitor
JPS6288905A (en) Noncontact diameter measuring method and device for thin wire rod, etc.
JP2002206915A (en) Abscissa calibration method for facial shape measuring device and facial shape measuring device
JPS632324B2 (en)