JPS6148903A - Method of producing printed circuit board with resistor - Google Patents

Method of producing printed circuit board with resistor

Info

Publication number
JPS6148903A
JPS6148903A JP59169931A JP16993184A JPS6148903A JP S6148903 A JPS6148903 A JP S6148903A JP 59169931 A JP59169931 A JP 59169931A JP 16993184 A JP16993184 A JP 16993184A JP S6148903 A JPS6148903 A JP S6148903A
Authority
JP
Japan
Prior art keywords
resistor
resistance
resin
low
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59169931A
Other languages
Japanese (ja)
Inventor
洋 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59169931A priority Critical patent/JPS6148903A/en
Publication of JPS6148903A publication Critical patent/JPS6148903A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、素子として抵抗体層全形成した印刷配線板の
製造方法【関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a printed wiring board in which a resistor layer is entirely formed as an element.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

印刷配線板に抵抗体層を形成する技術は、従来から知ら
れておシ、その内最も一般的なマスクによる方法は、第
2図に示したような構造の印刷配線板を製造するとと妙
;できる、この方法は、まず、絶縁性基板1上に被覆し
た銅箔又はAg−Pd系の導電性ペースト層をパターニ
ングして導体パターン2を形成する。つづいて、前記基
板1上に所定の抵抗値を有するカーボン樹脂や酸化ルテ
ニウムからなる抵抗体ペーストをスクリーンマスクを用
いて印刷して抵抗体層3を形成する。次に、導体パター
ン2と抵抗体/83t−接続するように常法によシ前記
基板1上に配線4を形成する。なお、5は表面保護膜で
ある。この方法では、複数のマスクを用いかつ種々の固
有抵抗を有する抵抗体ペーストを組合わせることによっ
て好ましい抵抗回路を形成できるが、異なる抵抗値の抵
抗体ペースト層を設ける必要が生じた場合、それぞれに
使用する抵抗体ペーストを選択しなければならないし、
またペーストの被着量によって抵抗値が微妙に変化する
為、作業工程が複雑となる欠点を有していた。
Techniques for forming a resistor layer on a printed wiring board have been known for a long time, and the most common method using a mask is an ingenious method for producing a printed wiring board with the structure shown in Figure 2. In this method, first, a conductive pattern 2 is formed by patterning a copper foil or Ag-Pd based conductive paste layer coated on an insulating substrate 1. Subsequently, a resistor paste made of carbon resin or ruthenium oxide having a predetermined resistance value is printed on the substrate 1 using a screen mask to form a resistor layer 3. Next, a wiring 4 is formed on the substrate 1 by a conventional method so as to connect the conductive pattern 2 and the resistor/83t. Note that 5 is a surface protective film. In this method, a desirable resistance circuit can be formed by using multiple masks and combining resistor pastes having various specific resistances, but if it becomes necessary to provide resistor paste layers with different resistance values, each You must select the resistor paste to use,
Furthermore, since the resistance value varies slightly depending on the amount of paste applied, the work process is complicated.

また、1下めて微細な、例えば数十ミクロン〜百ミクロ
ン程度の抵抗回路を形成する場合には、上記マスクによ
る方法ではおのずと限度があり、製造不可能となる欠点
があった5 マスクによる方法に代るものとして1本発明者′/′i
銅張積層(反の銅箔を選択的にエツチングして導体パタ
ーン全形成した後、導体パターン間の樹脂猜層仮のi・
:(土表面にレーザ光と照射して表面i対相を、犬化さ
せ、等体パターン間に抵抗体層全つくる方法全折墨した
が(特開昭58−219792号)、樽′ペパターンと
抵抗体層とは互いに線接触をするにすぎず、従って電気
的接続の信頼性て欠けるという間頚があった。
In addition, when forming a much finer resistor circuit, for example, several tens of microns to 100 microns, the method using a mask naturally has its limitations and has the disadvantage of being impossible to manufacture.5 Method using a mask In place of 1 Inventor'/'i
Copper clad lamination (after selectively etching the opposite copper foil to form the entire conductor pattern, a temporary resin layer between the conductor patterns)
(Japanese Patent Application Laid-Open No. 1983-219792) has developed a method of creating a resistor layer between the isomorphic patterns by irradiating the soil surface with a laser beam to make the surface i-pair into a dog. The resistor layer and the resistor layer only make line contact with each other, and therefore the reliability of the electrical connection is lacking.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の欠点全解消するためKなされたもので
、マスクに代えて自由に走査できるレーザ光線音用いて
所望の抵抗値の微細な抵抗体層全形成するにあたり、導
体パターンと′7!!極層との電気的接続の信VJ性を
改良する印刷配線板のブク2造方法を提供しようとする
ものである。
The present invention has been made in order to eliminate all of the above-mentioned drawbacks, and in forming the entire fine resistor layer with a desired resistance value using a laser beam sound that can be freely scanned instead of a mask, it is possible to form a conductive pattern and a ! ! It is an object of the present invention to provide a method for manufacturing a printed wiring board that improves the reliability of electrical connections with pole layers.

〔発明の概要〕[Summary of the invention]

本発明は、上記の目的を達成すべく鋭意研究を重ねた結
果、抵抗体層の電標として金属箔上((オーバラップす
るようにあらかじめ低抵抗のペーストラ印刷、硬化させ
ておき、この低抵抗ペーストの印刷部分を抵抗体の両端
としてレーザ光をこの部分も含めて照射して炭化抵抗・
全形成するととて安定な接続を持つ抵抗体が形成できる
ことを見出したものである。
As a result of intensive research to achieve the above object, the present invention has been developed by printing a low-resistance paster on a metal foil (((low-resistance paster is printed and cured in advance so as to overlap) as an electric mark for a resistor layer. The printed part of the paste is used as both ends of the resistor and the laser beam is irradiated on both ends of the resistor to form a carbonized resistor.
It was discovered that a resistor with a very stable connection can be formed when the entire structure is formed.

即ち1本発明は、ここで両端の低抵抗部は互に隔離され
ており、樹脂層(C大部分の抵抗を形成するよってする
That is, one aspect of the present invention is that the low resistance portions at both ends are isolated from each other, and the resin layer (C) forms most of the resistance.

本発明において、低抵抗ペーストとしては、導電料とし
てグラファイト、カーボンブラック、酸化ルテニウム等
とフェノール樹脂、エポキシ樹脂、ポリイミド樹脂等を
配合してなるもので、4電粒子が比較的多量に配合され
てお)硬化後の固有抵抗が10=Ω・m以下のものがよ
い、fpJ合によっては前記導電粒子に:A?等金2粉
を配合してさらに抵抗を下げたものでもよい。
In the present invention, the low-resistance paste is made by blending graphite, carbon black, ruthenium oxide, etc. as a conductive material with phenol resin, epoxy resin, polyimide resin, etc., and contains a relatively large amount of tetraelectric particles. E) It is preferable that the specific resistance after curing is 10=Ω・m or less. It is also possible to further reduce the resistance by blending two powders of gold.

本発明において、樹脂層は絶縁性基板上又は金層性基板
上に形成した樹脂層金剛いてもよいし、あるいは樹脂か
らなる絶縁性基板の表面を樹脂層として用いてもよい。
In the present invention, the resin layer may be a resin layer formed on an insulating substrate or a gold-layered substrate, or the surface of an insulating substrate made of resin may be used as the resin layer.

これらの樹脂層は、レーザ光線を大気中で照射すること
によシ容易に炭化するとともに、得られる炭化層の炭化
粒子が互いに連続して抵抗体作用を有する。この樹脂層
の樹脂は、エポキシ系樹脂、フェノール系樹脂、ポリイ
ミド系樹脂、ポリエステル系樹脂、ポリブタジェン系樹
脂等の樹脂が挙げられる。これらの樹脂は1種又は2種
以上混合して用いてもよいし、あるいは各々の樹脂を重
ねて2層以上の樹脂層としてもよい。樹脂層の形成手段
としては支持基板上に直接塗布又は転写方式により塗布
し、薄い筒状の皮膜を作ることができる。
These resin layers are easily carbonized by irradiation with a laser beam in the atmosphere, and the carbonized particles of the resulting carbonized layer are continuous with each other and have a resistor function. Examples of the resin of this resin layer include resins such as epoxy resin, phenol resin, polyimide resin, polyester resin, and polybutadiene resin. These resins may be used alone or in combination of two or more, or each resin may be stacked to form two or more resin layers. As a means for forming the resin layer, it is possible to form a thin cylindrical film by directly coating or transferring the resin onto the support substrate.

本発明に用いるレーザ光線としては、大気中で操作でき
かつ炭化能力が大きいことがらYAGレーザあるいは炭
酸ガスレーザ等の赤外線レーザが挙げられる。レーザ光
線は波長が均一でかつ朶光性が良いため、光エネルギー
を特定の箇所に集中して高エネルギーを発生させること
ができ、局部的に前記の樹脂を分解することができると
共に、ミラーあるいはXYテーブルと共に用いることに
よシ被照射物との位置関係を精度よく調節できる。
The laser beam used in the present invention includes an infrared laser such as a YAG laser or a carbon dioxide laser because it can be operated in the atmosphere and has a large carbonization ability. Since the laser beam has a uniform wavelength and good haze, it is possible to concentrate the light energy on a specific point and generate high energy, and it is possible to locally decompose the resin, as well as to destroy the mirror or By using it together with an XY table, the positional relationship with the irradiated object can be adjusted with high precision.

また、レーザ光線はその光のスポットが極めて小きく、
例えば数μm〜数十μmの範囲に調節できる。このレー
ザ光線を用いることばよって小さい基板への微細な抵抗
回路パターンも形成できる。
In addition, the laser beam has an extremely small spot,
For example, it can be adjusted to a range of several μm to several tens of μm. By using this laser beam, it is possible to form fine resistance circuit patterns on small substrates.

更にはレーザ光線のパワー(電流の大きさ)、走査速度
あるいけ照射回数′f!:適宜調節することによって抵
抗゛体層間あるいは一つの抵抗体層内で抵抗値を自由に
コントロールできる。このようなことから、最小レーザ
光線の径と略同等の幅の微細な抵抗体層を精度よく、か
つ容易に形成できる。
Furthermore, the power of the laser beam (magnitude of current), scanning speed, and number of irradiations 'f! : By making appropriate adjustments, the resistance value can be freely controlled between resistor layers or within one resistor layer. For this reason, a fine resistor layer having a width approximately equal to the diameter of the smallest laser beam can be formed precisely and easily.

この場合、抵抗体層部分は大部分が炭素からなるため、
 弱である。従って抵抗体層を被覆するように保護膜を
印刷することが望ましく、これにより実用性が高まる。
In this case, since the resistor layer is mostly made of carbon,
It is weak. Therefore, it is desirable to print a protective film to cover the resistor layer, which improves practicality.

上記レーザ光線による炭化にかいて必要ならば、全説明
する。
If necessary, a full explanation of the carbonization by the laser beam will be provided.

第1iZ (a)に示したように樹脂基板11上に銅張
紙フェノール基板(商品名ショライ)C8−1531N
裏造元利昌工業KK)を用いて常法により銅箔のエツチ
ングを行い抵抗体の電極となる部分12.12’金形成
した。次にアセテンプ2ツク15 MML FffI 
*銀粉30重量部及びレゾール系フェノール樹脂フェス
65重量部を配合してn−プチルカルビ)−ルアセテー
トを溶剤として混練してなる低抵抗ペーストを調合し、
これを第1図(b)のように前記銅箔パターに重なり合
うように印刷し、  150℃30分でひ化させ低抵抗
パターン3.3’2得た。
As shown in No. 1 iZ (a), a copper-clad paper phenol substrate (trade name Sholai) C8-1531N is placed on the resin substrate 11.
The copper foil was etched by a conventional method using Urazo Moto Toshimasa Kogyo KK) to form gold on the portions 12 and 12' that would become the electrodes of the resistor. Next, Acetemp 2 Tsuku 15 MML FffI
* A low-resistance paste is prepared by blending 30 parts by weight of silver powder and 65 parts by weight of resol-based phenolic resin face and kneading with n-butylcarbi)-ruacetate as a solvent.
This was printed so as to overlap the copper foil pattern as shown in FIG. 1(b), and adenized at 150° C. for 30 minutes to obtain a low resistance pattern 3.3'2.

この硬化物は固有抵抗で約5X10”−2Ω°0であっ
た。
This cured product had a specific resistance of approximately 5×10”-2Ω°0.

次いで、  1.06μmの波長含有するYAGレーザ
装置(東芝製し−ザトリマーLAY711型)を用い出
力6、Qw、スポット径60μmで低抵抗パターン部及
び樹脂層及び他端の低抵抗部分にわたって第1図(C)
のようにレーザ光による炭化抵抗体14を形成した。
Next, using a YAG laser device (Model: Zatrimer LAY711 manufactured by Toshiba) having a wavelength of 1.06 μm, laser beams were applied over the low-resistance pattern portion, the resin layer, and the low-resistance portion at the other end with an output of 6, Qw, and a spot diameter of 60 μm as shown in FIG. (C)
A carbonized resistor 14 was formed using a laser beam as shown in FIG.

得られた抵抗体は′TV、極間隔が1cfnで約5にΩ
のものが得られた。このようKして作成し次抵抗体てつ
き高温放置試験、耐湿性式@全行ったところ第1表のと
うりであった。
The resulting resistor is 'TV', with a pole spacing of 1 cfn and a resistance of approximately 5 Ω.
I got something like this. The resistors prepared in this manner were subjected to a high temperature storage test and a moisture resistance test, and the results shown in Table 1 were obtained.

第1表 第1表から明らかなごとく、熱あるいは湿度に対して非
常に安定な抵抗体が得られた。
As is clear from Table 1, a resistor was obtained that was extremely stable against heat and humidity.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく本発明によれば、微細な抵抗体がプ
リント配線板上に容易に形成され、且つ低抵抗ペースト
印刷部と金属パターンとが面接触し、さらに低抵抗パタ
ーン部はレーザ光により炭化作用を受けるため抵抗体部
分との材質の均一化が図れ、これらの理由から接続の信
頼性のすぐれた印刷配f;I’A板を製造することがで
きる。
As explained above, according to the present invention, a fine resistor is easily formed on a printed wiring board, the low resistance paste printed part and the metal pattern are in surface contact, and the low resistance pattern part is carbonized by laser light. Because of this effect, the material of the resistor portion can be made uniform, and for these reasons, it is possible to manufacture a printed layout I'A board with excellent connection reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による印刷配線板の製造方法
を工程順に示す断面図、第2図は従来の印刷配線板の断
面図である。 11・・・樹脂基板 12・・・エツチングされた金属パターン13 ・低抵
抗パターン 14・・・炭化抵抗体 第1図 第2図
FIG. 1 is a cross-sectional view showing a method for manufacturing a printed wiring board according to an embodiment of the present invention in the order of steps, and FIG. 2 is a cross-sectional view of a conventional printed wiring board. 11... Resin substrate 12... Etched metal pattern 13 - Low resistance pattern 14... Carbonized resistor Fig. 1 Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)加熱により炭化される樹脂基板上に抵抗体の電極
となるべき金属パターンを形成し、この金属パターン上
に少くとも一部分が重なるように低抵抗のペーストを印
刷硬化し、次いで前記低抵抗ペースト部をも含めて前記
金属パターン間の樹脂基板をレーザ光により加熱するこ
と、により、前記低抵抗ペースト部及び前記樹脂基板上
に炭化抵抗を形成するようにしたことを特徴とする抵抗
体付き印刷配線板の製造方法、
(1) Form a metal pattern to become the electrode of the resistor on a resin substrate that is carbonized by heating, print and harden a low-resistance paste so that it overlaps at least a portion of the metal pattern, and then cure the low-resistance paste. A resistor with a resistor characterized in that a carbonized resistance is formed on the low-resistance paste portion and the resin substrate by heating the resin substrate between the metal patterns including the paste portion with a laser beam. A method for manufacturing a printed wiring board,
(2)前記低抵抗ペースト部の抵抗値は10^−^1Ω
・cm以下であることを特徴とする特許請求の範囲第1
項記載の抵抗体付き印刷配線板の製造方法。
(2) The resistance value of the low resistance paste part is 10^-^1Ω
・Claim 1 characterized in that it is less than cm.
A method for manufacturing a printed wiring board with a resistor as described in 2.
JP59169931A 1984-08-16 1984-08-16 Method of producing printed circuit board with resistor Pending JPS6148903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59169931A JPS6148903A (en) 1984-08-16 1984-08-16 Method of producing printed circuit board with resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59169931A JPS6148903A (en) 1984-08-16 1984-08-16 Method of producing printed circuit board with resistor

Publications (1)

Publication Number Publication Date
JPS6148903A true JPS6148903A (en) 1986-03-10

Family

ID=15895582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59169931A Pending JPS6148903A (en) 1984-08-16 1984-08-16 Method of producing printed circuit board with resistor

Country Status (1)

Country Link
JP (1) JPS6148903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338004A (en) * 1989-07-05 1991-02-19 Nippon Teikouki Seisakusho:Kk Resistance paste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338004A (en) * 1989-07-05 1991-02-19 Nippon Teikouki Seisakusho:Kk Resistance paste

Similar Documents

Publication Publication Date Title
US4694138A (en) Method of forming conductor path
KR100511042B1 (en) An improved method to embed thick film components
JPS60253207A (en) Method of producing capacitor
EP0105639B1 (en) Production of resistor from insulating material by local heating
US6225035B1 (en) Method for forming a thick-film resistor
JP2005026525A (en) Wiring board and method of manufacturing the same
JPS6148903A (en) Method of producing printed circuit board with resistor
JPS5856387A (en) Method of producing printed circuit board
JP2001076569A (en) Method for manufacturing membrane circuit
JPS62229903A (en) Formation of resistance element
JPS5834958B2 (en) Through-hole printed circuit board
JPS60239090A (en) Method of producing printed circuit board with resistor
JPH0223039B2 (en)
JPH0326550B2 (en)
JPS58219792A (en) Method of producing printed circuit board
JPS6320081Y2 (en)
DE4008215A1 (en) Base material for electrical conductor patterns - comprises substrate covered with layer of mesoscopic metal particles on which conductor tracks can be made by irradiation
JP2009152308A (en) Method of manufacturing printed wiring board
JPS59169107A (en) Method of producing resistor
JPS59220903A (en) Method of forming resistor
JPS62210692A (en) Manufacture of multilayer printed wiring board
JPS5955089A (en) Circuit board
JPS6074661A (en) Manufacture of electric circuit part having required electric characteristic value
JPS6053001A (en) Method of forming resistor
JPS61225802A (en) Manufacture of membrane resistor