JPS6149796A - Manufacture of superplastic aluminum alloy for diffused junction - Google Patents

Manufacture of superplastic aluminum alloy for diffused junction

Info

Publication number
JPS6149796A
JPS6149796A JP59169780A JP16978084A JPS6149796A JP S6149796 A JPS6149796 A JP S6149796A JP 59169780 A JP59169780 A JP 59169780A JP 16978084 A JP16978084 A JP 16978084A JP S6149796 A JPS6149796 A JP S6149796A
Authority
JP
Japan
Prior art keywords
temperature
less
alloy
superplastic
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59169780A
Other languages
Japanese (ja)
Inventor
Mitsuo Hino
光雄 日野
Takehiko Eto
武比古 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59169780A priority Critical patent/JPS6149796A/en
Publication of JPS6149796A publication Critical patent/JPS6149796A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/002Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of light metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys

Abstract

PURPOSE:To obtain a superplastic Al alloy having an excellent diffused junction property by preparing a core material of the Al alloy and a skin material of pure Al, and manufacturing a cladding material by specified working conditions. CONSTITUTION:As for a core material, one kind of alloy selected from each alloy of Al-Cu, Al-Mg, Al-Mg-Si, Al-Zn-Mg, and Al-Li is brought to homogeneous heat treatment. As for a skin material, Al whose purity is >=99.5wt%, consisting of <=0.10wt% Si, <=0.20wt% Fe, and <=0.15wt% other element is used. A clad material of one face or both faces is formed by hot clad rolling, and thereafter, heating holding of one step or two steps is executed at a temperature of 350-550 deg.C, and said material is cooled by a cooling speed of >=30 deg.C/Hr. Subsequently, cooling rolling of at least >=30% is executed, or cold rolling of 20- 60% is executed, and thereafter, low temperature softening annealing of <=30 deg.C and cold rolling are executed once or more.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は拡散接合用超塑性アルミニウム合金の製造方法
に関し、さらに詳しくは、拡散接合を可能にした微細粒
超塑性アルミニウム合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a method for producing a superplastic aluminum alloy for diffusion bonding, and more particularly to a method for producing a fine-grained superplastic aluminum alloy that enables diffusion bonding.

本発明に係る拡散接合用超塑性アルミニウム合金の製造
方法において、超塑性とは、ある外的条件の下で材料が
くびれ(neck口+g)なしに数百〜数千%という巨
大な伸びを生じる現象であり、恒温変態を利用した変態
超塑性と微細結晶粒材料に見られる微細粒超塑性との2
つに大別され、因に本発明は拡散接合ができる微細粒超
塑性アルミニウム合金の製造方法である。
In the method for manufacturing a superplastic aluminum alloy for diffusion bonding according to the present invention, superplasticity means that under certain external conditions, the material undergoes enormous elongation of several hundred to several thousand percent without necking (neck + g). It is a phenomenon that is divided into two types: transformation superplasticity using isothermal transformation and fine-grained superplasticity observed in fine-grained materials.
The present invention is a method for producing a fine-grained superplastic aluminum alloy that can be bonded by diffusion.

[従来技術] 一般に微細粒超塑性を起させるためには、その材料の結
晶粒径を制御することが必須であって、一方、拡散接合
(diffusion l)onding)とは材料の
融点以下の温度で材料同志を加圧して金属原子同志が互
に拡散して強固に結合することを利用した接合法である
[Prior art] In general, in order to cause fine-grain superplasticity, it is essential to control the crystal grain size of the material, and on the other hand, diffusion bonding is the process of bonding at a temperature below the melting point of the material. This is a bonding method that uses pressure to pressurize the materials together so that the metal atoms diffuse into each other and form a strong bond.

そして、拡散接合を起させるためには、温度、圧力、時
間等の外的条件の池に材料の結晶粒が細かいこと、表面
の酸化膜が破壊され易いこと、接合面が塑性変形し易い
こと等が必要な条件である。
In order for diffusion bonding to occur, the crystal grains of the material must be fine due to external conditions such as temperature, pressure, and time, the oxide film on the surface must be easily destroyed, and the joint surface must be easily deformed plastically. etc. are necessary conditions.

従って、超塑性材のように微細な結晶粒を有し、かつ、
比較的低い応力で変形する材料では拡散接合が有望視さ
れるのである。
Therefore, it has fine crystal grains like a superplastic material, and
Diffusion bonding holds promise for materials that deform with relatively low stress.

しかして、従来のAl−ZnMg系、Al−Cu系等の
超塑性アルミニウム合金では、表面の酸化膜がかなり丈
夫であるため拡散接合が困難であり、超塑性アルミニウ
ム合金を使用して構造体を製造するのに大きな障害とな
っていたのである。
However, with conventional superplastic aluminum alloys such as Al-ZnMg and Al-Cu, the oxide film on the surface is quite strong, making diffusion bonding difficult. This was a major hindrance to manufacturing.

[発明が解決しようとする問題点] 本発明は上記に説明した従来において困難であった拡散
接合を可能にした微細粒超塑性アルミニウム合金を製造
する方法を提供するものである。
[Problems to be Solved by the Invention] The present invention provides a method for manufacturing a fine-grained superplastic aluminum alloy that enables diffusion bonding, which has been difficult in the past, as described above.

[間m点を解決するだめの手段] 本発明に係る拡散接合用超塑性アルミニウム合金の製造
方法は、 (1)  Al−Cu系、Al−Mg系、AlMg−8
i系、Al−Zn−Mg系、Al  Li系の各合金よ
り選んだ1種類の合金を均質熱化処理して芯材とし、S
i 06Lout%未満、Fe 0.20wt%朱iE
、他の元素0.15wt%未満 の純度99.5wt%以上のアルミニウムを皮卆才とし
、 熱間合せ圧延により片面或ν1は両面のクラ・ノド材と
した後、350〜550℃の温度にお(1て1段階或い
は2段階の加熱保持を行なり・、30℃/ Hr以上の
冷却速度で冷却してから少なくとも30%以」二の冷間
圧延を行なうか或(・は20〜60%の冷間圧延を行な
った後、300℃以下の低)孟4欠イヒ焼鈍と冷間圧延
を1回以上行なうことを1与徴とする拡散接合用超塑性
アルミニウム合金の製造方法を第1の発明とし、 (2)  Al−Cu系、Al−Mg系、Al−MgS
i系、Al−Zn−N旬系、AlLi系の各合金よ1)
選んだ1種類の合金を均質化熱処理して芯ヰ1とし、S
i 0.10+++t%未満、F’e 0.20wt%
未にシj、他の元素061騒し%未テ;)1h の純度99.5wt%以上のアルミニウムを皮ヰ才とし
、 熱間合せ圧延により片面或いは両面のクララに材とした
後、350〜550℃の温度において1段階或いは2段
階の加熱保持を行ない、30℃/ Hr以上の冷却速度
で冷却してから少なくとを30%以上の冷間圧延を行な
うか或いは20〜60%の冷間圧延を行なった後、3 
t) 0 ℃以下の低温軟化焼鈍と冷間圧延を1回以上
行ない、さらに、 100℃/Hr以上の速度で350〜550℃に加熱し
、この350〜550℃の温度で加熱軟化処理を行なう
ことを特徴とする拡散接合用超塑性アルミニウム合金の
製造方法を第2の発明とする2つの発明よりなるもので
ある。  一本発明に係る拡散接合用超塑性アルミニウ
ム合金の製造方法について以下詳細に説明する。
[Means for solving the problem of point m] The method for producing a superplastic aluminum alloy for diffusion bonding according to the present invention includes: (1) Al-Cu series, Al-Mg series, AlMg-8
One type of alloy selected from i-based, Al-Zn-Mg-based, and AlLi-based alloys is subjected to homogeneous heat treatment to be used as a core material, and S
i Less than 06Lout%, Fe 0.20wt% Vermilion iE
The aluminum with a purity of 99.5 wt% or more with less than 0.15 wt% of other elements is used as a skin material, and after hot rolling to make one side or both sides of the aluminum material, it is heated to a temperature of 350 to 550 ° C. (1) Perform one or two stages of heating and holding, cool at a cooling rate of 30°C/Hr or higher, and then perform cold rolling of at least 30% or (2) % cold rolling, followed by low heat annealing at 300°C or less and cold rolling one or more times. (2) Al-Cu system, Al-Mg system, Al-MgS
i-based, Al-Zn-N-based, and AlLi-based alloys1)
One selected type of alloy is homogenized and heat treated to form Core I1, and S
i less than 0.10+++t%, F'e 0.20wt%
Aluminum with a purity of 99.5 wt% or more is made into a raw material with a purity of 99.5 wt% or more; Perform one or two stages of heating and holding at a temperature of 550°C, cool at a cooling rate of 30°C/Hr or more, and then cold-roll at least 30% or 20-60% cold rolling. After rolling, 3
t) Perform low-temperature softening annealing and cold rolling at 0°C or less once or more, and further heat to 350 to 550°C at a rate of 100°C/Hr or more, and perform heat softening treatment at this temperature of 350 to 550°C. This invention consists of two inventions, the second invention being a method for producing a superplastic aluminum alloy for diffusion bonding characterized by the following. A method for manufacturing a superplastic aluminum alloy for diffusion bonding according to the present invention will be described in detail below.

先ず、本発明に係る拡散接合用超塑性アルミニウム合金
の製造方法における熱処理方法および加工方法について
説明する。
First, the heat treatment method and processing method in the method for producing a superplastic aluminum alloy for diffusion bonding according to the present invention will be explained.

AlZn−Mg系、Al−Cu系、Al−Mg系、Al
  Li系合金の所定の含有成分および成分割合のアル
ミニウム合金を通常の方法或いは不活性雰囲気中(特に
、)\1−Li系合金)で鋳造して作製された鋳塊は、
内部に不均質に分布している主要元素の均質化および熱
聞圧延性を向上させるために通常400〜550 ℃の
温那において充分な1寺間均質化熱処理を行なって芯祠
とする。
AlZn-Mg series, Al-Cu series, Al-Mg series, Al
An ingot produced by casting an aluminum alloy with a predetermined content and proportion of Li-based alloy in a normal method or in an inert atmosphere (especially \1-Li-based alloy) is
In order to homogenize the main elements that are non-uniformly distributed inside and to improve hot rolling properties, a sufficient homogenization heat treatment is usually performed at a temperature of 400 to 550°C to form a core.

一方、Si 0.10wt%未満、Fe 0.20wt
%未::hiおよび他元素0.1Fout%未満である
純度99,5uit%の純アルミニウムの皮材は、通常
の方法で溶製後鋳遺して鋳塊としtこ後、400〜60
0 ℃の温度において均質化熱処理を行なって、300
〜500℃の温度において熱間圧延により所定の板厚に
加工される。
On the other hand, Si less than 0.10wt%, Fe 0.20wt%
Pure aluminum skin material with a purity of 99.5 uit%, which has less than 0.1 Fout% of hi and other elements, is melted by a normal method and then cast as an ingot.
Homogenization heat treatment was performed at a temperature of 0 °C, and 300
It is processed into a predetermined thickness by hot rolling at a temperature of ~500°C.

次いで、皮材を芯材の片面或いは両面に重ねてから、4
00〜550℃の温度に再加熱を行ない、300〜55
0℃の温度において熱間合せ圧延を行なって所定の板厚
まで加工するが、この時芯材および皮材は熱間ファイバ
ー組織になるの同時に、芯材にはCu、Mg、Zn、S
i、Li等の析出物およびZr、Cr、Mn、Ti等の
遷移元素の一部が組織中に部分析出する。さらに、この
熱間加工後に好ましくは、30%以上の冷間加工を行な
うことにより、より微細粒の材料が得られ、超塑性伸び
も大きくなる。
Next, layer the skin material on one or both sides of the core material, and then
Reheating to a temperature of 00 to 550℃, 300 to 55℃
Hot rolling is performed at a temperature of 0°C to process the plate to a predetermined thickness. At this time, the core material and the skin material have a hot fiber structure, and at the same time, the core material is coated with Cu, Mg, Zn, and S.
Precipitates such as i and Li and some transition elements such as Zr, Cr, Mn, and Ti are partially separated into the structure. Furthermore, by performing cold working preferably by 30% or more after this hot working, a material with finer grains can be obtained and the superplastic elongation can also be increased.

この熱間加工後に、350〜55Q℃の温度で0.5〜
20Hrの加熱保持をしてから、少なくとも30℃/H
r以上、好ましくは10(1’c/Hr以上の冷却速度
で冷却して固溶元素の強制固溶を図る。
After this hot working, at a temperature of 350-55Q℃, 0.5~
After heating and holding for 20 hours, at least 30℃/H
Cooling is performed at a cooling rate of at least r, preferably at least 10 (1'c/Hr) to force solid solution of the solid solution elements.

また、この熱処理を急速加熱、急速冷却が可能な連続焼
鈍炉により400〜550℃の温度で10sec〜10
+nin間行なってもよく、この加熱保持により芯材中
のCu、Mgs Zn、si、Li等は固溶され、一方
、遷移元素のZr、Cr、Mn等はA1と金属間化合物
Z r A l 3、Cr 2 M B ) A l 
ls、MnAla等を析出する。しかして、この1段の
加熱保持後の冷却速度が100℃/Hr未満では微細粒
が得られず伸びか畠にくくなる。
In addition, this heat treatment is performed at a temperature of 400 to 550°C for 10 seconds to 10 seconds using a continuous annealing furnace capable of rapid heating and rapid cooling.
This heating and holding may be carried out for a period of +nin, and Cu, Mgs Zn, Si, Li, etc. in the core material are dissolved in solid solution, while transition elements Zr, Cr, Mn, etc. are mixed with A1 and intermetallic compound Z r A l 3, Cr 2 M B ) A l
ls, MnAla, etc. are precipitated. However, if the cooling rate after this one stage of heating and holding is less than 100° C./Hr, fine grains will not be obtained and elongation will be difficult.

犬に、加熱保持を2段階で行なう場合について説明する
と、先ず、450〜550℃の温度で0.5〜10Hr
の第1回の加熱保持を行ない、続いて第2回の加熱保持
温度まで冷却し、350〜450℃の温度で0.5〜5
0Hrの第2回の加熱保持を行ない、30℃/Hr以上
の冷却速度で冷却する。この場合、加熱保持の温度が高
い程時間は短時間でよい。
To explain how to heat and hold a dog in two stages, first, heat the dog at a temperature of 450 to 550°C for 0.5 to 10 hours.
0.5 to 5 at a temperature of 350 to 450°C, followed by cooling to the second heating and holding temperature.
A second heating and holding period of 0 Hr is performed, and cooling is performed at a cooling rate of 30° C./Hr or more. In this case, the higher the temperature for heating and holding, the shorter the time may be.

この2回の加熱保持において、第1回の加熱保持により
析出している溶質元素はその大部分が固溶され、続いて
行なう第2回の加熱保持により遷移元素のZr、 Cr
、 hin等とAlとの金属間化合物ZrA1.、Cr
2tvig3AlH1M n A l 6等が析出する
In these two heating and holding operations, most of the solute elements precipitated by the first heating and holding process are dissolved in solid solution, and the transition elements Zr and Cr are then dissolved in the second heating and holding process.
, hin et al. and an intermetallic compound of Al ZrA1. ,Cr
2tvig3AlH1MnA16 etc. are precipitated.

そして、この2段階の加熱保持は、加熱保持を1段階で
行なった場合に比較して、遷移元素の析出形態が微細な
ことおよび若干のCu、 MH,Zn、Si、Li等の
A1との高温時効析出物が形成されるために、加熱保持
後の冷却速度が30℃/Hrと遅くなってもよく、製造
がより容易となり、かつ、冷開加工中に生成される転位
の密度がより高くなり、さらに、微細な結晶粒が生成さ
れて超塑性伸びの大きい材料が得られる。
In addition, this two-stage heating and holding process is different from the one-stage heating and holding process because the precipitation form of transition elements is finer and some of the elements such as Cu, MH, Zn, Si, and Li are mixed with A1. Due to the formation of high temperature aging precipitates, the cooling rate after heating and holding may be as slow as 30°C/Hr, making manufacturing easier and reducing the density of dislocations generated during cold opening. Furthermore, fine crystal grains are generated to obtain a material with large superplastic elongation.

また、この2段階加熱保持後の冷却速度が30℃/ H
r未満になると微細粒が得られ難くなる。
In addition, the cooling rate after this two-stage heating and holding is 30℃/H
When it is less than r, it becomes difficult to obtain fine grains.

これらの加熱保持により熱間ファイバー組織を形成して
いた転位の下部組織・は回復、再結晶により歪エネルギ
ーが低減され、続いて行なう冷間加工により転位が導入
され易くなり、かつ、Zr、Crs Mn等の析出粒子
により次の冷間加工後の超塑性温度域における加熱によ
って、材料中に生成される微細粒組織が保持されて超塑
性方体1−られる。
Through these heating and holding operations, the dislocation substructure that had formed the hot fiber structure recovers and recrystallization reduces the strain energy, and the subsequent cold working facilitates the introduction of dislocations. By heating in the superplastic temperature range after the next cold working due to precipitated particles such as Mn, the fine grain structure generated in the material is retained and a superplastic solid is formed.

次に、加熱保持後の30℃/Hr以上の冷却速度で冷却
した後、少なくとも30%以上の冷間加工を行なうので
あるが、30%未満の加工率では充分微細な結晶粒が得
られない。或いは、20〜60%の冷開加工とこれに続
く300℃以下の低温軟化焼鈍とを1回以上行なうこと
らでき、この低温軟化焼鈍を導入することによj)結晶
粒はさらに微細化される。
Next, after cooling at a cooling rate of 30°C/Hr or more after heating and holding, cold working of at least 30% is performed, but sufficiently fine grains cannot be obtained with a working rate of less than 30%. . Alternatively, cold-opening of 20 to 60% followed by low-temperature softening annealing at 300°C or less can be performed one or more times, and by introducing this low-temperature softening annealing, j) crystal grains can be further refined. Ru.

このようにして冷開加工された材料には、高い歪二不ル
ギ゛−を有する転位の下部sn糧が高密度に形成されて
いる。
In the material cold-opened in this manner, lower sn sources of dislocations having a high strain tolerance are formed at a high density.

この材料を引続き、通常0 、5 Th+iT+nは材
料の融点(絶対温度))以上の超塑性温度域(アルミニ
ウム合金では400 ℃以上)に加熱すると、4・1゛
科中の高密度の転位組風を起点として新しい結晶粒か形
成され、従って、転位密度は高密度である程微細粒組織
が得られる。そして、一度再結晶が完了すると結晶粒界
のエネルギーを減少させるため、転位が移動して結晶粒
が粗大化し、この粗大化した組織が超塑性変形を阻害す
ることになる。
When this material is subsequently heated to the superplastic temperature range (usually 400 °C or higher for aluminum alloys) above the melting point (absolute temperature) of the material (0,5 Th+iT+n is the melting point (absolute temperature) of the material), a high-density dislocation group in the 4.1 family is formed. New crystal grains are formed starting from the dislocations, and therefore, the higher the dislocation density, the finer the grain structure will be obtained. Once recrystallization is completed, the energy at the grain boundaries is reduced, so dislocations move and the crystal grains become coarser, and this coarsened structure inhibits superplastic deformation.

従って、本発明に係る拡散接合用超塑性アルミニウム合
金の製造方法における熱処理においては、熱間加工後の
一段階或いは二段階の加熱保持により形成されたZ r
 A l s、Cr2MgzA1.ll、MnAl6等
の析出物の寸法と分布とを制御することにより転位の移
動を阻止して、微細結晶粒組織を保持しているのである
。即ち、析出物寸法が小さ過ぎたり、析出粒子間隔が大
き過ぎると転位移動阻止効果が得られない。
Therefore, in the heat treatment in the method for producing a superplastic aluminum alloy for diffusion bonding according to the present invention, the Z r
Al s, Cr2MgzA1. By controlling the size and distribution of precipitates such as ll, MnAl6, etc., movement of dislocations is prevented and a fine grain structure is maintained. That is, if the size of the precipitates is too small or the distance between the precipitated particles is too large, the effect of inhibiting dislocation movement cannot be obtained.

加熱後の加圧(通常はAr等の不活性ガスが用ν・られ
る。)により材料は超塑性変形して接合面を埋めると同
時に、微細粒のため単位体積当りの粒界の占める割合も
多く、この粒界を通して拡散原子が優先的に拡rrl 
(粒界拡散)される。このような理由により、通常の粗
大粒材料より拡散接合特性が優れているのである。
By applying pressure after heating (usually using an inert gas such as Ar), the material deforms superplastically and fills the joint surface, and at the same time, due to the fine grains, the proportion of grain boundaries per unit volume decreases. In many cases, diffused atoms preferentially spread through these grain boundaries.
(grain boundary diffusion). For these reasons, it has better diffusion bonding properties than ordinary coarse-grained materials.

なお、本発明に係る拡散接合用超塑性アルミニウム合金
の製造方法において使用する皮材は、Si0.10wt
%未満、Fe 0.20wt%未満および他の元素0、
15wt%未満である純度99.5wt%以上の純アル
ミニウム系合金であるので、従来のように、Cu。
The skin material used in the method for manufacturing a superplastic aluminum alloy for diffusion bonding according to the present invention is Si0.10wt.
%, less than 0.20 wt% Fe and 0 other elements,
Since it is a pure aluminum alloy with a purity of 99.5 wt% or more, which is less than 15 wt%, Cu is used as conventionally.

MH,Zn、Li等の極めて強固な酸化膜に覆われてい
るアルミニウム合金同志の拡散接合と比較して、酸化膜
が薄く、かつ、除去し易いことがら濠れた拡散接合性を
有している。
Compared to diffusion bonding of aluminum alloys that are covered with extremely strong oxide films such as MH, Zn, and Li, the oxide film is thinner and easier to remove, resulting in excellent diffusion bonding properties. There is.

さらに、本発明に係る拡散接合用超塑性アルミ・ニウム
合金の製造方法により製造された材料は、冷間加工した
ままの状態で超塑性加工を行なってもよいが、冷間加工
後に、1.0’O℃/ Hr以上の加熱速度で加熱し、
350〜550℃の温度で4欠化してか呟拡散接合に使
用すること力t″C−bる。
Furthermore, the material manufactured by the method for manufacturing a superplastic aluminum/nium alloy for diffusion bonding according to the present invention may be subjected to superplastic working in the same state as cold working, but after cold working, 1. Heating at a heating rate of 0'O℃/Hr or more,
It can be cleaved at a temperature of 350 to 550°C and used for diffusion bonding.

次に、本発明に係る拡散接合用超塑性アルミニウム合金
の製造方法にお(1て対象となるアルミニウム合金につ
いて説明する。
Next, in the method for producing a superplastic aluminum alloy for diffusion bonding according to the present invention (1), the target aluminum alloy will be explained.

Al  CLI系アルアルミニウム合金Cu 2−7u
+L%を必須成分として含有し、Mg 2.5wt%以
下、512wt%以下、Mn 0.05〜2.Ou+L
%、Or 0.05〜0.5u+j%、  Zr  0
.05−0,5wt%、  V  0.05〜0.5w
t%、Ti 0.15wt%以下の中から選んだ1種ま
たは2種以上を含有し、残部A1および゛不純物からな
るアルミニウム合金である。
Al CLI type aluminum alloy Cu 2-7u
+L% as an essential component, Mg 2.5wt% or less, 512wt% or less, Mn 0.05-2. Ou+L
%, Or 0.05-0.5u+j%, Zr 0
.. 05-0.5wt%, V 0.05-0.5w
It is an aluminum alloy containing one or more selected from 0.15wt% or less of Ti and 0.15wt% or less of Ti, and the remainder consisting of A1 and impurities.

Al−Mg系アルミニウム合金は、Mg2〜7u+L%
を必須成分として含有し、Mn 0.05〜1,5u+
L%、Cr  0.05−0,5wt%、  Zr  
0.05−0,5wt%、V  0605〜0,5wt
%、Ti0.15田t%以下の中から選んだ1種または
2種以上を含有し、残部Alおよび不純物からなるアル
ミニウム合金である。
Al-Mg-based aluminum alloy has Mg2~7u+L%
Contains Mn as an essential component, Mn 0.05-1.5u+
L%, Cr 0.05-0.5wt%, Zr
0.05-0.5wt%, V 0605-0.5wt
%, Ti or less than 0.15 t%, and the balance is Al and impurities.

lXl  Mg  Si系アルミニウム合金は、MHo
、5〜2.0田L%、Si0.3〜5.Ou+L%を必
須成分として含有し、Cu 1ust%以下、Mn 0
.5−1.5u+L%、Cr 0.05−0.5wt%
、Zr 0005−0.5wt%、■0.05〜0.5
wt%、Ti0.15田t%以下の中から選んだ1種ま
たは2種以上を含有し、残部A+および不純物からなる
アルミニウム合金である。
lXl Mg Si-based aluminum alloy is MHo
, 5-2.0 L%, Si0.3-5. Contains Ou + L% as essential components, Cu 1ust% or less, Mn 0
.. 5-1.5u+L%, Cr 0.05-0.5wt%
, Zr 0005-0.5wt%, ■0.05-0.5
It is an aluminum alloy containing one or more selected from wt%, Ti and 0.15t% or less, and the balance is A+ and impurities.

Al−Zn−Mg系アルミニウム合金は、Zn3〜ht
%、Mg 0.5〜3wt%を必須成分として含有し、
Cu3wし%以下、Mn 0.05−2.Owt%、C
r0.05〜0.5wt%、Zr 0.05−0,5w
t%、■0.05〜0.5wt%、Ti 0.15wt
%の中から選んだ1種または2種以上を含有し、残部A
1および不純物からなるアルミニウム合金である。
Al-Zn-Mg-based aluminum alloys contain Zn3~ht
%, Mg 0.5 to 3 wt% as an essential component,
Cu3w% or less, Mn 0.05-2. Owt%,C
r0.05-0.5wt%, Zr0.05-0.5w
t%, ■0.05-0.5wt%, Ti 0.15wt
Contains one or more selected from %, and the remainder is A.
1 and impurities.

Al−Li系アルミニウム合金は、Lil〜5wt%を
必須成分として含有し、Si 0.3〜2wt%、Cu
0.5〜5wt%、Mg 0.5〜6wt%、Zn 0
.5−6wt%、Cr 0.05〜0.5wt%、Zr
 0.05−0,5ult%、\i0.05〜0.ht
%、Mn 0.5−2.Owt%、Hf 0.05−1
゜−し%あ中から選んだ1種または2種以上を含有し、
残部A1および不純物からなるアルミニウム。
The Al-Li-based aluminum alloy contains Lil to 5 wt% as essential components, Si 0.3 to 2 wt%, Cu
0.5-5wt%, Mg 0.5-6wt%, Zn 0
.. 5-6wt%, Cr 0.05-0.5wt%, Zr
0.05-0.5ult%, \i0.05-0. ht
%, Mn 0.5-2. Owt%, Hf 0.05-1
Contains one or more selected from ゜-shi%,
Aluminum consisting of the remainder A1 and impurities.

合金である。It is an alloy.

次に、本発明に係る拡散接合用M塑性アルミニウム合金
の製造方法におい゛ζ便用する皮材としてのアルミニウ
ムについて説明する。
Next, aluminum as a skin material used in the method for producing an M plastic aluminum alloy for diffusion bonding according to the present invention will be explained.

Fe含有量が0.20wt%、Si含有量か0.10w
t%を越えて含有されると鋳造時生成する晶出化合物が
多くなるため、材料の変形能を低下させ拡散接合能か低
下するのでFe含有量は0.2軸L%未7+:Ni、S
;含有量は0.10wt%未満とし、また、アルミニウ
ムの純度が99,5wt%未満になると拡散接合能が低
下するのでアルミニウム純度は99.5wt%以上とす
る。そして、その他の元素は0.15wt%を越えて含
有されると、表面酸化膜の形成や晶出物の生成等拡散接
合上有害となるので、池元素の含有量は0.15wt%
未満とする。なお、結晶粒微細化元素として、Ti 0
.05wt%以下含有させることかできる。
Fe content is 0.20wt%, Si content is 0.10w
If the Fe content exceeds t%, more crystallized compounds will be generated during casting, which will reduce the deformability of the material and the diffusion bonding ability. S
;The content is less than 0.10 wt%, and since the diffusion bonding ability decreases when the aluminum purity is less than 99.5 wt%, the aluminum purity is set to be 99.5 wt% or more. If the content of other elements exceeds 0.15 wt%, it will be harmful to diffusion bonding, such as the formation of a surface oxide film or the formation of crystallized substances, so the content of the pond element should be 0.15 wt%.
less than In addition, as a grain refining element, Ti 0
.. It can be contained in an amount of 0.05 wt% or less.

[実施例1 本発明に係る拡散接合用M塑性アルミニウム合金の製造
方法について実施例を説明する。
[Example 1] An example will be described regarding the method for producing an M plastic aluminum alloy for diffusion bonding according to the present invention.

実施例1 第1表に示す代表的なAl  Zo  Mg系、Al−
Cu系、Al  Mg系、Al  MB  Si、v、
およびAlLi系のアルミニウム合金の芯材と純A I
 Mの皮材とを作製し、第2表に示す製造加工条件によ
り最終板厚2 、5 mb+の合せ材(片面クラッド率
3%)を製造した。
Example 1 Typical Al Zo Mg series shown in Table 1, Al-
Cu-based, Al Mg-based, Al MB Si, v,
and AlLi-based aluminum alloy core material and pure AI
M skin material was prepared, and a laminated material (one-sided cladding ratio: 3%) with a final plate thickness of 2.5 mb+ was manufactured according to the manufacturing processing conditions shown in Table 2.

これらの超塑性特性を第3表に示す。優れた超塑性伸び
を示していることがわかる。
Their superplastic properties are shown in Table 3. It can be seen that it shows excellent superplastic elongation.

次に、拡散接合試験結果を第4表に示す。Next, the results of the diffusion bonding test are shown in Table 4.

比較材(1)は第1表のNo、 1− No、 5の合
金て・微細粒の超塑性材(厚さ2.5+I1m)を作成
し、芯材だけで拡散接合したものである。
Comparative material (1) was prepared from alloys No. 1- No. 5 in Table 1 and made from fine-grained superplastic material (thickness 2.5 + I1 m) and diffusion bonded using only the core material.

比較材(2)は通常の方法によって厚さ2 、5 ma
Ilの合せ材(片面クラッド率3%)を作成し、拡散接
合したものである。
Comparative material (2) was made to a thickness of 2.5 m by a normal method.
A composite material of Il (one-sided cladding ratio: 3%) was prepared and diffusion bonded.

この第4表から明らかなように、本発明に係る拡散接合
試験結果アルミニウム合金の製造方法による材料は俟れ
た拡散接合性を示しており、比較材はその何れもが拡散
接合性が不良であることがわかる。
As is clear from Table 4, the results of the diffusion bonding test according to the present invention show that the materials produced by the aluminum alloy manufacturing method exhibit poor diffusion bonding properties, while all of the comparative materials exhibit poor diffusion bonding properties. I understand that there is something.

実施例2 実施例1に示すNo、1合金(Al−Zn−N話系合金
)を芯材とし、第5表に示す3種類の純Alを皮材とし
、第2表の供試材Aと同じ製造条件で厚さ2 、511
1h+の合せ材(片面クラッド率3%)を作製した。
Example 2 The No. 1 alloy (Al-Zn-N alloy) shown in Example 1 was used as the core material, the three types of pure Al shown in Table 5 were used as the skin material, and the test material A shown in Table 2 was used as the core material. Thickness 2,511 under the same manufacturing conditions as
A 1h+ laminated material (one-sided cladding ratio: 3%) was produced.

その超塑性特性は第6表に示すように、特に、純度99
.5wt%以上の供試材GおよびHが同じくFに比べて
優れていることは明らかである。
As shown in Table 6, its superplastic properties are particularly high with a purity of 99%.
.. It is clear that test materials G and H containing 5 wt% or more are also superior to F.

次に、拡散接合試験結果を第7表に示す。Next, the results of the diffusion bonding test are shown in Table 7.

この第7表から明らかであるが、Fe、Si含有量を規
制したH材が最も良好な拡散接合性を示していることが
わかる。また、Fe、Si含有量の多いF材は拡散接合
性は不良であることがわかる。
As is clear from Table 7, material H with controlled Fe and Si contents exhibits the best diffusion bonding properties. Further, it can be seen that the diffusion bonding property of F material with high content of Fe and Si is poor.

2)拡散接合性:     ◎   〉   ○   
〉   ×極めて良好     良好       不
良[発明の効果] 以上説明したように、本発明に係る拡散接合用超塑性ア
ルミニウム合金の製造方法は上記に説明した構成を有し
ているものであるから、アルミニウム合金と純アルミニ
ウムのクラ・ンド材の拡散接合を可能とした微細#1.
超塑性アルミニウム合金を製造できるという優れた効果
を有するものである。
2) Diffusion bondability: ◎ 〉 ○
〉 ×Extremely Good Good Poor [Effects of the Invention] As explained above, since the method for producing a superplastic aluminum alloy for diffusion bonding according to the present invention has the above-described structure, Fine #1 which enables diffusion bonding of pure aluminum clamp and bond materials.
This method has the excellent effect of producing a superplastic aluminum alloy.

Claims (2)

【特許請求の範囲】[Claims] (1)Al−Cu系、Al−Mg系、Al−Mg−Si
系、Al−Zn−Mg系、Al−Li系の各合金より選
んだ1種類の合金を均質熱化処理して芯材とし、Si0
.10wt%未満、Fe0.20wt%未満、他の元素
0.15wt%未満の純度99.5wt%以上のアルミ
ニウムを皮材とし、 熱間合せ圧延により片面或いは両面のクラッド材とした
後、350〜550℃の温度において1段階或いは2段
階の加熱保持を行ない、30℃/Hr以上の冷却速度で
冷却してから少なくとも30%以上の冷間圧延を行なう
か或いは20〜60%の冷間圧延を行なった後、300
℃以下の低温軟化焼鈍と冷間圧延を1回以上行なうこと
を特徴とする拡散接合用超塑性アルミニウム合金の製造
方法。
(1) Al-Cu system, Al-Mg system, Al-Mg-Si
One type of alloy selected from the following alloys: Al-Zn-Mg, Al-Li, and Si0
.. The skin material is aluminum with a purity of 99.5 wt% or more containing less than 10 wt%, less than 0.20 wt% of Fe, and less than 0.15 wt% of other elements, and after hot rolling to form a cladding material on one or both sides, the aluminum is 350 to 550 Perform one or two stages of heating and holding at a temperature of °C, cool at a cooling rate of 30 °C/Hr or more, and then cold-roll at least 30% or 20-60%. After that, 300
1. A method for producing a superplastic aluminum alloy for diffusion bonding, which comprises performing low-temperature softening annealing at a temperature below 0.degree. C. and cold rolling at least once.
(2)Al−Cu系、Al−Mg系、Al−Mg−Si
系、Al−Zn−Mg系、Al−Li系の各合金より選
んだ1種類の合金を均質化熱処理して芯材とし、Si0
.10wt%未満、Fe0.20wt%未満、他の元素
0.15wt%未満の純度99.5wt%以上のアルミ
ニウムを皮材とし、 熱間合せ圧延により片面或いは両面のクラッド材とした
後、350〜550℃の温度において1段階或いは2段
階の加熱保持を行ない、30℃/Hr以上の冷却速度で
冷却してから少なくとを30%以上の冷間圧延を行なう
か或いは20〜60%の冷間圧延を行なった後、300
℃以下の低温軟化焼鈍と冷間圧延を1回以上行ない、さ
らに、100℃/Hr以上の速度で350〜550℃に
加熱し、この350〜550℃の温度で加熱軟化処理を
行なうことを特徴とする拡散接合用超塑性アルミニウム
合金の製造方法。
(2) Al-Cu system, Al-Mg system, Al-Mg-Si
One type of alloy selected from the following alloys is homogenized and heat-treated as a core material, and Si0
.. The skin material is aluminum with a purity of 99.5 wt% or more containing less than 10 wt%, less than 0.20 wt% of Fe, and less than 0.15 wt% of other elements, and after hot rolling to form a cladding material on one or both sides, the aluminum is 350 to 550 1 or 2 stages of heating and holding at a temperature of 30°C, cooling at a cooling rate of 30°C/Hr or more, and then cold rolling at least 30% or 20 to 60% cold rolling. After doing 300
It is characterized by performing low-temperature softening annealing and cold rolling at least once at a temperature of 100°C or lower, heating to 350 to 550°C at a rate of 100°C/Hr or more, and performing heat softening treatment at this temperature of 350 to 550°C. A method for manufacturing a superplastic aluminum alloy for diffusion bonding.
JP59169780A 1984-08-14 1984-08-14 Manufacture of superplastic aluminum alloy for diffused junction Pending JPS6149796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59169780A JPS6149796A (en) 1984-08-14 1984-08-14 Manufacture of superplastic aluminum alloy for diffused junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59169780A JPS6149796A (en) 1984-08-14 1984-08-14 Manufacture of superplastic aluminum alloy for diffused junction

Publications (1)

Publication Number Publication Date
JPS6149796A true JPS6149796A (en) 1986-03-11

Family

ID=15892724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59169780A Pending JPS6149796A (en) 1984-08-14 1984-08-14 Manufacture of superplastic aluminum alloy for diffused junction

Country Status (1)

Country Link
JP (1) JPS6149796A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006053701A2 (en) * 2004-11-16 2006-05-26 Aleris Aluminum Duffel Bvba Aluminium composite sheet material
WO2007118313A1 (en) * 2006-04-13 2007-10-25 Novelis Inc. Cladding superplastic allows
US7666267B2 (en) 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
US7901789B2 (en) 2006-05-02 2011-03-08 Aleris Aluminum Duffel Bvba Aluminium composite sheet material
US8968882B2 (en) 2006-05-02 2015-03-03 Aleris Aluminum Duffel Bvba Clad sheet product
JP2018168468A (en) * 2017-03-30 2018-11-01 株式会社Uacj Aluminum alloy clad material and manufacturing method therefor
CN110340330A (en) * 2018-04-08 2019-10-18 南京理工大学 A kind of multiple dimensioned preparation method that heterogeneous stratiform structural al alloy is precipitated
US10472707B2 (en) 2003-04-10 2019-11-12 Aleris Rolled Products Germany Gmbh Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666267B2 (en) 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
US10472707B2 (en) 2003-04-10 2019-11-12 Aleris Rolled Products Germany Gmbh Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties
EP3461635A1 (en) * 2004-11-16 2019-04-03 Aleris Aluminum Duffel BVBA Aluminium composite sheet material
WO2006053701A2 (en) * 2004-11-16 2006-05-26 Aleris Aluminum Duffel Bvba Aluminium composite sheet material
WO2006053701A3 (en) * 2004-11-16 2007-09-07 Aleris Aluminum Duffel Bvba Aluminium composite sheet material
US8846209B2 (en) 2004-11-16 2014-09-30 Aleris Aluminum Duffel Bvba Aluminium composite sheet material
EP2015933A4 (en) * 2006-04-13 2012-05-02 Novelis Inc Cladding superplastic allows
US7762310B2 (en) 2006-04-13 2010-07-27 Novelis Inc. Cladding superplastic alloys
EP2015933A1 (en) * 2006-04-13 2009-01-21 Novelis Inc. Cladding superplastic allows
WO2007118313A1 (en) * 2006-04-13 2007-10-25 Novelis Inc. Cladding superplastic allows
US7901789B2 (en) 2006-05-02 2011-03-08 Aleris Aluminum Duffel Bvba Aluminium composite sheet material
US7968211B2 (en) 2006-05-02 2011-06-28 Aleris Aluminum Duffel Bvba Aluminium composite sheet material
US8968882B2 (en) 2006-05-02 2015-03-03 Aleris Aluminum Duffel Bvba Clad sheet product
JP2018168468A (en) * 2017-03-30 2018-11-01 株式会社Uacj Aluminum alloy clad material and manufacturing method therefor
CN110340330A (en) * 2018-04-08 2019-10-18 南京理工大学 A kind of multiple dimensioned preparation method that heterogeneous stratiform structural al alloy is precipitated
CN110340330B (en) * 2018-04-08 2022-01-14 南京理工大学 Preparation method of multi-scale precipitation heterogeneous layered structure aluminum alloy

Similar Documents

Publication Publication Date Title
US6939416B2 (en) Weldable high strenght Al-Mg-Si alloy
JPH07145441A (en) Superplastic aluminum alloy and its production
JPS63501883A (en) Aluminum-lithium alloy and method of manufacturing the same
JPS6149796A (en) Manufacture of superplastic aluminum alloy for diffused junction
JPH06256917A (en) Production of aluminum alloy sheet having delayed aging characteristic at ordinary temperature
JPS6156269A (en) Manufacture of super plastic al-li alloy
JPH0754012A (en) Method for forging high yield strength and high toughness aluminum alloy powder
JPH0261025A (en) Al-si alloy plate material having excellent formability and its manufacture
JP3145904B2 (en) Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
JPS60251260A (en) Manufacture of super plastic aluminum alloy
JPH07116567B2 (en) Method for producing A1-Cu-Li-Zr superplastic plate
JP2831157B2 (en) Al-Mg based superplastic aluminum alloy sheet excellent in strength and corrosion resistance and method for producing the same
JPS60238460A (en) Manufacture of superplastic aluminum alloy
JPH0418019B2 (en)
JPS6157384B2 (en)
JPH03183750A (en) Production of superplastic aluminum alloy having high strength
JPS60238461A (en) Manufacture of superplastic aluminum alloy
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
KR960007633B1 (en) Al-mg alloy &amp; the preparation
JPS6086248A (en) Preparation of super-plastic aluminum alloy
JPS6286150A (en) Manufacture of superplastic aluminum alloy
JPS6086250A (en) Preparation of super-plastic aluminum alloy
JPS60238462A (en) Manufacture of superplastic aluminum alloy
JPS6188988A (en) Production of superplastic aluminum alloy having excellent corrosion resistance
JPH07116569B2 (en) Method for producing A1-Li-Cu-Mg based superplastic plate with little anisotropy