JPS6151079A - Thermal energy storage material - Google Patents

Thermal energy storage material

Info

Publication number
JPS6151079A
JPS6151079A JP17243484A JP17243484A JPS6151079A JP S6151079 A JPS6151079 A JP S6151079A JP 17243484 A JP17243484 A JP 17243484A JP 17243484 A JP17243484 A JP 17243484A JP S6151079 A JPS6151079 A JP S6151079A
Authority
JP
Japan
Prior art keywords
storage material
lead
temperature
nucleating agent
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17243484A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyake
三宅 洋
Takumi Nakano
巧 中野
Shinsuke Nakagawa
伸介 中川
Naoki Okada
直樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP17243484A priority Critical patent/JPS6151079A/en
Publication of JPS6151079A publication Critical patent/JPS6151079A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a thermal energy storage material which does not cause a supercooling phenomenon over a long pierod of time, by blending a nucleating agent to Mg(NO3)2.6H2O. CONSTITUTION:0.01-5wt% at least one nucleating agent selected from among aluminum oxide (hydroxide), iron powder, lead powder, lead compd. (e.g. PbO), Bi2O3 and diammonium phosphate is blended with Mg(NO3O3)2.6H2O.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は潜熱盤蓄熱装置等に用いられる蓄熱材に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat storage material used in latent heat plate heat storage devices and the like.

従来の技術 排熱や太陽熱の有効利用の一つに蓄熱技術があり、水、
岩石等による顕熱方式や、含水塩、パラフィン等による
潜熱方式がある。
Conventional technology One of the effective uses of waste heat and solar heat is heat storage technology.
There are sensible heat methods using rocks, etc., and latent heat methods using hydrated salts, paraffin, etc.

情熱方式で用いる含水塩のうち硝酸マグネシウム含水塩
は6水塩で融点約89℃の蓄熱物質として知られている
が、顕著な過冷却現象のため実用化されるに至っていな
い。
Among the hydrated salts used in the passion method, magnesium nitrate hydrate is a hexahydrate salt and is known as a heat storage material with a melting point of about 89°C, but it has not been put into practical use due to the remarkable supercooling phenomenon.

、すなわち、硝酸マグネシウム6水塩を溶融状態から次
第に降温させたとき、相変化温度(89℃)を過ぎても
結晶化せず放熱しないという過冷却現象は、もし硝酸マ
グネシウム6水塩に蓄熱されても所定温匹で熱がと9出
せないことを意味し、硝酸マグネシウム6水塩を蓄熱材
として用いるためKはこの過冷却現象を抑えることが必
須となる。
In other words, when the temperature of magnesium nitrate hexahydrate is gradually lowered from its molten state, it does not crystallize and does not release heat even after the phase change temperature (89°C). This means that no heat can be produced even at a predetermined temperature, and since magnesium nitrate hexahydrate is used as a heat storage material, it is essential for K to suppress this supercooling phenomenon.

従来、この過冷却現象を防止するための発核剤としては
、酸化マグネシウム、炭酸マグネシウム、硫酸マグネシ
ウム等のマグネシウム塩を用いるもの、酸化カルシウム
、炭酸カルシウム、硫酸力ルシウム等のカルシウム塩や
水酸化ストロンチウム、炭酸ストロンチウム等のストロ
ンチウム塩を用いるもの等種々の提案がなされているが
、連続使用した場合その効果の持続性に問題がある。
Conventionally, nucleating agents for preventing this supercooling phenomenon include those using magnesium salts such as magnesium oxide, magnesium carbonate, and magnesium sulfate, calcium salts such as calcium oxide, calcium carbonate, and lucium sulfate, and strontium hydroxide. Various proposals have been made, including those using strontium salts such as strontium carbonate, but there are problems with the sustainability of their effects when used continuously.

発明が解決しようとする問題点 本発明は硝酸マグ不シクム含水塩を主剤とした蓄熱材に
おいて、過冷却現象を長期的に防止し得る発核剤を提供
することを目的とするものである。
Problems to be Solved by the Invention The object of the present invention is to provide a nucleating agent that can prevent supercooling over a long period of time in a heat storage material whose main ingredient is a hydrous salt of nitrate.

問題点を解決するだめの手段 本発明は、硝酸マグネシウム含水塩を主剤とする蓄熱材
において、発核剤としてアルミニウム(水)酸化物、鉄
粉、鉛粉、鉛化合物、酸化ビスマス2よびリン酸化アル
ミニウムのいずれか二種以上を添加してなる蓄熱材であ
る。
Means to Solve the Problems The present invention provides a heat storage material based on hydrated magnesium nitrate, which uses aluminum (hydr) oxide, iron powder, lead powder, lead compounds, bismuth oxide 2, and phosphorylation as nucleating agents. It is a heat storage material made by adding any two or more types of aluminum.

硝酸マグネシウム6水塩は無色単科晶形の結晶で比重1
.64、融点89℃を示し、その融解熱は約38 ca
l/pで、単位体積らた9の融解熱は約62 ca1/
ln1であプ、蓄熱材として好適な化合物である。
Magnesium nitrate hexahydrate is a colorless monocrystalline crystal with a specific gravity of 1.
.. 64, has a melting point of 89°C, and its heat of fusion is approximately 38 ca.
l/p, the heat of fusion of a unit volume of 9 is approximately 62 cal/p.
It is a compound suitable as a heat storage material.

不発明で用いられる硝酸マグネシウム含水塩は6水塩組
成を指すものであるが、厳密に≧水塩である必要はなく
、6水塩に近い組成でちればよい。また、結晶だけでな
く、6水塩組成に近い水溶液、スラリー状態のものなど
すべて適用できるものである。
The hydrated magnesium nitrate salt used in the invention refers to a hexahydrate composition, but it does not strictly have to be ≧hydrate, and may have a composition close to that of a hexahydrate. Moreover, not only crystals but also aqueous solutions having a composition close to hexahydrate, slurries, etc. can be applied.

本発明で用いる発核剤のうちアルミニウム(水)酸化物
とは、酸化アルミニウム、水酵化アルミニウム単独、あ
るいはこれらの混合物を指すものでりる。また、鉛化合
物としては、塩化鉛、硫酸鉛、リン酸鉛、硝酸鉛、二酸
化鉛、−酸化鉛、塩基性区化鉛、酢酸鉛等が挙げられる
Among the nucleating agents used in the present invention, aluminum (hydr)oxide refers to aluminum oxide, water-fermented aluminum alone, or a mixture thereof. Further, examples of lead compounds include lead chloride, lead sulfate, lead phosphate, lead nitrate, lead dioxide, -lead oxide, basic lead, lead acetate, and the like.

不発明で用いるこれらの発核剤の龜加債は過冷却防止効
果をあげるためには硝酸マグネシウム含水塩に対して少
くとも0.01m ft %以上が好しいが、5mi%
以上加えても務加盆に見合う効果の向上はなく経済的に
得栄ではない。
The nucleating agent used in the invention is preferably at least 0.01 m ft % or more of magnesium nitrate hydrate in order to have a supercooling prevention effect, but it is preferably 5 mi %.
Even if the above additions are made, there will be no improvement in the effect commensurate with Mukabon, and there will be no economic gain.

以下、実施例によυ本発明をより詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例11比較例1 硝酸マグネシウム6水塩4507 ′t−8US月6製
′8器中に密封したものA(比較例りと、同じ硝酸マグ
ネシウム6水塩450 Fに酸化アルミニウム13.5
7 (対硝駿マグネシウム6水塩3重i%)を添加し充
分混合して密封した試料B(実施例1)を用意した(両
試料共熱電対を挿入した)。
Example 11 Comparative Example 1 Magnesium nitrate hexahydrate 4507 't-8 US Monthly 6 '8 sealed in a container A (comparative example, the same magnesium nitrate hexahydrate 450 F and aluminum oxide 13.5
Sample B (Example 1) was prepared by adding 7 (3 weight i% of magnesium hexahydrate to nitric acid), thoroughly mixing, and sealing (a thermocouple was inserted in both samples).

両試料をまず95℃の恒温槽に浸漬し内部温度が95℃
になるまで加熱した後、恒温槽温度を85℃にして内部
温度を測定した。このような加熱〜冷却サイクルをくシ
返して凝固開始温度、過冷却温度測定した結果を第1表
に示したが、発核剤を含まないAでは過冷却の結果凝固
が起らず、蓄熱材として全く不適であシ、発核剤を含む
Bでは過冷却は僅かで凝固している。また゛第1図には
第1表のBの凝固開始温度(す、過冷却温度(2)を折
れ線グラフで示した。これらの結果から明らかなように
、本発明による発核剤を添加することによシ過冷却は僅
かとなシ、くシ返し使用してもその特性は殆んど変化な
く蓄熱材として実用可能である。
Both samples were first immersed in a constant temperature bath at 95°C until the internal temperature reached 95°C.
After heating until the temperature was 85° C., the internal temperature was measured. Table 1 shows the results of measuring the solidification start temperature and supercooling temperature by repeating this heating-cooling cycle. It is completely unsuitable as a material, and B, which contains a nucleating agent, is solidified with little supercooling. In addition, Fig. 1 shows the solidification start temperature (B) in Table 1 and the supercooling temperature (2) in a line graph. The material is only slightly overcooled, so even if it is used repeatedly, its properties hardly change and it can be used as a heat storage material.

第1表 また、WJz図に試料を95℃に加熱溶解後、−85℃
に冷却した場合の時間経過にともなう内部温度の変化を
示す。この図におけるA、B両回線の違いは、発核剤を
含まネいAでは顕熱のみの利用しかできないのに対し、
本発明の発核剤を含有するBでは、7ラツト部において
凝固する間に潜熱を放出するものである。潜熱は顕熱よ
り著しく多量なので装置の小型化に有利でおるし、一定
温度で潜熱の放出が行なわれるので装置の運転面で有利
である。
Table 1 also shows the WJz diagram after heating and dissolving the sample at 95°C and -85°C.
This shows the change in internal temperature over time when cooling to . The difference between lines A and B in this diagram is that line A, which contains a nucleating agent, can only utilize sensible heat.
In B containing the nucleating agent of the present invention, latent heat is released during solidification in the 7-rat portion. Since latent heat is significantly larger than sensible heat, it is advantageous for downsizing the device, and since the latent heat is released at a constant temperature, it is advantageous for the operation of the device.

実施例2〜12、比較例2〜4 実施例1と同様操作で発核剤として水酸°化アルミニウ
ム、鉄粉、鉛粉、塩基性酸化鉛、硝酸や、エラ化や、硫
よ、゛ご“−′“;、“)″″′□7薩盲−゛よび比較
例として銅粉、酸化鉄、水酸化ストロンチウムをそれぞ
れ13.5F(対硝酸マグネシウム6水塩3重量%)添
加して凝固開始温度と過冷却温度全測定した。
Examples 2 to 12, Comparative Examples 2 to 4 In the same manner as in Example 1, aluminum hydroxide, iron powder, lead powder, basic lead oxide, nitric acid, elastomy, sulfur, etc. were used as nucleating agents. As a comparative example, copper powder, iron oxide, and strontium hydroxide were each added at 13.5F (3% by weight of magnesium nitrate hexahydrate). The solidification initiation temperature and supercooling temperature were all measured.

その結果を第2辰に示すが、実施例2〜12のものはい
ずれも過冷却は僅かであシ、凝固温度も殆んど変化なく
、長期くり返し使用に耐え得るものであった。これに対
して比較例2〜4のものはいずれも凝固せず、潜熱の回
収はで、きなかった。
The results are shown in the second column, and the samples of Examples 2 to 12 all showed slight overcooling, almost no change in solidification temperature, and were able to withstand repeated use over a long period of time. On the other hand, in Comparative Examples 2 to 4, none solidified, and latent heat could not be recovered.

発明の効果 本発明の蓄熱材は、硝酸マグネシウム含水塩の放熱結晶
化における結晶核の発生を促進させる有効な発核剤の作
用により、長期にわたシ過冷却現象を防止することがで
き、また、発核剤の添加量も少量で十分なため硝酸マグ
ネシウム含水塩の本質的物性を損うことなく、蓄熱材と
して極めて有効に使用できるものである。
Effects of the Invention The heat storage material of the present invention can prevent supercooling phenomena over a long period of time due to the action of an effective nucleating agent that promotes the generation of crystal nuclei during heat dissipation crystallization of magnesium nitrate hydrate, and Since a small amount of the nucleating agent is sufficient, it can be used extremely effectively as a heat storage material without impairing the essential physical properties of the magnesium nitrate hydrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は硝酸マグネシウム6水塩に発核剤を加えた試料
を加熱融解させた後冷却する操作をくシ返した場合の過
冷却の状態を示すグラフ(凝固開始温度、過冷却温度と
操作回数との関係)であシ、第2図は同様の試料および
発核剤を加えない試料について温度降下の状態を示すグ
ラフ(温度と時間の関係)である。 第1図 回数
Figure 1 is a graph showing the state of supercooling when a sample made by adding a nucleating agent to magnesium nitrate hexahydrate is heated and melted and then cooled repeatedly (solidification start temperature, supercooling temperature and operation Figure 2 is a graph (relationship between temperature and time) showing the state of temperature drop for similar samples and samples to which no nucleating agent was added. Figure 1 Number of times

Claims (1)

【特許請求の範囲】[Claims] 硝酸マグネシウム含水塩に発核剤としてアルミニウム(
水)酸化物、鉄粉、鉛粉、鉛化合物、酸化ビスマスおよ
びリン酸二アンモニウムからなる群より選ばれる少くと
も一種を配合してなる蓄熱材。
Aluminum (
A heat storage material containing at least one selected from the group consisting of water) oxides, iron powder, lead powder, lead compounds, bismuth oxide, and diammonium phosphate.
JP17243484A 1984-08-21 1984-08-21 Thermal energy storage material Pending JPS6151079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17243484A JPS6151079A (en) 1984-08-21 1984-08-21 Thermal energy storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17243484A JPS6151079A (en) 1984-08-21 1984-08-21 Thermal energy storage material

Publications (1)

Publication Number Publication Date
JPS6151079A true JPS6151079A (en) 1986-03-13

Family

ID=15941905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17243484A Pending JPS6151079A (en) 1984-08-21 1984-08-21 Thermal energy storage material

Country Status (1)

Country Link
JP (1) JPS6151079A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422983A (en) * 1987-07-16 1989-01-25 Mitsubishi Electric Corp Heat storage material
JPS6424191A (en) * 1987-07-16 1989-01-26 Mitsubishi Electric Corp Scroll fluid machine
CN106191589A (en) * 2016-08-17 2016-12-07 浙江特富锅炉有限公司 A kind of boiler phase-change thermal storage alloy material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422983A (en) * 1987-07-16 1989-01-25 Mitsubishi Electric Corp Heat storage material
JPS6424191A (en) * 1987-07-16 1989-01-26 Mitsubishi Electric Corp Scroll fluid machine
CN106191589A (en) * 2016-08-17 2016-12-07 浙江特富锅炉有限公司 A kind of boiler phase-change thermal storage alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2529974B2 (en) Reversible Phase Change Composition of Hydrated Calcium Bromide
JPS5947287A (en) Magnesium nitrate-magnesium chloride hydration reversible phase changing composition
JPS6151079A (en) Thermal energy storage material
JP3442155B2 (en) Heat storage material composition
JPS59109578A (en) Heat storage material
ES2213769T3 (en) REVERSIBLE COMPOSITIONS OF CHANGE OF HYDRATIONED MAGNESIUM CHLORIDE PHASE TO STORE ENERGY.
JPH0141672B2 (en)
JPS6367837B2 (en)
JPH0292987A (en) Cold-storing material composition
JPS5941668B2 (en) heat storage material
JPH0157157B2 (en)
JPS6251311B2 (en)
JPH0134475B2 (en)
JPH0134477B2 (en)
JP3440700B2 (en) Latent heat storage material
JPS617378A (en) Thermal energy storage material
JPS63137982A (en) Heat storage material composition
JPS6022031B2 (en) Heat storage agent composition
JPS6197380A (en) Thermal energy storage material
JPS58120093A (en) Composition of heat accumulating agent
JPS588712B2 (en) Heat storage agent composition
JPS586399A (en) Heat regenerative material
JPS61278588A (en) Heat storing material
JPH0524954B2 (en)
JPS645633B2 (en)