JPS6149601A - Field chopper controller for electric rolling stock - Google Patents

Field chopper controller for electric rolling stock

Info

Publication number
JPS6149601A
JPS6149601A JP17037284A JP17037284A JPS6149601A JP S6149601 A JPS6149601 A JP S6149601A JP 17037284 A JP17037284 A JP 17037284A JP 17037284 A JP17037284 A JP 17037284A JP S6149601 A JPS6149601 A JP S6149601A
Authority
JP
Japan
Prior art keywords
brake
torque
ltq
current
braking force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17037284A
Other languages
Japanese (ja)
Inventor
Hideo Sakai
秀雄 阪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17037284A priority Critical patent/JPS6149601A/en
Publication of JPS6149601A publication Critical patent/JPS6149601A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To prevent brake power from being attenuated, by a method wherein the reduction of main motor current before stopping of an electric rolling stock is detected and the signal of torque which is moderately lower than actually activated regeneration brake power is applied to a brake control circuit. CONSTITUTION:Field current is controlled by the comparison circuit 3 of a field current control means 100 according to difference between a desired torque signal TQ based on brake torque command and an actual torque signal LTQ which is activated as regeneration brake power obtained from field current If multiplied by armature current Ia. In the meantime, an air brake is controlled by a mechanical brake control means 300 according to the difference between brake torque command and actual torque signal LTQ. When the speed of an electric rolling stock is lowered and actual torque signal LTQ corresponding to brake torque command is not generated, then voltage divided by a reference voltage -e0 through a resistance 10 with a contact point 9 turned on is applied to a brake control circuit by a torque attenuation detection means 400.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は1回生ブレーキとa4mブレーキとの総合ブ
レーキ力の補足演箕を行なう電気車用界イ1゛にチョッ
パ!1iiJ 御装置において、ブレーキをかけた時に
電気車の車速かある速度まで低下して回生ブレーキ力が
減衰1−始めたことを検知したら1機械ブレーキ911
えは空気ブレーキを素早やく立ち上がらせ回生ブレーキ
から応答特性の悪い空気ブレーキへブレーキ力の落ち込
み無しに滑らかに切替える電気車用界磁チョッパ制御装
置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention is a chopper in the world of electric vehicles that supplements the total braking force of the 1st regenerative brake and the A4M brake! 1iiJ If the control device detects that the vehicle speed of the electric vehicle has decreased to a certain speed and the regenerative braking force has started to decay when the brakes are applied, 1 Mechanical brake 911
The present invention relates to a field chopper control device for electric vehicles that quickly activates the air brake and smoothly switches from regenerative braking to air braking with poor response characteristics without a drop in braking force.

〔従来技術〕[Prior art]

回生ブレーキは1回生エネルギーを吸収するいわゆる1
回生負荷の有無あるいは大小に影響されるため1回生ブ
レーキのみでは所定のブレーキ力が得られないことがあ
るので1通常、空気ブレーキ等の他の機械ブレーキでバ
ンクアップし、常IC4足制個を行なう方式を採用して
いる。
Regenerative braking is the so-called 1 that absorbs regenerative energy.
Because it is affected by the presence or absence of regenerative load or its size, it may not be possible to obtain the required braking force with just one regenerative brake. 1. Normally, other mechanical brakes such as air brakes are used to bank up, and the IC 4-leg control is normally applied. We have adopted a method to do so.

第1図は例えば特願昭!t−g9タ26号に開示された
、回生ブレーキと空気ブレーキとを併用する電気車用界
磁チョンパ卸I例装置を示し、以下これについて説明す
る。
Figure 1 is an example of Tokugansho! An example device for electric vehicle field magnets that uses both a regenerative brake and an air brake, which was disclosed in T-G9 Ta No. 26, is shown below, and will be described below.

第1図において、パターン発生回路/、トルク変換回路
a寸dよび比較回路3は界磁電流開削手段IOを477
j成し、界磁Tf流検出器9.電機子′石流検出器よお
よび乗算器6は乗算手段2oを構成している。、また1
機械ブレーキ制u0手段2oけプレーキ制御回路7で構
成され、この場合は空気ブレーキ装置を制御する。ブレ
ーキトルク指令は、パターン発生口fljf−tにおい
て指令値IPK変換され、さらに、トルク変換回路−に
おいて所望トルクを表わす信号TQK”変換される。こ
の所望トルク信号TQが、比較回路Jを通して電気車の
主電動機(図示しない)の界磁電流rfを制御、つまり
この場合は増大させる。一方、界磁電流検出器ダにより
電気車の主電動機の界磁電流1fを検出し。
In FIG. 1, the pattern generation circuit/torque conversion circuit a dimension d and comparison circuit 3 connect the field current cutting means IO to 477
j, field Tf current detector9. The armature, stone flow detector, and multiplier 6 constitute a multiplication means 2o. , also 1
The mechanical brake control means 2o consists of a brake control circuit 7, which in this case controls an air brake device. The brake torque command is converted into a command value IPK at the pattern generation port fljf-t, and further converted into a signal TQK representing the desired torque at the torque conversion circuit. The field current rf of the main motor (not shown) is controlled, that is, increased in this case.Meanwhile, the field current detector DA detects the field current 1f of the main motor of the electric vehicle.

電機子電流検出器jKより主電動機電流である電機子電
流工aを検出し1乗算器6によりIaXJfの掛算が行
なわれ、実際に回生ブレーキ力とじて作用している実ト
ルクを表わす信号LTQが求められる。この実トルク信
号LTQは比較回路3に負入力され、正入力された前述
の所望トルク信号TQと常に比較されており、界磁1流
1fはブレーキトルク指令に応じた大きさに制御される
。また。
The armature current detector jK detects the armature current a, which is the main motor current, and multiplies it by IaXJf by the 1 multiplier 6, resulting in a signal LTQ representing the actual torque actually acting as regenerative braking force. Desired. This actual torque signal LTQ is input as a negative input into the comparator circuit 3 and is constantly compared with the above-mentioned desired torque signal TQ that is input as a positive input, and the field 1 current 1f is controlled to have a magnitude according to the brake torque command. Also.

ブレーキ制゛画回路7にはブレーキトルク指令が正入力
、実トルク信号L’I’Qが負入力されており、このブ
レーキ制御回路りで両者の演算(説明は省略回生ブレー
キ力の不足分はブレーキ制御回路りによって空気ブレー
キ装置(図示しない)を作動させることにより補足され
る。
The brake control circuit 7 has a positive input of the brake torque command and a negative input of the actual torque signal L'I'Q, and this brake control circuit calculates both (the explanation is omitted). This is supplemented by actuation of a pneumatic brake system (not shown) by a brake control circuit.

前述のような回生ブレーキとを気ブレーキとを併用した
従来方式の電気車用界研チョッパ制閤装置では、電機子
電流Iaと界磁電流IfからIaXIfの一部ブレーキ
トルクを発生するように制御されており1回生負荷が充
分にある場合、ブレーキ指令が出されると電気車の電機
子電流Iaと界磁電流Ifの関係は、電気車の速度の低
下とともに′を機子電流Iaが減衰するのでこれに見合
うように界磁電流Ifを増大させ、一定プレーキトルク
になるよう制閾される。しかしながら、停車直前になる
と電気車の速度がかなり低下しているため、界磁電流r
fの増加率が増え、界磁官流工fが定格値に迷すると主
M、#機の起電力が下がり。
In the conventional chopper control device for electric vehicles that uses regenerative braking and air braking in combination as described above, control is performed to generate a partial brake torque of IaXIf from armature current Ia and field current If. If the regenerative load is sufficient and a brake command is issued, the relationship between the armature current Ia of the electric car and the field current If is such that the armature current Ia attenuates as the speed of the electric car decreases. Therefore, the field current If is increased accordingly, and the brake torque is controlled to a constant value. However, the speed of the electric car drops considerably just before it stops, so the field current r
When the rate of increase of f increases and the field force f is not within the rated value, the electromotive force of the main M and # machines decreases.

回路の内部抵抗により電機子電流raは急速に減衰する
。これはに2図(a)および第一図(b)に示されてお
り、第2図(a)には電機子電流1a、第一図(b)に
は界磁電流Ifのそれぞれブレーキ指令が出された時の
時間的変化が示されている。この電機子電流Iaが急速
に減衰するということは、回生ブレーキ力が急速に減衰
するということであり、応答特性の悪い空気ブレーキす
なわち、むだ時間や立上り時定数が大きい空気ブレーキ
は回生ブレーキ力の減衰に追従できず、総合ブレーキ力
に落ち込みが生じる。第2図(C)にはこれらの回生ブ
レーキカ、空気ブレーキ力、および総合ブレーキ力の時
間的変化が示されている。
The armature current ra decays rapidly due to the internal resistance of the circuit. This is shown in Fig. 2(a) and Fig. 1(b), where Fig. 2(a) shows the armature current 1a, and Fig. 1(b) shows the brake command for the field current If. The temporal changes when the is issued are shown. A rapid attenuation of this armature current Ia means a rapid attenuation of the regenerative braking force, and an air brake with poor response characteristics, that is, an air brake with a large dead time and rise time constant, will reduce the regenerative braking force. Unable to follow the damping, the overall braking force drops. FIG. 2(C) shows temporal changes in the regenerative braking force, air braking force, and total braking force.

このように1回生ブレーキを最大限に使用すると、停車
直前で買激に回生ブレーキ力が弱まり。
If you use the first regenerative brake to its full potential in this way, the regenerative braking force will suddenly weaken just before the car comes to a stop.

これを補足する空気ブレーキの反応が遅いために滑らか
な切替えができず1乗心地を低下させるだけでなく、保
安上の問題にもなっている。
Complementary to this is the slow response of the air brake, which prevents smooth switching, which not only reduces ride comfort but also poses a safety issue.

この問題を解決するため、従来は第3図に示す回生ブレ
ーキ力の減衰を緩やかにすることにより応答性の悪い空
気ブレーキと組合せて回生ブレーキと空気ブレーキの切
替えを滑らかにして、総合ブレーキ力の落込みを無くし
ているが、この場合も空気ブレーキの応答が悪<83図
(C)に示すように回生ブレーキ力がある程度低下しな
いと空気ブレーキ力が立ち上がらない無応答時間があり
、総合ブレーキ力が落ち込むことはさけられなかった。
In order to solve this problem, conventional methods have been to reduce the attenuation of regenerative braking force as shown in Figure 3, thereby smoothing the switching between regenerative braking and air braking by combining it with the air brake, which has poor response, and reducing the total braking force. However, in this case as well, the response of the air brake is poor. As shown in Figure 83 (C), there is a no-response period in which the air brake force does not rise unless the regenerative braking force decreases to a certain extent, and the total braking force decreases. I couldn't avoid feeling depressed.

〔発明の概要〕[Summary of the invention]

この発明は、上述したようにな問題を除去するためにな
されたもので、従来の電気車用界磁チョッパ制御装置な
極く一部変更することにより、電気車停止前の主電動機
電流の減少を検出して実際に作用している回生ブレーキ
力より低目のトルク信号をブレーキ制御回路へ与え、こ
れにより空気ブレーキ力を多目に出力させ、ブレーキ力
の落ち込みを無くそうとするものである。
This invention was made in order to eliminate the above-mentioned problems, and by modifying only a part of the conventional field chopper control device for electric vehicles, the main motor current is reduced before stopping the electric vehicle. The system detects this and sends a torque signal lower than the actual regenerative braking force to the brake control circuit, thereby outputting more air braking force and eliminating the drop in braking force. .

〔発明の実施例〕[Embodiments of the invention]

以下、この発明による電気車用界磁チョッパ制御装置の
一実施例を第7図にもとづいて説明する。
Hereinafter, one embodiment of the field chopper control device for electric vehicles according to the present invention will be described based on FIG. 7.

図において、第1図と同一の符号は第7図と同一のもの
であり、第1図の従来装置と異なる点はトルク減衰検出
手段ヌ00を付加しかつその出力を機械ブレーキ制御手
段JOO中のブレーキ制御回路7Qに印加することであ
る。
In the figure, the same reference numerals as in FIG. 1 are the same as in FIG. 7, and the difference from the conventional device in FIG. is applied to the brake control circuit 7Q.

トルク減衰検出手段弘0θでは、その比較回路ざにブレ
ーキトルク指令が正入力1乗算手段20で検出された実
トルク何月LTQか負入力され、ブレーキトルク指令に
合致した実トルク信号LTQが発生している時は出力が
零である。しかしながら。
In the torque attenuation detection means 0θ, a negative input of the brake torque command is applied to the comparator circuit of the actual torque LTQ detected by the positive input 1 multiplication means 20, and an actual torque signal LTQ matching the brake torque command is generated. When the output is on, the output is zero. however.

電気車の速度が低下してきてブレーキトルク指令に合致
した実トルク信号LTQが発生しなくなると。
When the speed of the electric vehicle decreases and the actual torque signal LTQ that matches the brake torque command is no longer generated.

比較回路tが出力を生じこの出力で実トルクフィードバ
ック量減食用接点デをオンし、基準電圧−eoを抵抗I
Oで分圧した電圧がブレーキ制御回路lθへ入力される
ようになっている。
The comparator circuit t generates an output, which turns on the actual torque feedback amount reduction contact D, and the reference voltage -eo is connected to the resistor I.
The voltage divided by O is input to the brake control circuit lθ.

他の部分は従来装置と同じである。すなわち。Other parts are the same as the conventional device. Namely.

通常、ブレーキトルク指令は、パターン発生回路/に入
力されて指令値IpK変換され、さらに。
Normally, a brake torque command is input to a pattern generation circuit and converted into a command value IpK.

この指令値工pはトルク変換回路コでトルク変換される
。このトルク変換回路−の出力である所望トルク信号T
Qが比較回路Jを通して主電動様の界磁電流Ifを増大
させる。一方、界磁電流検出器ダにより界磁電流Ifを
検出し、電機子電流検出器5により電機子電流Iaを検
出し1乗算器6によりraXIfの掛算を行なって実ト
ルク信号LTQを求める。この実トルク信号LTQは比
較回路3に負入力され、正入力された前述の所望トルク
信号TQと常に比較されており、界磁電流工fはブレー
キトルク指令に応じた大きさに制御される一方、ブレー
キトルク指令を正入力、実トルク信号LTQを負入力と
してブレーキ制御回路りOに入力しておくと、このブレ
ーキ制御回路りOは両者の演算を行ない、ブレーキトル
ク指令に対する回生ブレーキトルクの不足分を、空気ブ
レーキ装置(図示しない)を作動させて補足させる。こ
れは従来と同一である。
This command value p is converted into torque by a torque conversion circuit. The desired torque signal T which is the output of this torque conversion circuit
Q increases the main motor-like field current If through the comparator circuit J. On the other hand, a field current detector Da detects a field current If, an armature current detector 5 detects an armature current Ia, and a 1 multiplier 6 multiplies by raXIf to obtain an actual torque signal LTQ. This actual torque signal LTQ is negatively input into the comparator circuit 3 and is constantly compared with the above-mentioned desired torque signal TQ which is positively input, and the field current f is controlled to a magnitude according to the brake torque command. If the brake torque command is inputted as a positive input and the actual torque signal LTQ is inputted as a negative input to the brake control circuit O, this brake control circuit O performs calculations for both, and detects a shortage of regenerative brake torque with respect to the brake torque command. The amount of time is supplemented by actuating an air brake device (not shown). This is the same as before.

ところが1回生ブレーキの最終時に電気車の速度が低下
し、従って実トルク信号LTQが低下してブレーキトル
ク指令に合致しなくなると、上述したように基準電圧−
eoを抵抗10で分圧した電圧がブレーキ制御回路7θ
へ負入力されるため、あたかも実トルク信号LTQが急
激に減衰したことになり、ブレーキ制御回路70は実ト
ルク信号LTQが減衰し始めるとすぐに空気ブレーキ力
を多目に出す指令を与える。空気ブレーキの応答は急激
に大きな空気ブレーキ力を出すように指令する程早くな
る特性があるため、従来の装置にくらべて応答遅れがな
くなり1回生ブレーキトルクが減衰し始めるとただちに
立ち上がるようになる。
However, when the speed of the electric vehicle decreases at the end of the first regenerative braking, and therefore the actual torque signal LTQ decreases and no longer matches the brake torque command, the reference voltage -
The voltage obtained by dividing eo by the resistor 10 is the voltage that is applied to the brake control circuit 7θ.
Since the negative input is input to the actual torque signal LTQ, it appears as if the actual torque signal LTQ has suddenly attenuated, and the brake control circuit 70 issues a command to increase the air brake force as soon as the actual torque signal LTQ begins to attenuate. Since the response of the air brake is faster when commanded to produce a large air brake force, there is no response delay compared to conventional devices, and the first regenerative brake torque starts to rise immediately after it starts to decay.

第5図には第9図の制御装置におけるt様子電流、界磁
@流およびブレーキ力の時間的変化が示されており、第
5図(a)には電機子電流Ia、第3図(b)には界磁
電流If、そして第5図(C1には実回生ブレーキ力、
空気ブレーキ力および総合ブレーキ力の変化が示されて
いる。すなわち、第5図に示すように、莢回生ブレーキ
力より低目のトルク信号の指令で空気ブレーキの応答が
成されるため従来技術では落ち込みのあった総合ブレー
キ力が多目の空気ブレーキ力で補足されて均一なブレー
キ力特性が49られるので、応答性の悪い空気ブレーキ
と組合せても回生ブレーキと空気ブレーキとの切替えを
滑かにして総合ブレーキ力の落ち込みをなくすことがで
きる。
Fig. 5 shows the temporal changes in the t-state current, field current, and brake force in the control device shown in Fig. 9, and Fig. 5(a) shows the armature current Ia, and Fig. 3 ( b) shows the field current If, and in Fig. 5 (C1 shows the actual regenerative braking force,
The changes in air brake force and total brake force are shown. In other words, as shown in Fig. 5, the air brake response is achieved by a command with a torque signal that is lower than the regenerative braking force, so the total braking force, which was depressed in the conventional technology, is reduced to a higher air braking force. Since the braking force characteristics are supplemented and uniform, even when used in combination with an air brake with poor responsiveness, it is possible to smoothly switch between the regenerative brake and the air brake, thereby eliminating a drop in the overall braking force.

第6図は第7図に示した制御装置のトルク減衰検出手段
pooの具体例を示すものがあって、接点デ、抵抗10
−/グ、演算増幅器lり、トランジスタ/6.リレーl
りからなる簡単な回路で構成されている。eQ、−eQ
は基準電圧である。−eQは抵抗10の抵抗値で決まる
値を、リレー17がオンした時ブレーキ1lIj 御回
路70へ出力されるようになっている。
FIG. 6 shows a specific example of the torque attenuation detection means poo of the control device shown in FIG.
-/G, operational amplifier l, transistor/6. relay l
It consists of a simple circuit consisting of: eQ, -eQ
is the reference voltage. -eQ is a value determined by the resistance value of the resistor 10, and is output to the brake control circuit 70 when the relay 17 is turned on.

〔発明の効果〕〔Effect of the invention〕

上述し、たよ5に、この発明によれば1回生ブレーキと
空気ブレーキ等のe 44ブレーキとを併用した7、気
車用界磁チョンパ制仰装rにおいて、ブレーキトルク指
令と実トルク信号とを比較し、回生ブレーキの最終時に
おいてブレーキトルク指令より実トルクが少なくなると
、あたかも実トルクが実際の減衰値より犬ぎく減衰した
ようにさせ、空気ブレーキを必要以上に大きく出力させ
ることにより空気ブレーキの応答を早くさせ1回生プレ
ーキと智宛ブレーキとの切替えを滑らかにし、これによ
って総合ブレーキ力に落ち込みが生じない。
As mentioned above, according to the present invention, the brake torque command and the actual torque signal can be exchanged in the field control system for air vehicles that uses both the regenerative brake and the e44 brake such as the air brake. In comparison, if the actual torque is less than the brake torque command at the end of regenerative braking, it will be as if the actual torque has been attenuated more sharply than the actual attenuation value, and the air brake will be made to output more than necessary. The response is quickened and the switching between the first regeneration brake and the brake is smoothed, thereby preventing a drop in the total braking force.

乗心地を向上させるとともに保安上の問題も解消するこ
とができるという効果が得られる。
The effect of improving riding comfort and solving safety problems can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の界磁チョッパ制副装置のブロック図、醇
λ図(al〜(C)はpi図に示した界8チョンそし、
て(c)は各ブレーキ力の特性図、第3図(a)〜(c
)は従来の改良型の界磁チョンパ制同装置の各部動作を
示す割判特性図、第9図はこの発明の界・磁チョッパ制
御装置の一実71′g例を示すブロック図。 第5図(a)〜(C)はgv図に示した実施例の各部動
作を示す制御特性図であり、(a)は電機子電流の特性
図、(b)は界磁電流の特性図、モして(c)は各ブレ
ーキ力の特性図、第6図は@ダメ中のトルク減衰検出手
段の具体的な一例を示す回路図である。 l−・パターン発生回路、コの・トルク変換回路、3と
ざ・・比較回路、弘・・界磁電流検出器。 よ・・電機子[流検出器、6・・乗算器、デ・・接点、
10・・抵抗、70・・ブレーキ側脚回路。 100・・界磁電流制御手段、ユQ・・乗算手段。 300φ・機械ブレーキ制御手段、1.tθ0・・トル
ク減衰検出手段、Ia・・電機子電流(主電動機′vL
流)、工r・・界磁電流、LTQ・・実トルク信号。 なお1図中、同一符号は、同一もしくは相当部分を示す
。 黙島答叶問 「\T「 手続補正書「自発」 昭和  年  月  日 59.12.3
Figure 1 is a block diagram of a conventional field chopper control sub-equipment, and Figure 1 is a block diagram of a conventional field chopper control sub-equipment.
Figure 3 (c) is a characteristic diagram of each brake force, and Figures 3 (a) to (c)
9 is a block diagram showing an example 71'g of the field/magnetic chopper control device of the present invention. Figures 5 (a) to (C) are control characteristic diagrams showing the operation of each part of the embodiment shown in the GV diagram, where (a) is a characteristic diagram of armature current, and (b) is a characteristic diagram of field current. , and (c) is a characteristic diagram of each brake force, and FIG. 6 is a circuit diagram showing a specific example of the torque attenuation detection means during @damage. L-: Pattern generation circuit, K: Torque conversion circuit, 3: Comparison circuit, Hiroshi: Field current detector. Yo...armature [current detector, 6...multiplier, de...contact,
10...Resistance, 70...Brake side leg circuit. 100... Field current control means, YuQ... Multiplication means. 300φ・Mechanical brake control means, 1. tθ0...torque attenuation detection means, Ia...armature current (main motor'vL
current), engineering r...field current, LTQ...actual torque signal. Note that in FIG. 1, the same reference numerals indicate the same or corresponding parts. Mokujima answer question “\T” Procedural amendment “Spontaneous” Showa month/day 59.12.3

Claims (1)

【特許請求の範囲】[Claims] 回生ブレーキと機械ブレーキとの総合ブレーキ力の補足
演算制御を行なう電気車用界磁チョッパ制御装置におい
て、回生ブレーキ最終時にブレーキトルク指令と実トル
クを比較することにより、実トルクを見かけ上減少させ
、これにより機械ブレーキ力を早くかつ多目に立ち上が
らせる回路を備えたことを特徴とする電気車用界磁チョ
ッパ制御装置。
In a field chopper control device for an electric vehicle that performs supplementary calculation control of the total braking force of regenerative braking and mechanical braking, the actual torque is apparently reduced by comparing the brake torque command and the actual torque at the end of regenerative braking. A field chopper control device for an electric vehicle, characterized by being equipped with a circuit that allows the mechanical braking force to be increased quickly and in large quantities.
JP17037284A 1984-08-17 1984-08-17 Field chopper controller for electric rolling stock Pending JPS6149601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17037284A JPS6149601A (en) 1984-08-17 1984-08-17 Field chopper controller for electric rolling stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17037284A JPS6149601A (en) 1984-08-17 1984-08-17 Field chopper controller for electric rolling stock

Publications (1)

Publication Number Publication Date
JPS6149601A true JPS6149601A (en) 1986-03-11

Family

ID=15903711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17037284A Pending JPS6149601A (en) 1984-08-17 1984-08-17 Field chopper controller for electric rolling stock

Country Status (1)

Country Link
JP (1) JPS6149601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295784A (en) * 2006-03-29 2007-11-08 Nissan Motor Co Ltd Braking force distribution controller against vehicle collision

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295784A (en) * 2006-03-29 2007-11-08 Nissan Motor Co Ltd Braking force distribution controller against vehicle collision
JP4743121B2 (en) * 2006-03-29 2011-08-10 日産自動車株式会社 Brake distribution control device at the time of vehicle collision
US8016367B2 (en) 2006-03-29 2011-09-13 Nissan Motor Co., Ltd. Apparatus and method for controlling braking-force distribution in vehicle collision

Similar Documents

Publication Publication Date Title
US4216417A (en) Transit vehicle motor operation control apparatus and method
JPS6149601A (en) Field chopper controller for electric rolling stock
CN205292616U (en) Braking system of static pressure transmission vehicle
JPH077806A (en) System for controlling regenerative brake of electric car
US5209551A (en) Analog service brake response enhancing circuit for railway vehicles
JPH03164003A (en) Regenerative brake controller for electric rolling stock
JPS6177533A (en) Between-car distance controller
JP4761606B2 (en) Electric vehicle control device
JPS6332002B2 (en)
JPS5694905A (en) Controlling method for electric vehicle chopper
CN110077384B (en) Four-wheel centralized drive electric vehicle braking energy recovery system based on two-way check valve and linear exhaust electromagnetic valve
US2262379A (en) Motor control system
JP2000278805A (en) Brake system for electric vehicle
CA1122679A (en) Transit vehicle motor operation control apparatus and method
JPH01117605A (en) Controller for electric rolling stock
JP2528885B2 (en) Electric vehicle control device
JP2671540B2 (en) Electric car control device
CN111775996A (en) Magnetic track brake application control system and control method
JP2547265Y2 (en) Brake load reduction device
JPS59201603A (en) Controlling method of electric railcar
JPS59216404A (en) Field chopper controller for electric railcar
JPS58224503A (en) Brake unit for electric motor vehicle
JP2001078499A (en) Retarder
JPS5829301A (en) Controlling circuit for regenerative brake equipment for electric rolling stock
JPS57145502A (en) Regenerative brake controlling device of electric motor vehicle