JPS614845A - Fuel injection controller - Google Patents

Fuel injection controller

Info

Publication number
JPS614845A
JPS614845A JP12320884A JP12320884A JPS614845A JP S614845 A JPS614845 A JP S614845A JP 12320884 A JP12320884 A JP 12320884A JP 12320884 A JP12320884 A JP 12320884A JP S614845 A JPS614845 A JP S614845A
Authority
JP
Japan
Prior art keywords
shot
time
signals
fuel injection
engine rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12320884A
Other languages
Japanese (ja)
Inventor
Kenzo Hashikawa
橋川 健三
Toshihisa Toda
戸田 敏久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP12320884A priority Critical patent/JPS614845A/en
Publication of JPS614845A publication Critical patent/JPS614845A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent engine stall, in a fuel injection controller employing referential engine rotation signals in two systems having different phase, by monitoring said signals and approximately doubling the one-shot time at the one-shot output section upon missing of anyone of said signals. CONSTITUTION:G1, G2 detecting sections 41, 42 for detecting the referential engine rotation signals G1, G2 to produce the shaped outputs XG1, XG2 which will go L upon detection while go to H in case of non-detection are provided to synthesize said outputs XG1, XG2 through OR gate 43 on the time axis. The one-shot output section 44 is started by the rising portion of the synthesized output G to produce an injection pulse INJ having predetermined time width at every starting. Here, a disconnection detecting section 45 will detect whether anyone of the signals G1, G2 has missed to approximately double the one-short operating time of one-shot output section 44 upon detection of missing of one referential rotary signal thus to maintain the total fuel injection time per unit time constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、2系統のエンジン回転基準信号を用いる気筒
毎燃料噴射制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cylinder-by-cylinder fuel injection control device that uses two systems of engine rotation reference signals.

〔従来の技術〕[Conventional technology]

マイクロコンピュータ(CP U)を用いるエンジン制
御システムではCPU故障に備えてバックアップ回路を
設けるのが一般的である。第6図はこの一例で、1はエ
ンジン制御用のマイクロコンピュータ(CPU) 、2
はCPUIと共に2系統のエンジン回転基準信号G1.
G2を受けるハックアップ回1?3部、3はCPU故障
判定回路である。
Engine control systems that use a microcomputer (CPU) generally include a backup circuit in case of CPU failure. Figure 6 shows an example of this, where 1 is a microcomputer (CPU) for engine control, 2
is the engine rotation reference signal G1. of two systems along with the CPUI.
Parts 1 to 3 of the hack-up circuit receiving G2 and 3 are CPU failure determination circuits.

4サイクルエンジンはエンシフ2回転で吸気、圧縮、爆
発、排気の1行程を完了する。このうち燃料噴射のタイ
ミングは燃焼効率の点から吸気工程の直前が最も望まし
く、このタイミングを制御器(CPUI)が認識するた
めには720°信号が必要となる。この場合、エンジン
始動時の制御は制御器が720°信号を受けてから開始
する。
A 4-cycle engine completes one stroke of intake, compression, explosion, and exhaust in two engine revolutions. From the viewpoint of combustion efficiency, the most desirable timing for fuel injection is immediately before the intake stroke, and a 720° signal is required for the controller (CPUI) to recognize this timing. In this case, control during engine starting starts after the controller receives the 720° signal.

このため、最悪の場合エンジン2回転後に制御が開始さ
れることになる。それでも通常のエンジン始動時には支
障はないが、冬期にバッテリ電圧が低下し、スタータモ
ータの回転数が数1Orpmの低回転しかできないとき
は制御開始が遅れてエンジンがかからないこともある。
Therefore, in the worst case, control will be started after two revolutions of the engine. Even so, there is no problem when starting the engine normally, but in the winter when the battery voltage drops and the starter motor can only rotate at a low rotation speed of several 1 Orpm, the start of control may be delayed and the engine may not start.

例えば、エンジン回転数が3 Orpmのとき、エンジ
ン1回転は2秒かかるので、これを検出する720°信
号の間隔は4秒になる。そこで、この720°信号を2
系統(上述のGl、G2)にして両者に360°の位相
差をもたせておくと、制御開始遅れを半減でき、始動性
が良くなる。
For example, when the engine speed is 3 Orpm, it takes 2 seconds for one rotation of the engine, so the interval between 720° signals for detecting this is 4 seconds. Therefore, this 720° signal is
If the systems (Gl and G2 described above) are provided with a 360° phase difference between them, the control start delay can be halved and the startability will be improved.

かかる背景下で、CPUIが正常に動作していれば、そ
の噴射パルスINJI’〜INJ4’をバックアップ回
路部2内に設けた切替スイッチSW(破線位置)を通し
て出力する。第7図(a)はこのタイムチャートである
。しかし、C,PUIl!!障判定回路3がCPUIの
故障を検出すると出力信号ALMでスイッチSWを実線
位置に切替え、噴射パルス発生回路4からの噴射パルス
INJを出力する。
Under such a background, if the CPUI is operating normally, the injection pulses INJI' to INJ4' are outputted through the changeover switch SW (broken line position) provided in the backup circuit section 2. FIG. 7(a) is this time chart. However, C,PUIl! ! When the fault determination circuit 3 detects a fault in the CPUI, the output signal ALM switches the switch SW to the solid line position and outputs the injection pulse INJ from the injection pulse generation circuit 4.

CPU1からの噴射パルスINJI’ 〜INJ4′は
信号C+ + 02の他に各種のエンジン状態等を加味
してパルス幅が各時点で最適に調整されたものであるが
、噴射パルス発生回路4からの噴射パルスINJは固定
的なパルス幅である。それでもCPUIが故障して噴射
パルスINJI′〜INJ4’が得られなくなったとき
、ハックアップ用の噴射パルスINJI′〜INJ4′
に切替えればエンジンスト−ルは回避できる。
The injection pulses INJI' to INJ4' from the CPU 1 have their pulse widths optimally adjusted at each point in time by taking into account various engine conditions in addition to the signal C+ + 02. The injection pulse INJ has a fixed pulse width. However, if the CPU malfunctions and the injection pulses INJI' to INJ4' cannot be obtained, use the injection pulses INJI' to INJ4' for hack-up.
Engine stall can be avoided by switching to .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところがバックアップ用の噴射パルスINJは第7図(
blに示すようにエンジン回転基準信号G I。
However, the backup injection pulse INJ is shown in Figure 7 (
As shown in bl, the engine rotation reference signal GI.

G2のいずれにも同期して発生するものであるから、い
ずれか−・方の系が断線すると噴射パルスINJの個数
は半減し、その発生周期は2倍になってしまう。同図(
C1ばGl系が断線して噴射パルス発生回路4へはG2
系しか入力しない場合の動作波形で、噴射パルスINJ
は破線位置が欠落している。このように一方の系が断線
すると単位時間当りの噴射量が半減するため燃料不足と
な、てエンジンストールに陥いる。
Since they are generated in synchronization with both G2, if one of the systems is disconnected, the number of injection pulses INJ will be halved and the generation period will be doubled. Same figure (
If C1, the Gl system is disconnected and the G2 goes to the injection pulse generation circuit 4.
This is the operating waveform when only the system is input, and the injection pulse INJ
The dashed line position is missing. If one of the systems is disconnected in this way, the injection amount per unit time is halved, resulting in a fuel shortage and an engine stall.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、一方のエンジン回転基準信号系が断線したら
ハックアップ用の噴射パルスの時間幅を約2倍に拡大し
、パルス数の減少をパルス幅の拡大で補おうとするもの
である。このため本発明は、位相の異なる2系統のエン
ジン回転基準信号をそれぞれマイクロコンピュータおよ
びバックアンプ用の噴射パルス発生回路に入力して、該
マイクロコンピュータの異常時には該噴射パルス発生回
路の出力を使用する燃料噴射制御装置において、該エン
ジン回転基準信号のいずれによっても起動されて所定パ
ルス幅の噴射パルスを発生するワンショット出力部と、
該エンジン回転基準信号のいずれか一方が消失したこと
を検出する断線検出部と、該断線検出部の検出信号を受
けて該噴射パルスのパルス幅を約2倍に拡大するワンシ
ョット時間設定部とを該噴射パルス発生回路に設けてな
ることを特徴とするものである。
The present invention attempts to expand the time width of the injection pulse for hack-up by approximately twice when one engine rotation reference signal system is disconnected, thereby compensating for the decrease in the number of pulses by increasing the pulse width. Therefore, the present invention inputs two systems of engine rotation reference signals with different phases to a microcomputer and an injection pulse generation circuit for a back amplifier, respectively, and uses the output of the injection pulse generation circuit when the microcomputer is abnormal. In the fuel injection control device, a one-shot output section that is activated by any of the engine rotation reference signals to generate an injection pulse with a predetermined pulse width;
a wire breakage detection section that detects the disappearance of either one of the engine rotation reference signals; and a one-shot time setting section that expands the pulse width of the injection pulse by approximately twice in response to the detection signal from the wire breakage detection section. is provided in the injection pulse generation circuit.

〔作用〕[Effect]

断線検出部は2系統のエンジン回転基準信号を監視し、
一方が消失するとワンショット出力部に切替信号を送り
、そのワンショット時間を約2倍に拡大する。これによ
り、バックアップ用の噴射パルスの個数の減少はパルス
幅の拡大で補なわれ、エンジンスト−ルに至らずに済む
The disconnection detection unit monitors two systems of engine rotation reference signals,
When one of them disappears, a switching signal is sent to the one-shot output section, and the one-shot time is approximately doubled. As a result, the reduction in the number of backup injection pulses is compensated for by the expansion of the pulse width, thereby preventing engine stall.

〔実施例〕〔Example〕

以下、図面を参照しながら本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示すブロック図で、噴射パ
ルス発生回路4の詳細を示すものである。
FIG. 1 is a block diagram showing one embodiment of the present invention, showing details of the injection pulse generating circuit 4. As shown in FIG.

41.42はエンジン回転基準信号Gl、02を検出し
て検出時にL(ロー)、非検出時にH(/Sイ)となる
波形整形出力XGI、XG2を生ずるG1.G2検出部
である。43はこれらの出力XGl、XG2を時a■軸
上で合成するオアゲートで、その合成出力Gの立上りで
ワンショット出力部44を起動する。このワンショット
出力部44は起動されるfifに所定時間幅の噴射パル
スINJを発生する。ここまでの構成は従来と変らない
が、本例ではワンショット出力部44の動作時間を切替
可能に構成すると共に、Gl、G2の断線検出部45を
設けてワンショット動作時間を自動的に切替える。
G1.41.42 detects the engine rotation reference signal Gl,02 and produces waveform shaped outputs XGI, XG2 which are L (low) when detected and H (/S) when not detected. This is the G2 detection section. Reference numeral 43 denotes an OR gate that combines these outputs XGl and XG2 on the time a-axis, and activates the one-shot output section 44 at the rise of the combined output G. This one-shot output section 44 generates an injection pulse INJ having a predetermined time width at the activated fif. The configuration up to this point is the same as the conventional one, but in this example, the operating time of the one-shot output section 44 is configured to be switchable, and a disconnection detection section 45 for Gl and G2 is provided to automatically switch the one-shot operating time. .

第2図は断線検出部45の具体例で、ナントゲート45
1,452はXGI、XG2をセント、リセント入力と
するフリップフロップ(FF)を構成する。このFFは
X G + 、  X’G 2が交互に入力する場合に
のみ出力を1,0に変化させるが、いずれか一方の入力
が欠けると出力を1または0に固定してしまう。周波数
−電圧(F−V)変拶l器453はこの違いを電圧に変
換し、次段のコンパレータ454はこれを1,0のワン
ショット時間切替信号Tに変換する。この例ではCI、
G2共に入力しているときに切替信号Tば1であり、G
1.G2系の一方が断線すると該信号TはOになる。
FIG. 2 shows a specific example of the disconnection detection section 45, and shows the Nante gate 45.
1,452 constitutes a flip-flop (FF) having XGI and XG2 as cent and recent inputs. This FF changes its output to 1 or 0 only when X G + and X'G 2 are input alternately, but if either one of the inputs is missing, the output is fixed at 1 or 0. A frequency-voltage (F-V) converter 453 converts this difference into voltage, and a comparator 454 at the next stage converts this into a one-shot time switching signal T of 1 and 0. In this example, CI,
When both G2 and G2 are input, the switching signal T is 1;
1. When one of the G2 systems is disconnected, the signal T becomes O.

第3図はこの切替信号Tを受けて噴射パルスINJのパ
ルス幅を切替えるワンショット出力部44の具体例であ
る。441は入力段のDタイプFFである。このFF4
41はD入力を電源Vccに接続して、クロック端子C
Kに第1図のオアゲート43の出力Gを入力しているの
で、信号Gの立上りに同期して出力Qは1になる。この
状態はアントゲ−1−442の出力CLRでクリアされ
るまで保持される。このアンドゲート442の入力はF
F441のQ出力とコンパレータ443の出力である。
FIG. 3 shows a specific example of the one-shot output section 44 that receives this switching signal T and switches the pulse width of the injection pulse INJ. 441 is a D type FF at the input stage. This FF4
41 connects the D input to the power supply Vcc and connects the clock terminal C
Since the output G of the OR gate 43 shown in FIG. 1 is input to K, the output Q becomes 1 in synchronization with the rise of the signal G. This state is maintained until it is cleared by the output CLR of Antogame-1-442. The input of this AND gate 442 is F
These are the Q output of F441 and the output of comparator 443.

こlシバレータ443の入力はワンショット時間設定部
444である。この設定部444は抵抗RIとS′Jン
デンサCからなる充電回路に、スイッチS W +をオ
ンにしたとき抵抗R2を並列接続して充電時定数を下げ
る切替機能を付加したもノテ、F F 4.41のQ出
力が1になると充電動作を開始する。そして、コンデン
サCの充電電圧が一定値re4に達するとコンパレータ
443は出力を1にするのでアンドゲート442の出力
CLRは1になり、その立上りでFF441はクリアさ
れる。このQ出力を噴射パルスINJとする。
The input of the ciburator 443 is a one-shot time setting section 444. This setting section 444 is a charging circuit consisting of a resistor RI and a S'J capacitor C, with a switching function added to connect a resistor R2 in parallel to lower the charging time constant when the switch SW + is turned on. When the Q output of 4.41 becomes 1, the charging operation starts. Then, when the charging voltage of the capacitor C reaches a certain value re4, the comparator 443 sets the output to 1, so the output CLR of the AND gate 442 becomes 1, and the FF 441 is cleared at the rising edge of the output CLR. This Q output is defined as the injection pulse INJ.

上述した動作は入力Gが立上る毎に繰り返されるが、そ
のときスイッチSWlがオンかオフかでパルスI N 
、Jのパルス幅が異なる。このスイッチSW+は断線検
出部45の出力Tが1 (正當)のときオン、0 (断
線)のときオフになる。スイッチS W +がオンであ
ると抵抗R1,R2は並列になるので合成抵抗は減少し
、ワンショット動作時間は短縮される。これに対し、ス
イッチSWIをオフにすると抵抗はR+に増大するので
ワンショット動作時間は拡大される。このことにより、
第4図に示すようにハックアップ用の噴射パルスINJ
のパルス幅を正常時にWl、異常時にW2に切替えるこ
とができる。ここで、W2−2・Wlに設定すれば、一
方の系が断線しても単位時間当りの燃料噴射時間の総計
を一定に保つことができる。
The above operation is repeated every time the input G rises, and at that time, the pulse I N
, J have different pulse widths. This switch SW+ is turned on when the output T of the wire breakage detection section 45 is 1 (correct), and turned off when the output T is 0 (wire breakage). When the switch S W + is on, the resistors R1 and R2 are connected in parallel, so the combined resistance is reduced and the one-shot operation time is shortened. On the other hand, when the switch SWI is turned off, the resistance increases to R+, so the one-shot operation time is expanded. Due to this,
As shown in Figure 4, injection pulse INJ for hack-up
The pulse width can be switched to Wl when normal and W2 when abnormal. Here, by setting W2-2.Wl, the total fuel injection time per unit time can be kept constant even if one system is disconnected.

第5図は第6図に示したCPU故障判定回路3の具体例
で、31はCPUIの正常時に一定周期でレベルが反転
する出力の周波数foを電圧に変換するF/V変換器、
32はその変換出力を基準値V refと比較するコン
パレータである。CPU1が故障してその出力が変化し
なくなるとコンパレータ32の出力ALMは0になって
第6図のスイッチSWを実線位置に切替える。
FIG. 5 shows a specific example of the CPU failure determination circuit 3 shown in FIG. 6, in which 31 is an F/V converter that converts the output frequency fo, whose level is inverted at a constant cycle when the CPU is normal, into a voltage;
32 is a comparator that compares the converted output with a reference value V ref. When the CPU 1 fails and its output stops changing, the output ALM of the comparator 32 becomes 0, and the switch SW in FIG. 6 is switched to the solid line position.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、マイク1:Jコンピ
ュータによるエンジン制御を主とした気筒毎燃料噴射制
御装置において、該マイクロコンピュータが故障し、更
に2系統のエンジン回転基準信号の一方が断線等により
消失しても、エンジンストールを起こさないようにハッ
クアップすることができる。
As described above, according to the present invention, in the cylinder-by-cylinder fuel injection control device which mainly controls the engine by the microphone 1:J computer, when the microcomputer breaks down, one of the two engine rotation reference signals is disconnected. Even if the engine disappears due to other reasons, it can be hacked up to prevent the engine from stalling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すハックアップ用噴射パ
ルス発生回路の概略ブロック図、第2図はその断線検出
部の詳細構成図、第3図はワンショット出力部の詳細構
成図、第4図はその動作波形図、第5図はCPU故障判
定回路の詳細構成図、第6図は従来の燃料噴射制御装置
の概略ブロック図、第7図はハックアップ時の動作波形
図である。 図中、■はマイクロコンピュータ、2はハックアップ回
路、3はCPU故障判定回路、4は噴射パルス発生回路
、44はワンショット出力部、444はワンショット時
間設定部、45は断線検出部である。 第6図 第7図 (a) NJ4 (b’) INJ4                     
   □(C) rNJ4    ”゛゛−1
FIG. 1 is a schematic block diagram of a hack-up injection pulse generation circuit showing an embodiment of the present invention, FIG. 2 is a detailed configuration diagram of its disconnection detection section, and FIG. 3 is a detailed configuration diagram of its one-shot output section. Fig. 4 is its operating waveform diagram, Fig. 5 is a detailed configuration diagram of the CPU failure determination circuit, Fig. 6 is a schematic block diagram of a conventional fuel injection control device, and Fig. 7 is an operating waveform diagram at the time of hack-up. . In the figure, ■ is a microcomputer, 2 is a hack-up circuit, 3 is a CPU failure determination circuit, 4 is an injection pulse generation circuit, 44 is a one-shot output section, 444 is a one-shot time setting section, and 45 is a disconnection detection section. . Figure 6 Figure 7 (a) NJ4 (b') INJ4
□(C) rNJ4 ”゛゛-1

Claims (1)

【特許請求の範囲】[Claims]  位相の異なる2系統のエンジン回転基準信号をそれぞ
れマイクロコンピュータおよびバックアップ用の噴射パ
ルス発生回路に入力して、該マイクロコンピュータの異
常時には該噴射パルス発生回路の出力を使用する燃料噴
射制御装置において、該エンジン回転基準信号のいずれ
によっても起動されて所定パルス幅の噴射パルスを発生
するワンショット出力部と、該エンジン回転基準信号の
いずれか一方が消失したことを検出する断線検出部と、
該断線検出部の検出信号を受けて該噴射パルスのパルス
幅を約2倍に拡大するワンショット時間設定部とを該噴
射パルス発生回路に設けてなることを特徴とする燃料噴
射制御装置。
In a fuel injection control device, two systems of engine rotation reference signals having different phases are inputted to a microcomputer and a backup injection pulse generation circuit, respectively, and the output of the injection pulse generation circuit is used when the microcomputer is abnormal. a one-shot output section that is activated by any of the engine rotation reference signals and generates an injection pulse of a predetermined pulse width; and a disconnection detection section that detects when one of the engine rotation reference signals disappears.
A fuel injection control device characterized in that the injection pulse generation circuit is provided with a one-shot time setting section that receives a detection signal from the disconnection detection section and expands the pulse width of the injection pulse by about twice.
JP12320884A 1984-06-15 1984-06-15 Fuel injection controller Pending JPS614845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12320884A JPS614845A (en) 1984-06-15 1984-06-15 Fuel injection controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12320884A JPS614845A (en) 1984-06-15 1984-06-15 Fuel injection controller

Publications (1)

Publication Number Publication Date
JPS614845A true JPS614845A (en) 1986-01-10

Family

ID=14854870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12320884A Pending JPS614845A (en) 1984-06-15 1984-06-15 Fuel injection controller

Country Status (1)

Country Link
JP (1) JPS614845A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625529U (en) * 1992-09-04 1994-04-08 日本電子機器株式会社 Fuel injection control device for two-cycle engine
WO1998055752A1 (en) * 1997-06-05 1998-12-10 Fev Motorentechnik Gmbh & Co. Kommanditgesellschaft Method for monitoring an electromagnetic actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625529U (en) * 1992-09-04 1994-04-08 日本電子機器株式会社 Fuel injection control device for two-cycle engine
WO1998055752A1 (en) * 1997-06-05 1998-12-10 Fev Motorentechnik Gmbh & Co. Kommanditgesellschaft Method for monitoring an electromagnetic actuator

Similar Documents

Publication Publication Date Title
JPH0751936B2 (en) Engine controller
US6473687B2 (en) Engine control unit operable with different clocks based on crank signal system operation
JPS614845A (en) Fuel injection controller
JPH0583750B2 (en)
JPH0676791B2 (en) Ignition device for internal combustion engine
JPS6227801A (en) Engine control device
JPS62178773A (en) Ignition control device for internal combustion engine
JPH08177693A (en) Ignition control mode switching device for internal combustion
JPH0256517B2 (en)
JP2000236695A (en) Driver for hysteresis motor
JPS62279268A (en) Ignition timing control device for internal combustion engine
JPH0138276Y2 (en)
JPH08147064A (en) Intermittent operating circuit
JPS6131183Y2 (en)
JPH05209585A (en) Engine ignition timing control device
JPH04318237A (en) Internal combustion engine control device
KR940005141B1 (en) Arrangement for starting brushless motor
JP2709972B2 (en) Ignition control device
JPH0656144B2 (en) Ignition control device
JPH06213123A (en) Ignition time controller of internal combustion engine
JPH03207292A (en) Driver for brushless motor
JPH0581753B2 (en)
JPH04318238A (en) Internal combustion engine control device
JPH0762469B2 (en) Ignition control device for internal combustion engine
JPS6352230B2 (en)