JPS6151061A - Electrical conductive resin molding material and production thereof - Google Patents

Electrical conductive resin molding material and production thereof

Info

Publication number
JPS6151061A
JPS6151061A JP17246784A JP17246784A JPS6151061A JP S6151061 A JPS6151061 A JP S6151061A JP 17246784 A JP17246784 A JP 17246784A JP 17246784 A JP17246784 A JP 17246784A JP S6151061 A JPS6151061 A JP S6151061A
Authority
JP
Japan
Prior art keywords
latex
molding material
conductive
conductive solid
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17246784A
Other languages
Japanese (ja)
Inventor
Masahiro Sekine
正裕 関根
Satoru Okita
大北 哲
Hideo Takenaka
英雄 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP17246784A priority Critical patent/JPS6151061A/en
Publication of JPS6151061A publication Critical patent/JPS6151061A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled molding material having excellent moldability and electrical conductivity in a short time by a simple method, by depositing a thermoplastic resin agglomerated from a thermoplastic resin latex on an electrically conductive solid material. CONSTITUTION:50-99wt% (based on the amount of the resulting electrical conductive molding material) electrical conductive solid (e.g. natural graphite or Ni powder) is dispersed in an aq. medium, and a charge-imparting agent such as a cationic surfactant (e.g. cetyltrimethylammonium bromide) is added thereto and adsorbed by the solid material. A thermoplastic resin latex (e.g. anionic PVC latex) which is oppositely charged is added thereto and the mixture is stirred to allow the solid material and fine polymer particles in the latex to cause heteroagglomeration. The heteroagglomerate is recovered by filtration, washed with water and dried to obtain the titled molding material in which said electrical conductive solid material and the thermoplastic resin are mixed with each other microscopically and homogeneously.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高圧ケーブル、通信ケーブル等の電線関係
の用途、燃料タンク、電子部品、包装材料、自動車部品
等のプラスナック関係の用途、ホース、ベルト、安全靴
、床材、スイッチング素、子、イグニッションケーブル
、除電ロール等のゴム関係の用途、あるいは電極関係の
用途等において、今日広範に1史用されている導電性樹
脂成型材料に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to electric wire-related applications such as high-voltage cables and communication cables, plastic snack-related applications such as fuel tanks, electronic parts, packaging materials, and automobile parts, and hoses. The present invention relates to a conductive resin molding material that is widely used today in rubber-related applications such as belts, safety shoes, flooring materials, switching elements, switches, ignition cables, static eliminating rolls, and electrode-related applications.

〔従来の技術〕[Conventional technology]

これまで、ン9電性樹脂成型品の製造には、必要により
可塑剤、安定剤、酸化防止剤、紫外線吸収剤等を配合し
、合成樹脂中にカーボンブラック、グラファイト、金属
粉末、金m4M維、カーボンファイバー等の導電性固体
物質をコニーダ、パンバリミキサー、ミキシングロール
、加圧ニーダ等の適当なブレンダを使用して混線混合し
、必要によりペレット化した後、プレス成型、押出成型
、射出成型、シーテイング等の方法で所望の製品に成型
する方法が採用されてきた。
Up until now, in the production of electrically conductive resin molded products, plasticizers, stabilizers, antioxidants, ultraviolet absorbers, etc. have been added to the synthetic resin as necessary, and carbon black, graphite, metal powder, gold M4M fibers, etc. have been added to the synthetic resin. , conductive solid materials such as carbon fibers are cross-mixed using a suitable blender such as a co-kneader, panburi mixer, mixing roll, pressure kneader, etc., and after pelletizing if necessary, press molding, extrusion molding, or injection molding. , sheeting, and other methods have been adopted to form the desired product.

ところが、このように3g電電性体物質を合成樹脂中に
混練混合する方法では、導電性固体物質の含有率が50
重掛%を越えると混練性や成型性が悪化し、例えばミキ
シングロールを使用して黒鉛をポリエチレン樹脂中に練
り込む場合でも黒鉛含右率約651m%が限界でその成
型品の体積固有抵抗値も27Ωcm足らずであり、高い
導電性を有する樹脂成型品を1!7ることができなかっ
た。
However, in this method of kneading and mixing 3 g of conductive solid material into synthetic resin, the content of the conductive solid material is 50%.
Exceeding the weight percentage will deteriorate kneading and moldability. For example, even when graphite is kneaded into polyethylene resin using a mixing roll, the graphite content will be at the limit of approximately 651 m%, and the volume resistivity of the molded product will decrease. The resistance was less than 27 Ωcm, making it impossible to produce a highly conductive resin molded product.

そこで先に、導電性固体粉末の表面にビニル系モノマー
をグラフト重合して固体−樹脂グラフ1−重合組成物を
冑、この固体−樹脂グラフト工合組成物を成型して導電
性が著しく向上した導電性薄膜材を得ることが提案され
ている(特開昭用56−90821号公報)。
Therefore, first, a vinyl monomer was graft-polymerized on the surface of a conductive solid powder to form a solid-resin graph 1 polymer composition, and this solid-resin graft composite composition was molded to provide a conductive material with significantly improved conductivity. It has been proposed to obtain a transparent thin film material (Japanese Patent Application Laid-Open No. 56-90821).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、導電性固体粉末の表面にビニル・系モノ
マーをグラフト重合させる先の発明においては、導電性
の高い樹脂組成物を得ることができるが、その製造工程
において重合操作を含み繁雑で長時間を要する工程が必
要であるという問題がある。
However, in the previous invention in which a vinyl monomer is graft-polymerized on the surface of a conductive solid powder, a resin composition with high conductivity can be obtained, but the manufacturing process involves a complicated polymerization operation and takes a long time. There is a problem in that a process is required.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、かかる観点に鑑みて創案されたもので、高い
導電性を有するだけでなく、簡単な製造方法で短時間で
製造することができ、しかも、成型性の良好な導電性樹
脂成型材料を提供するものである。
The present invention was devised in view of this point of view, and is a conductive resin molding material that not only has high conductivity but also can be manufactured in a short time using a simple manufacturing method, and has good moldability. It provides:

すなわち、本発明は、導電性固体物質に熱可塑性樹脂ラ
テックスから凝集された熱可塑性樹脂を付着させた導電
性樹脂成型材料であり、また、熱可塑性樹脂ラテックス
を使用した製造方法である。
That is, the present invention is a conductive resin molding material in which a thermoplastic resin aggregated from a thermoplastic resin latex is attached to a conductive solid substance, and a manufacturing method using the thermoplastic resin latex.

本発明において、導電性固体物質としては、例えば銀、
銅、ニッケル、アルミニウム、ステンレス等の金属粉末
あるいは合成繊維、金属メッキされた各種の無機フィラ
ー、ケッチェンブラック、アセチレンブラック、ファー
ネスブラック等のカーボンブラック、天然又は人造の黒
鉛、カーボンファイバーやグラファイトファイバー等の
炭素繊維等を挙げることができる。これらの導電性固体
物質は、単独で使用することができるほか、2種以上を
組合せて使用することもできる。
In the present invention, examples of the conductive solid substance include silver,
Metal powders or synthetic fibers such as copper, nickel, aluminum, and stainless steel, various metal-plated inorganic fillers, carbon blacks such as Ketjen black, acetylene black, and furnace black, natural or artificial graphite, carbon fibers, graphite fibers, etc. Carbon fibers, etc. can be mentioned. These conductive solid substances can be used alone or in combination of two or more.

また、本発明で使用する熱可塑性樹脂ラテックスとは、
乳化重合によら合成されたラテックスのみならず、高分
子物質を適当な手段で水性媒体中に分散せしめたディス
パージョンをも包含するもので、その媒体についても水
だけでなく、水に有機溶剤を混合した水性媒体であって
もよく、さらに、必要に応じて可塑剤、安定剤、紫外線
吸収剤、その他の添加剤等を含有したラテックスであっ
てもよい。
Furthermore, the thermoplastic resin latex used in the present invention is
It includes not only latex synthesized by emulsion polymerization, but also dispersions in which polymeric substances are dispersed in an aqueous medium by appropriate means.The medium includes not only water but also water containing an organic solvent. It may be a mixed aqueous medium, or it may be a latex containing a plasticizer, stabilizer, ultraviolet absorber, other additives, etc. as necessary.

このような熱可塑性樹脂ラテックスとしては、例えばス
チレン−ブタジェンゴムラテックス、ポリイソプレンラ
テックス、ポリクロロプレンラテックス、メタクリル酸
メチル−ブタジェンゴムラテックス等のゴムラテックス
や、ポリウレタン水・分散液や、ポリメタクリル酸メチ
ルラテックス、メタクリル酸メチル−スチレン共重合体
ラテックス、メタクリル酸メチル−メタクリル酸ブチル
共重合体ラテックス等のポリアクリル酸エステル系エマ
ルジョンや、ポリ酢酸ビニルラテックス、エチレン−酢
酸ビニル共重合体ラテックス等のポリ酢酸ビニル系エマ
ルジョンや、ポリ塩化ビニルラテックス、塩化ビニル−
塩化ビニリデン共重合体ラテックス等のポリ塩化ビニル
系エマルジョンや、ポリエチレンエマルジョン、ポリブ
テンエマル、ジヨン等のポリオレフィン系ディスパージ
ョンや、その他ポリスチレン系ラテックス、シリコーン
エマルジョン等を挙げることができる。これらの熱可塑
性樹脂ラテックスについては、単独で使用してもよく、
また、2Fn以上を組合せて使用することもできる。
Examples of such thermoplastic resin latex include rubber latex such as styrene-butadiene rubber latex, polyisoprene latex, polychloroprene latex, methyl methacrylate-butadiene rubber latex, polyurethane water/dispersion, and polymethacrylic acid. Polyacrylate emulsions such as methyl latex, methyl methacrylate-styrene copolymer latex, methyl methacrylate-butyl methacrylate copolymer latex, polyvinyl acetate latex, ethylene-vinyl acetate copolymer latex, etc. Vinyl acetate emulsion, polyvinyl chloride latex, vinyl chloride
Examples include polyvinyl chloride emulsions such as vinylidene chloride copolymer latex, polyolefin dispersions such as polyethylene emulsions, polybutene emuls, diones, and other polystyrene latexes and silicone emulsions. These thermoplastic latexes may be used alone;
Moreover, 2Fn or more can also be used in combination.

また、本発明において、上記導電性固体物質に熱可塑性
樹脂ラテックスから凝集された熱可塑性樹脂を付むさせ
る方法としては、例えば、これら両者を適当な手段によ
り充分混練した後この混線物を乾燥する簡単な方法、ま
た、熱可塑性樹脂ラテックスにi9電性固体物質をその
ままあるいはこれを水性媒体に分散させた水性媒体分散
液として混合した後、この混合ラテックスを不安定化す
る物質の添加、及び/又は、凍結等の不安定化する手段
により混合ラテックス中のポリマー微粒子との非特異的
な凝集を起こさせ、濾過水洗後乾燥する方法等を採用す
ることができる。なお、後者の方法において、混合ラテ
ックスを不安定化する物質、すなわちラテックス破壊剤
としては、電気二重層を圧縮させる電解質、混合ラテッ
クスの電荷を中和するのに有効なイオン性界面活性剤、
高分子凝集剤、その他ケトン、アルコール等の極性を右
J゛る水溶性有機溶剤等を挙げることができる。
Further, in the present invention, the method of attaching the thermoplastic resin aggregated from the thermoplastic resin latex to the conductive solid substance includes, for example, thoroughly kneading both of them by appropriate means and then drying the mixed wire. In a simple method, after mixing an i9 conductive solid substance with a thermoplastic resin latex as it is or as an aqueous medium dispersion in an aqueous medium, adding a substance that destabilizes the mixed latex, and/or Alternatively, a method can be adopted in which non-specific aggregation with polymer fine particles in the mixed latex is caused by destabilizing means such as freezing, followed by filtration, washing with water, and drying. In the latter method, the substance that destabilizes the mixed latex, that is, the latex destroyer, includes an electrolyte that compresses the electric double layer, an ionic surfactant that is effective for neutralizing the charge of the mixed latex,
Examples include polymer flocculants, other polar water-soluble organic solvents such as ketones and alcohols.

さらに、混合ラテックスを不安定化する手段としては、
高速度攪拌、別械的摩擦等の機械的操作による分散破壊
作用や凍結−a解によるラテックスの凝集等の公知の手
段を採用することができる。
Furthermore, as a means to destabilize mixed latex,
Known means such as dispersion destruction effect by mechanical operations such as high-speed stirring and mechanical friction, and coagulation of latex by freezing-a-thawing can be employed.

上記手法により導電性樹脂成型材料を製造することも可
能であるが、より均質な固体樹脂複合材料を得るうえで
、好ましくは、3g電電性体物質と・熱可塑性樹脂ラテ
ックスとの間のへテロ凝集を応用した手段を採用するこ
とである。すなわち、導電性固体物質を水性媒体中に分
散せしめ、この水性媒体中に導電性固体物質に対して電
荷を付与し得る電荷付与物質を添加して導電性固体物質
にこの電荷付与物質を吸着ざぜた後、この導電性固体物
質に付与された電荷と反対の電荷を有する熱可塑性樹脂
ラテックスを添加し、これによって導電性固体物質とラ
テックス中のポリマー微粒子とのヘテロ凝集を起こさせ
、次いで濾過水洗後乾燥する方法である。
Although it is possible to produce a conductive resin molding material by the above method, in order to obtain a more homogeneous solid resin composite material, it is preferable to use a heterogeneous material between the 3g conductive material and the thermoplastic resin latex. The solution is to adopt a method that applies agglomeration. That is, a conductive solid substance is dispersed in an aqueous medium, a charge imparting substance capable of imparting a charge to the conductive solid substance is added to the aqueous medium, and the charge imparting substance is adsorbed onto the conductive solid substance. After that, a thermoplastic resin latex having a charge opposite to that imparted to the conductive solid material is added, thereby causing heteroaggregation of the conductive solid material and the polymer particles in the latex, followed by filtration and water washing. This method involves post-drying.

このへテロ凝集を応用する方法で使用される電荷付与物
質としては、導電性固体物質が炭素質である場合に媒体
のpHをアルカリ側にしてその固体表面のカルボキシル
基を負に帯電させたり、導電性固体物質が金rrANで
ある場合にその表面酸化被膜の水酸基へのプロトンの付
加、脱離を利用して帯電さけ8等の方法で電荷を付与し
得る電位状2÷ 定イオンからなる電解質、fvl  、Ca2”、2+
     2÷     24     3+    
  3÷3r   、3a   1zn   、AI 
  、la   1Cc  、Ttr”+笠の多価陽イ
オンからなる電解質、3+ 8O、CrO、Fe(CN)   rfの多価陰イオン
からなる電解質、ドデシルアンモニウムクロリド、セチ
ルトリメチルアンモニウムプロミド、ドデシルピリジニ
ウムクロリド等のカチオン性界面活性剤、オレイン酸ナ
トリウム、ラウリル硫酸ナトリウム、ドデシルベンゼン
スルホン酸ナトリウム等のアニオン性界面活性剤、ポリ
ジエチルアミノエチルメタクリレート、ポリビニルピリ
ジニウムクロリド、ポリエチレンイミン、メチルグリコ
ールキトサン等のカチオン性高分子電°解質、及び、ポ
リアクリル酸ナトリウム、ポリアクリルアミド部分加水
分解物、ポリビニル硫酸カリウム等のアニオン性高分子
電解質を挙げることができる。これらの電荷付与物質は
、それぞれ単独で使用することができるほか、2種以上
を組合せて使用することもできる。
The charge-imparting substances used in the method applying this heterocoagulation include, when the conductive solid material is carbonaceous, setting the pH of the medium to an alkaline side and negatively charging the carboxyl groups on the solid surface; When the conductive solid substance is gold rrAN, an electrolyte consisting of a potential state 2 ÷ constant ion that can be charged by a method such as electrification avoidance 8 by utilizing the addition and desorption of protons to the hydroxyl groups of the surface oxide film. , fvl , Ca2”, 2+
2÷ 24 3+
3÷3r, 3a 1zn, AI
, la 1Cc , an electrolyte consisting of polyvalent cations of Ttr" + Kasa, an electrolyte consisting of polyvalent anions of 3+ 8O, CrO, Fe(CN) rf, dodecyl ammonium chloride, cetyltrimethylammonium bromide, dodecylpyridinium chloride, etc. cationic surfactants such as sodium oleate, sodium lauryl sulfate, and sodium dodecylbenzenesulfonate; cationic polymer electrolytes such as polydiethylaminoethyl methacrylate, polyvinylpyridinium chloride, polyethyleneimine, and methyl glycol chitosan; Examples include delytes and anionic polymer electrolytes such as sodium polyacrylate, partial hydrolyzate of polyacrylamide, and potassium polyvinyl sulfate.These charge-imparting substances can be used alone, or , two or more types can also be used in combination.

本発明にJ5いて、導電性樹脂成型材料中に81プる導
電性固体物質の含有率は、この導電性樹脂成型材料を使
用して成型される製品が要求する体積固有抵抗値にJ:
って決定されるしのであるが、通常50〜’99ff!
ffi%、[しくは60〜95mm%、より好ましくは
75〜95瓜但%の範囲に調製される。この導電性固体
物質の含有率が50mω%より少なくなると得られた導
電性樹脂成型材料の体積固有抵抗値が100以上になる
場合があり、本発明の方法以外でも成型が可能な場合が
ある。また、導電性固体物質の含有率を99重量%より
多くするのは困flである。
According to the present invention, the content of the conductive solid substance J5 in the conductive resin molding material is J:
It is decided, but usually 50~'99FF!
ffi%, [or 60 to 95 mm%, more preferably 75 to 95 mm%. When the content of the conductive solid substance is less than 50 mω%, the volume resistivity of the resulting conductive resin molding material may be 100 or more, and molding may be possible using methods other than the method of the present invention. Further, it is difficult to increase the content of the conductive solid substance to more than 99% by weight.

本発明によって得られた導電性樹脂成型材料を使用して
樹脂成型品を製造する方法としては、カレンダー成型、
押出成型、圧縮成型、積層成型、射出成型等の任意の成
型方法を採用1°ることができ、樹脂成型品の形状等に
より適宜選択することができる。
Methods for producing resin molded products using the conductive resin molding material obtained by the present invention include calendar molding,
Any molding method such as extrusion molding, compression molding, lamination molding, injection molding, etc. can be employed, and can be appropriately selected depending on the shape of the resin molded product.

また、本発明によって得られた導電性樹脂成型材料は、
導電性固体物質と熱可塑性樹脂とがミクロにかつ均質に
混合されているものであり、混練操作を省略することも
可能であるが、必要によっては、上記成型工程の前に通
常良く行われるバンバリーミキサ−、コニーダ、ミキシ
ングロール等の手段による混ls操作を行ってもよ(、
その際及び/又は成型操作の際に、可塑剤、安定剤、架
橋剤、難燃剤等のほか、3g電性固体物質と樹脂との接
着性を向上させる改質剤等を添加することも可能である
In addition, the conductive resin molding material obtained by the present invention is
A conductive solid substance and a thermoplastic resin are microscopically and homogeneously mixed, and it is possible to omit the kneading operation, but if necessary, the Banbury process, which is usually performed before the above molding process, may be necessary. Mixing operations may also be performed using a mixer, co-kneader, mixing roll, etc.
At that time and/or during the molding operation, in addition to plasticizers, stabilizers, crosslinking agents, flame retardants, etc., it is also possible to add modifiers that improve the adhesion between the 3g conductive solid material and the resin. It is.

(作用) 本発明の導電性樹脂成型材料においては、ミクロの状態
で導電性固体物質と熱可塑性樹脂が均質に混合されてい
るので、樹脂成型品を製造する際にこの導電性固体物質
と熱可塑性樹脂とが不均一になることがなく、導電性固
体物質の含有率を50−99重量%の範囲にまで高くし
ても導電性固体物質と熱可塑性樹脂とが常に均一に混合
されていると共に導電性固体物質の表面が熱可塑性樹脂
で均一に被覆された状態が維持され、成型が可能である
ものと考えられる。
(Function) In the conductive resin molding material of the present invention, since the conductive solid substance and thermoplastic resin are homogeneously mixed in a microscopic state, this conductive solid substance and thermoplastic resin are heated when manufacturing resin molded products. The conductive solid material and the thermoplastic resin do not become non-uniform, and even if the content of the conductive solid material is increased to a range of 50-99% by weight, the conductive solid material and the thermoplastic resin are always mixed uniformly. At the same time, it is considered that the surface of the conductive solid substance is maintained uniformly coated with the thermoplastic resin, and molding is possible.

〔実施例〕〔Example〕

実施例1 粒径1〜30μ風、平均粒径6μ扉の天然鱗片状黒鉛1
00瓜M部を水350重の部中に懸濁さμ゛、これにカ
チオン性界面活性剤のセチルトリメチルアンモニウムプ
ロミド0.61ff1部を添加し、常温で10分間攪拌
した後、固形分29.7ffifn%の7ニオン性ポリ
塩化ビニルラテックス47玉聞部を攪拌下に添加し、ざ
らに30分間攪拌した後、濾過して水洗し乾燥して黒鉛
表面をポリ塩化ビニル微粒子で被覆した黒鉛・ポリ塩化
ビニル複合粉末114重世部を得た。なお、このときの
、′a液は透明であり、得られた複合粉末の樹脂含有率
は12.3重量%であった。
Example 1 Natural flaky graphite 1 with a particle size of 1 to 30 μm and an average particle size of 6 μm
0.00 M parts of cucumber were suspended in 350 parts by weight of water, 0.61 ff 1 part of cetyltrimethylammonium bromide, a cationic surfactant, was added thereto, and after stirring at room temperature for 10 minutes, the solid content was reduced to 29.0 M parts. 47 parts of 7ffifn% 7-ionic polyvinyl chloride latex was added under stirring, stirred roughly for 30 minutes, filtered, washed with water, and dried to form a graphite/polymer whose graphite surface was coated with polyvinyl chloride fine particles. 114 parts of vinyl chloride composite powder were obtained. At this time, the 'a solution was transparent, and the resin content of the obtained composite powder was 12.3% by weight.

このようにして得られた黒鉛・ポリ塩化ビニル複合粉末
をそのまま、あるいは、練りロールによって140℃で
混練した後、ホットプレスによりプレス温度145℃及
びプレス圧力200Kg/ciの条件で、厚さ1rIR
のシート状成型体に成型し、その成型性と四探針法によ
る体積固有抵抗値とを調べた。上記黒鉛・ポリ塩化ビニ
ル複合粉末をそのまま成型した場合も、また、これを練
りロールによって混練した場合も、成型時の成型性は良
好であった。また、得られたシート状成型体の体積固有
抵抗値については、ロール混練を経たものが0.08Ω
αでロール混練を経ないものが0.05Ωαであってい
ずれも優れた導電性を示した。
The graphite/polyvinyl chloride composite powder thus obtained was kneaded as is or after kneaded at 140°C with a kneading roll, and then hot pressed at a press temperature of 145°C and a press pressure of 200 kg/ci to a thickness of 1rIR.
The molded material was molded into a sheet-like molded product, and its moldability and volume resistivity value by the four-probe method were investigated. The moldability during molding was good both when the graphite/polyvinyl chloride composite powder was molded as it was and when it was kneaded using a kneading roll. Furthermore, the volume resistivity value of the sheet-like molded product obtained after roll kneading was 0.08Ω.
The value of α was 0.05Ωα for those without roll kneading, and all exhibited excellent conductivity.

実施例2 粒径1〜150μ風、平均粒径55μ而の天然鱗片状黒
鉛を使用し、゛この黒鉛100重量部に対してポリ塩化
ビニルラテックス(、固形分29.7ffiffi%)
81瓜市部を使用し、実施例1の場合と同様にして樹脂
含有率19.3重量%の黒鉛・ポリ塩化ビニル複合粉末
124重量部を得た。
Example 2 Natural flaky graphite with a particle size of 1 to 150 μm and an average particle size of 55 μm was used, and polyvinyl chloride latex (solid content 29.7 ffiffi%) was added to 100 parts by weight of this graphite.
124 parts by weight of graphite/polyvinyl chloride composite powder with a resin content of 19.3% by weight was obtained in the same manner as in Example 1 using 81 parts by weight of melon.

この黒鉛・ポリ塩化ビニル複合粉末についても、上記実
施例1と同様にしてその成型性と体積固有抵抗(ぽ1を
調べた。結果は、上記黒鉛・ポリ塩化ビニル複合粉末を
そのままホットプレス成型した場合も、また、これを練
りロールによって混練した後にホットプレス成型した場
合も、成型時の成型性は良好であった。また、得られた
シート状成型体の体積固有抵抗値については、ロール混
線を経たものが0.23Ωcmでロール混線を経ないも
のが0.1Ω口であっていずれも優れた導電性を示した
This graphite/polyvinyl chloride composite powder was also investigated for its moldability and volume resistivity (po1) in the same manner as in Example 1.The results were as follows: The moldability during molding was also good when hot press molding was performed after kneading with a kneading roll.In addition, the volume resistivity value of the obtained sheet-shaped molded product was The conductivity was 0.23 Ωcm for the one that passed through the roll cross-connection, and 0.1 Ωcm for the one that did not pass through the roll cross-connection, and both exhibited excellent conductivity.

比較例1 上記実施例1で使用した天然鱗片状黒鉛と粉末状ポリ塩
化ビニル樹脂とを実施例1で得られた黒鉛・ポリ塩化ビ
ニル複合粉末と同じ樹脂含有率に    □なるように
配合し、練りロールによる混練を試みた。この配合では
ロールによる混線は不可能であり、成型材料を得ること
はできなかった。
Comparative Example 1 The natural flaky graphite and powdered polyvinyl chloride resin used in Example 1 were blended to have the same resin content as the graphite/polyvinyl chloride composite powder obtained in Example 1, Kneading using a kneading roll was attempted. With this formulation, crosstalk by rolls was impossible, and a molding material could not be obtained.

また、練りロールにより上記天然鱗片状黒鉛を硬質ポリ
塩化ビニル樹脂に練り込む場合、黒鉛含有率約50m0
%が限界で、その成型品の体積固有抵抗1直も35Ω口
であって高い導電性を有する成型品を得ることはできな
かった。
In addition, when kneading the natural flaky graphite into hard polyvinyl chloride resin using a kneading roll, the graphite content is approximately 50m0.
%, and the volume resistivity of the molded product was 35Ω, making it impossible to obtain a molded product with high conductivity.

比較例2 上記実施例で使用したポリ塩化ビニルラテックスの水分
を請人して微粉末状ポリ塩化ビニル樹脂を得、これと上
記実施例で使用した天然鱗片状黒鉛とを実施例1で得ら
れた黒鉛・ポリ塩化ビニル複合粉末と同じ樹脂含有率に
なるように配合し、ヘンシェルミキサーにより乾式で1
0分間混合した。この混合物をホットプレスにより成型
することを試みたが、シート状の成型体を得ることはで
きなかった。また、上記混合物のロール混練も不可能で
あり、成型材料は得られなかった。
Comparative Example 2 The water content of the polyvinyl chloride latex used in the above example was removed to obtain a finely powdered polyvinyl chloride resin, and this and the natural flaky graphite used in the above example were added to the polyvinyl chloride resin obtained in Example 1. The resin content is the same as that of the graphite/polyvinyl chloride composite powder.
Mixed for 0 minutes. Although an attempt was made to mold this mixture by hot pressing, it was not possible to obtain a sheet-like molded product. Further, roll kneading of the above mixture was also impossible, and a molding material could not be obtained.

実施例3 平均粒径6μmの天然鱗片状黒鉛93fJm部とaiI
lc長10s長刀0sンファイバ−7瓜量部を370f
flfit部の水に分散させ、これに固形分28重量%
のアニオン性ポリ塩化ビニルラテックス28重M部を添
加後、硝酸アルミニウム10工退部を添加し、10分間
攪拌した後濾過して水洗し乾燥して樹脂含有率7.3型
口%の黒鉛・カーボンフシイバー・ポリ塩化ビニル複合
粉末108ffljC部を得た。この複合粉末を使用し
てホットプレス成型した場合、成型性は良好であり、得
られたシー1−状成型体の体積固有抵抗値は0.04Ω
cll+であった。
Example 3 93 fJm part of natural flaky graphite with an average particle size of 6 μm and aiI
lc length 10s long sword 0s fiber - 7 melon weight part 370f
The flfit portion was dispersed in water, and the solid content was 28% by weight.
After adding 28 weight parts of anionic polyvinyl chloride latex, 10 parts of aluminum nitrate was added, stirred for 10 minutes, filtered, washed with water and dried to obtain graphite with a resin content of 7.3%. 108ffljC parts of Carbon Fushivar/polyvinyl chloride composite powder were obtained. When this composite powder was used for hot press molding, the moldability was good, and the volume resistivity of the obtained sheet-shaped molded product was 0.04Ω.
It was cll+.

実施例4 ニッケル粉末iooim部をエタノール50ffi■部
と水150瓜m部の混合溶媒に分散させ、これに固形分
43fffffi%のメチルメタクリレート−ブチルメ
タクリレート共重合体のアニオン性ラテックス5mm部
を添加後、カチオン性界面活性剤セチルトリメチルアン
モニウムプロミド1.5重量部を添加し、20分間撹拌
後濾過し水洗してエタノール洗浄を行い、樹脂含有率1
.3瓜量%のニッケル・メチルメタクリレートープチル
メタクリレート共重合体複合粉末101.3fiff1
部を得た。この複合粉末をホットプレス成型することに
よりシート状成型体を得た。得られた成型体の体積固有
抵抗値は2.0X10’Ωαであった。
Example 4 Iooim parts of nickel powder were dispersed in a mixed solvent of 50fffi parts of ethanol and 150 m parts of water, and after adding 5 mm parts of an anionic latex of methyl methacrylate-butyl methacrylate copolymer with a solid content of 43fffffi%, 1.5 parts by weight of the cationic surfactant cetyltrimethylammonium bromide was added, stirred for 20 minutes, filtered, washed with water and ethanol, and the resin content was 1.
.. 3% nickel/methyl methacrylate/butyl methacrylate copolymer composite powder 101.3fiff1
I got the department. A sheet-like molded body was obtained by hot press molding this composite powder. The volume resistivity value of the obtained molded body was 2.0×10′Ωα.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高い導電性を有するばかりでなく成型
性の良好な導電性樹脂成型材料を与えるほか、簡単な方
法でしかも短時間で製造することができる製造方法を与
えるもので、その実用的価値の極めて高いものである。
According to the present invention, in addition to providing a conductive resin molding material that not only has high conductivity but also good moldability, it also provides a manufacturing method that can be manufactured by a simple method and in a short time. It is of extremely high value.

Claims (7)

【特許請求の範囲】[Claims] (1)導電性固体物質に熱可塑性樹脂ラテックスから凝
集された熱可塑性樹脂を付着させたことを特徴とする導
電性樹脂成型材料。
(1) A conductive resin molding material characterized in that a thermoplastic resin aggregated from thermoplastic resin latex is attached to a conductive solid substance.
(2)導電性固体物質の含有率が50〜99重量%であ
る特許請求の範囲第1項記載の導電性樹脂成型材料。
(2) The conductive resin molding material according to claim 1, wherein the content of the conductive solid substance is 50 to 99% by weight.
(3)導電性固体物質と熱可塑性樹脂ラテックスを混合
して混合ラテックスを調製し、次いで混合ラテックスを
破壊して導電性固体物質とラテックス中のポリマー微粒
子を凝集させることを特徴とする導電性樹脂成型材料の
製造方法。
(3) A conductive resin characterized by mixing a conductive solid substance and a thermoplastic resin latex to prepare a mixed latex, and then destroying the mixed latex to aggregate the conductive solid substance and the polymer fine particles in the latex. Method of manufacturing molding material.
(4)混合ラテックスの破壊をラテックス破壊剤の添加
により行う特許請求の範囲第3項記載の導電性樹脂成型
材料の製造方法。
(4) The method for producing a conductive resin molding material according to claim 3, wherein the mixed latex is broken by adding a latex breaking agent.
(5)混合ラテックスの破壊を凍結等のラテックスを不
安定にする手段により行う特許請求の範囲第3項記載の
導電性樹脂成型材料の製造方法。
(5) The method for producing a conductive resin molding material according to claim 3, wherein the mixed latex is destroyed by means of destabilizing the latex, such as freezing.
(6)導電性固体物質の水性媒体分散液に電荷付与物質
を添加し、次いでこの電荷付与物質と反対電荷を有する
熱可塑性樹脂ラテックスを混合して導電性固体物質とラ
テックス中のポリマー微粒子をヘテロ凝集させることを
特徴とする導電性樹脂成型材料の製造方法。
(6) A charge imparting substance is added to an aqueous medium dispersion of a conductive solid substance, and then a thermoplastic resin latex having an opposite charge is mixed with the charge imparting substance to heterogeneize the conductive solid substance and polymer fine particles in the latex. A method for producing a conductive resin molding material, which comprises aggregating the material.
(7)電荷付与物質が、導電性固体物質の電位決定イオ
ンを有する電解質、多価陽イオン電解質、多価陰イオン
電解質、カチオン性界面活性剤、アニオン性界面活性剤
、カチオン性高分子電解質及びアニオン性高分子電解質
からなる一群から選択された少なくとも1種の物質であ
る特許請求の範囲第6項記載の導電性樹脂成型材料の製
造方法。
(7) The charge imparting substance is an electrolyte having a potential determining ion of a conductive solid substance, a polyvalent cation electrolyte, a polyvalent anion electrolyte, a cationic surfactant, an anionic surfactant, a cationic polymer electrolyte, and 7. The method for producing a conductive resin molding material according to claim 6, wherein the material is at least one substance selected from the group consisting of anionic polymer electrolytes.
JP17246784A 1984-08-21 1984-08-21 Electrical conductive resin molding material and production thereof Pending JPS6151061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17246784A JPS6151061A (en) 1984-08-21 1984-08-21 Electrical conductive resin molding material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17246784A JPS6151061A (en) 1984-08-21 1984-08-21 Electrical conductive resin molding material and production thereof

Publications (1)

Publication Number Publication Date
JPS6151061A true JPS6151061A (en) 1986-03-13

Family

ID=15942529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17246784A Pending JPS6151061A (en) 1984-08-21 1984-08-21 Electrical conductive resin molding material and production thereof

Country Status (1)

Country Link
JP (1) JPS6151061A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031423A (en) * 1989-01-06 1991-07-16 Ikenaga Co., Ltd. Pattern control device for flat knitting machines
US5509960A (en) * 1992-06-04 1996-04-23 Tioxide Group Services Limited Composite pigmentary material
US5554215A (en) * 1992-06-04 1996-09-10 Tioxide Specialties Limited Composite pigmentary material
US5643974A (en) * 1995-02-16 1997-07-01 Tioxide Group Services Limited Composite pigmentary material
US5672201A (en) * 1995-03-11 1997-09-30 Tioxide Group Services Limited Composite pigmentary material
US5869559A (en) * 1995-02-03 1999-02-09 Tioxide Group Services Limited Composite pigmentary material
US5952404A (en) * 1995-01-11 1999-09-14 Tioxide Group Services Limited Gloss emulsion paints
US6857294B2 (en) 2001-05-25 2005-02-22 Shima Seiki Manufacturing Limited Method for knitting intarsia pattern knitting fabric and knitting program producing device therefor
US6981393B2 (en) 2001-03-29 2006-01-03 Shima Seiki Mfg., Ltd. Yarn feeders of flat knitting machine
JP2007089858A (en) * 2005-09-29 2007-04-12 Toyobo Co Ltd Heat preservable laminate body
US7353668B2 (en) 2004-07-07 2008-04-08 Shima Seiki Mfg. Ltd. Yarn feeder of yarn feeding device for weft knitting machine
KR101129238B1 (en) 2004-02-17 2012-03-26 가부시키가이샤 시마세이키 세이사쿠쇼 Knitting method and knitting fabric for intersia pattern, knit designing device, and knitting program

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031423A (en) * 1989-01-06 1991-07-16 Ikenaga Co., Ltd. Pattern control device for flat knitting machines
US5509960A (en) * 1992-06-04 1996-04-23 Tioxide Group Services Limited Composite pigmentary material
US5554215A (en) * 1992-06-04 1996-09-10 Tioxide Specialties Limited Composite pigmentary material
US5952404A (en) * 1995-01-11 1999-09-14 Tioxide Group Services Limited Gloss emulsion paints
US5869559A (en) * 1995-02-03 1999-02-09 Tioxide Group Services Limited Composite pigmentary material
US5643974A (en) * 1995-02-16 1997-07-01 Tioxide Group Services Limited Composite pigmentary material
US5672201A (en) * 1995-03-11 1997-09-30 Tioxide Group Services Limited Composite pigmentary material
US6981393B2 (en) 2001-03-29 2006-01-03 Shima Seiki Mfg., Ltd. Yarn feeders of flat knitting machine
US6857294B2 (en) 2001-05-25 2005-02-22 Shima Seiki Manufacturing Limited Method for knitting intarsia pattern knitting fabric and knitting program producing device therefor
KR101129238B1 (en) 2004-02-17 2012-03-26 가부시키가이샤 시마세이키 세이사쿠쇼 Knitting method and knitting fabric for intersia pattern, knit designing device, and knitting program
US7353668B2 (en) 2004-07-07 2008-04-08 Shima Seiki Mfg. Ltd. Yarn feeder of yarn feeding device for weft knitting machine
JP2007089858A (en) * 2005-09-29 2007-04-12 Toyobo Co Ltd Heat preservable laminate body

Similar Documents

Publication Publication Date Title
JPS6151061A (en) Electrical conductive resin molding material and production thereof
KR101043273B1 (en) Electrostatic discharge polymer filler containing carbon nanotube enclosed with thermoplatic resin layer and manufacturing method therof
CN105623136B (en) A kind of composite conducting polymer material and preparation method thereof
CN108517123B (en) Modified composite material using carbon nano tube and graphene and preparation method thereof
CN101067031A (en) Prepn process of nanometer carbon black modified conductive plastic
Zhang et al. Dynamic and regional constructive electromagnetic protecting materials made by MWNT/Fe3O4/poly pyrrole doped vitrimers
CN104194131A (en) High-density polyethylene/graphene/polyaniline composite material and synthetic method thereof
JPS63193926A (en) Production of aqueous dispersion of polypyrroles
JP3313837B2 (en) Conductive plastic composition
CN110564113B (en) Conductive master batch and preparation method thereof
CA1339867C (en) High magnetic strenght magnets containing a flexible acrylate-amps binder
CN105482022B (en) The method that in-situ suspension polymerization prepares EVA/ graphene composite materials
KR102105472B1 (en) MBS based impact modifier, preparation method thereof, and polycarbonate resin composition comprising the same
CN101974246B (en) Composite modified conductive engineering plastic and preparation method thereof
JPS6151311A (en) Preparation of composite electrically-conductive resin pellet
JPS6255533B2 (en)
KR101198087B1 (en) Electrostatic discharge polymer filler containing graphene enclosed with thermoplatic resin layer and conductive thermoplastic resin composition and manufacturing methods therof
Wessling Electrical conductivity in heterogeneous polymer systems
JPS6225693B2 (en)
JP2000076926A (en) Manufacture of conductive powder capsule and conductive resin composition
JPH059460B2 (en)
JPS61218648A (en) Electrically conductive resin composition
JPS62283140A (en) Electrically-conductive rubber composition
JPH028258A (en) Self-temperature control heating element composition
JPH0311582A (en) Temperature self-controlling heat generator