JPS6147903B2 - - Google Patents

Info

Publication number
JPS6147903B2
JPS6147903B2 JP58177707A JP17770783A JPS6147903B2 JP S6147903 B2 JPS6147903 B2 JP S6147903B2 JP 58177707 A JP58177707 A JP 58177707A JP 17770783 A JP17770783 A JP 17770783A JP S6147903 B2 JPS6147903 B2 JP S6147903B2
Authority
JP
Japan
Prior art keywords
carbon film
hard carbon
tool
resistance
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58177707A
Other languages
Japanese (ja)
Other versions
JPS6070178A (en
Inventor
Shojiro Myake
Hideo Yoshihara
Iwao Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17770783A priority Critical patent/JPS6070178A/en
Publication of JPS6070178A publication Critical patent/JPS6070178A/en
Publication of JPS6147903B2 publication Critical patent/JPS6147903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は切削抵抗が小さく、かつ工具の損傷も
少なく、加工物の仕上物を高品位に仕上げること
のできる硬質カーボン膜被覆工具に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hard carbon film coated tool that has low cutting resistance, less damage to the tool, and can finish a workpiece with high quality.

従来、切削工具等の材料としては、通常の工具
鋼の他、高速度工具鋼、超硬合金等が用いられて
いる。ところがこれらの材料は相手材料と凝着を
生じ易い材料や、又は比較的硬質な材料を切削す
る場合には抵抗が大きく、また工具も損耗し易い
という欠点がある。一方、これに対し、凝着性の
小さい硬質なセラミツクスを工具材料として用い
ることも行なわれているが、セラミツクスは脆性
を有するため、内在するクラツクに起因して工具
のチツピングないし欠損を生じ易いという問題が
ある。
Conventionally, as materials for cutting tools and the like, in addition to ordinary tool steel, high-speed tool steel, cemented carbide, and the like have been used. However, these materials have the disadvantage that when cutting materials that tend to adhere to the other material or relatively hard materials, the resistance is large and the tools are easily worn out. On the other hand, hard ceramics with low adhesion have been used as tool materials, but ceramics are brittle and tend to chip or break due to inherent cracks. There's a problem.

また最近、工具材料表面にTiN、TiC、
Al2O3、BN等の硬質材料を被覆した工具が用いら
れている。これらの被覆はイオンプレーテイン
グ、スパツタリング、CVD、プラズマ容射等に
より形成されている。これは下地材として靭性の
優れた材料を用いることにより欠損ないし割れを
生じ難くし、かつ膜の硬質なことを利用し、被削
性を向上させようとしている。しかし、被覆材料
には特に潤滑性がないため、切削抵抗は大きくな
り、このため下地材料と被覆材料の密着性が悪い
場合その接合面に応力集中が生じ剥離による脱落
が生じ易い等の問題点がある。
Recently, TiN, TiC,
Tools coated with hard materials such as Al 2 O 3 and BN are used. These coatings are formed by ion plating, sputtering, CVD, plasma spraying, etc. This attempts to use a material with excellent toughness as the base material to make it less prone to chipping or cracking, and to take advantage of the hardness of the film to improve machinability. However, since the coating material does not have any particular lubricity, the cutting resistance increases, and if the adhesion between the base material and the coating material is poor, stress concentration occurs at the bonded surface, causing problems such as peeling and falling off. There is.

本発明は上記従来の問題点を解消した工具を提
供するものであつて、その構成は、ダイヤモンド
とグラフアイトの混晶からなる硬質カーボン膜を
工具材料の表面に形成したことを特徴とする。
The present invention provides a tool that solves the above-mentioned conventional problems, and is characterized in that a hard carbon film made of a mixed crystal of diamond and graphite is formed on the surface of the tool material.

以下に本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明に係る硬質カーボン膜を形成するには
CVD法、プラズマCVD法、イオンビーム形成
法、スパツタリング法等を用いることができる。
How to form a hard carbon film according to the present invention
CVD method, plasma CVD method, ion beam formation method, sputtering method, etc. can be used.

第1図に上記硬質カーボン膜を形成する方法の
一例としてプラズマCVD法による場合の装置例
の概略を示す。図において、1は真空容器、2は
基盤ホルダ、3は基盤、4は高圧電源、5はシヤ
ツタ、6は放電維持用電極、7は電子放出用フイ
ラメント、8は直流電源、9は直流電源、10,
11はガス導入用可変バルブ、12は排気路、1
3は永久磁石である。真空容器1内の基盤ホルダ
2に基盤3をセツトし、前記真空容器1を5×
10-6Torr以上まで排気した後、ガス導入用可変
バルブ11からArガスを導入し、10-3Torr程度
に設定する。電子放出用フイラメント7を直流電
源9により過熱する。次いで、放電維持用電極6
に正の電圧(50〜100V)を直流電源8によつて
印加し、前記の電子放出用フイラメント7と放電
維持用電極6との間に、Arガスプラズマを生成
する。次に、基盤3に高圧電源4により負の高電
圧(−1〜−3kV)を印加してAr+イオンによる
スパツタクリーニングを10〜〜30分間行ない、基
盤クリーニングを終了する。スパツタクリーニン
グ終了後、C2H4ガスをガス導入用可変バルブ1
0から導入し、ガス圧を10-3Torr程度に設定す
る。次にArガスによるスパツタクリーニングの
場合と同一手順で、放電維持用電極6と電子放出
用フイラメント7との間に、C2H4ガスプラズマ
を生成する。次いで、基盤3に負の高電圧(−2
〜−3.5kV)を印加した後、シヤツタ5を開き、
基盤上にダイヤモンドとダイヤモンドとグラフア
イトの混晶からなる硬質カーボン膜を形成する。
FIG. 1 schematically shows an example of an apparatus in which a plasma CVD method is used as an example of a method for forming the hard carbon film. In the figure, 1 is a vacuum container, 2 is a substrate holder, 3 is a substrate, 4 is a high voltage power supply, 5 is a shutter, 6 is a discharge sustaining electrode, 7 is a filament for electron emission, 8 is a DC power supply, 9 is a DC power supply, 10,
11 is a variable valve for gas introduction, 12 is an exhaust path, 1
3 is a permanent magnet. Set the substrate 3 in the substrate holder 2 inside the vacuum container 1, and
After exhausting to 10 -6 Torr or more, Ar gas is introduced from the gas introduction variable valve 11 and set to about 10 -3 Torr. The electron-emitting filament 7 is heated by a DC power source 9. Next, the discharge sustaining electrode 6
A positive voltage (50 to 100 V) is applied by the DC power supply 8 to generate Ar gas plasma between the electron emitting filament 7 and the discharge sustaining electrode 6. Next, a negative high voltage (-1 to -3 kV) is applied to the substrate 3 by the high-voltage power supply 4 to perform spatter cleaning using Ar + ions for 10 to 30 minutes, and the substrate cleaning is completed. After spatter cleaning is completed, C 2 H 4 gas is introduced into variable valve 1.
Introduce the gas from 0 and set the gas pressure to about 10 -3 Torr. Next, C 2 H 4 gas plasma is generated between the discharge sustaining electrode 6 and the electron emitting filament 7 using the same procedure as in the case of spatter cleaning using Ar gas. Next, a negative high voltage (-2
~-3.5kV), open shutter 5,
A hard carbon film consisting of diamond and a mixed crystal of diamond and graphite is formed on the substrate.

以上により得られた硬質カーボン膜は六方晶系
のダイヤモンドとグラフアイトとの混晶によつて
形成されている。
The hard carbon film obtained as described above is formed of a hexagonal mixed crystal of diamond and graphite.

次に本発明に係る工具の切削性について説明す
る。
Next, the cutting performance of the tool according to the present invention will be explained.

第2図に上記試験方法の概略を示す。図示する
ように硬質カーボン膜21を形成した試料22に
焼入れした鋼球圧子23を押圧し、摺動させる。
このときの摺動抵抗、摺動面の情況、相手材料の
除去量等により切削性を評価する。
FIG. 2 shows an outline of the above test method. As shown in the figure, a hardened steel ball indenter 23 is pressed against a sample 22 on which a hard carbon film 21 has been formed, and is caused to slide.
The machinability is evaluated based on the sliding resistance at this time, the condition of the sliding surface, the amount of removed material, etc.

上記試験結果を第3図乃至第4図に示す。 The above test results are shown in FIGS. 3 and 4.

第3図は硬脆材料であるシリコン表面に硬質カ
ーボン膜を形成しないものA0と形成するもの
A1,A2についてその摺動抵抗の測定結果を示し
ている。鋼球圧子23でシリコン表面を直接摺動
させた時の摩擦抵抗A0に比べ、硬質カーボン膜
を形成した面A1,A2では摩擦抵抗は1/4程度に減
少する。
Figure 3 shows a case where a hard carbon film is not formed on the surface of silicon, which is a hard and brittle material, and a case where a hard carbon film is formed.
The measurement results of the sliding resistance of A 1 and A 2 are shown. Compared to the frictional resistance A 0 when the steel ball indenter 23 is directly slid on the silicon surface, the frictional resistance on the surfaces A 1 and A 2 on which the hard carbon film is formed is reduced to about 1/4.

また、シリコンのみの摩擦面には脆性クラツク
が発生しており、シリコンは硬質材料であるにも
かかわらず摩擦面の損耗は著しく大きい。これに
対し、シリコン面に硬質カーボン膜を形成したも
のはシリコン面には摩擦痕は観察されず、表面に
クラツクはもちろも発生しなかつた。さらに、相
手摩擦面である鋼球圧子側にはシリコンと摺動さ
せた面の摩擦除去量は大きいが、摩擦面には円形
状の凝着痕が形成され粗されている。これに対
し、硬質カーボン膜を形成した面と摩擦した球圧
子の除去量は小さく、その面は塑性流動痕で形成
されていることが観察された。
Furthermore, brittle cracks occur on the friction surface made only of silicon, and even though silicon is a hard material, the wear and tear on the friction surface is extremely large. On the other hand, when a hard carbon film was formed on the silicon surface, no friction marks were observed on the silicon surface, and no cracks were generated on the surface. Furthermore, although the amount of friction removed by the surface sliding against the silicon on the steel ball indenter side, which is the mating friction surface, is rough, circular adhesion marks are formed on the friction surface. In contrast, the amount removed by the ball indenter that rubbed against the surface on which the hard carbon film was formed was small, and it was observed that the surface was formed with plastic flow traces.

また、シリコン表面として表面粗さの大きいラ
ツプ面に硬質カーボン膜を形成した場合の摺動抵
抗は第3図A2に示すようにシリコンの鏡面に硬
質カーボン膜を形成したA1の場合よりさらに小
さい値を示す。また、この時の摩擦面にはほとん
ど条痕が検出されない程であつたのに対し、鋼球
圧子側の摩擦面には非常に鋭利な切削条痕が形成
されている。即ち、表面粗さが大きいため、それ
が砥粒切刃として作用して相手を切削したと考え
られる。
In addition, the sliding resistance when a hard carbon film is formed on the lap surface, which has a large surface roughness as the silicon surface, is even greater than that in case A1 , where a hard carbon film is formed on the mirror surface of silicon, as shown in Figure 3 A2 . Indicates a small value. Furthermore, while there were hardly any scratches detected on the friction surface at this time, very sharp cutting scratches were formed on the friction surface on the steel ball indenter side. That is, since the surface roughness was large, it is thought that it acted as an abrasive cutting edge and cut the opponent.

次に第4図は本発明の硬質カーボン膜を形成し
た工具試料とB1501鋼とを摺動させた場合、相手
材料であるB1501鋼の除去体積を示したものであ
る。明らかに粗面に硬質カーボン膜を形成した
A2の除去体積が大きい。特に小荷重においてそ
の除去体積が大きいことは本発明に係る工具の被
削性が優れていることを示している。
Next, FIG. 4 shows the removed volume of B1501 steel, which is the mating material, when the tool sample on which the hard carbon film of the present invention is formed slides on B1501 steel. A hard carbon film was clearly formed on the rough surface.
The removal volume of A 2 is large. The fact that the removed volume is large especially under small loads indicates that the tool according to the present invention has excellent machinability.

ここで、シリコン鏡面A0が高荷重において硬
質カーボン膜を形成したA2と同程度の相手材料
除去量を示すのはシリコン表面に摩擦方向にほぼ
直角に非常に大きなクラツクが発生し、その段差
で削つているためである。しかしこの場合、被削
材の面は粗されて、かつ抵抗は著しく大きくな
る。ここで、シリコン表面には相手材料である鋼
が凝着しており、これが抵抗増大の原因となつて
いるが、硬質カーボン膜を形成した面にはこのよ
うな切削変動の原因となる相手材料の凝着は観察
されなかつた。
Here, the reason why silicon mirror surface A 0 shows the same amount of material removed as A 2 with a hard carbon film formed under high load is because a very large crack occurs on the silicon surface almost perpendicular to the friction direction, and the difference in level This is because it is being removed with However, in this case, the surface of the workpiece is roughened and the resistance becomes significantly large. Here, the mating material, steel, adheres to the silicon surface, which causes an increase in resistance, but the mating material, which causes such cutting fluctuations, adheres to the surface on which the hard carbon film is formed. No adhesion was observed.

これらの結果は、本発明では工具の下地材料と
して脆性材料を用いてもチツピング等の欠損に対
する防止効果があり、更に切削抵抗が小さく、相
手面の加工面の仕上がり面が良好な加工工具を提
供できることを示している。
These results show that the present invention provides a machining tool that is effective in preventing chipping and other defects even when using a brittle material as the base material of the tool, has low cutting resistance, and has a good finished surface on the mating surface. It shows what is possible.

第5図は、比較的軟質なSUS440Cの鋼材を下
地材とし、硬質カーボン膜を形成したものB1
と、形成しないものB0との摺動抵抗を比較した
ものである。同図から明らかなように、B1はB0
に比べ、摺動抵抗が1/2〜1/8に減少する。また、
B0は球圧子である焼入れした鋼球より高度が低
いため、大きな摩擦痕が形成される。これに対
し、硬質カーボン膜を1m程度形成したB1
は、摩耗痕は観察されない。さらに、相手材料で
ある鋼球を観察すると、B0と摺動させた場合に
は不規則な凝着痕が生じるのみであるが、B1
摺動させた場合には摺動方向の切削条痕が形成さ
れている。
Figure 5 shows B 1 with a hard carbon film formed on a relatively soft SUS440C steel material as the base material.
This is a comparison of the sliding resistance between B 0 and B 0 , which is not formed. As is clear from the figure, B 1 is B 0
The sliding resistance is reduced to 1/2 to 1/8 compared to the previous model. Also,
Since B 0 has a lower altitude than the hardened steel ball used as a ball indenter, large friction marks are formed. On the other hand, no wear marks were observed in B1 , in which about 1 m of hard carbon film was formed. Furthermore, when observing the steel ball, which is the mating material, when sliding with B 0 , only irregular adhesion marks are produced, but when sliding with B 1 , cutting in the sliding direction is observed. Streaks are formed.

このように比較的軟質な下地材料を用いても硬
質カーボン膜を形成することにより、相手面を有
効に除去可能であり、また、固体潤滑作用によつ
て切削抵抗も著しく小さくできることが分る。ま
た、形成したカーボン膜はステンレスと同様耐食
性、耐環境性もあるので、特殊環境でも使用で
き、各種分野の工具として使用できる。
It can be seen that even if such a relatively soft base material is used, the opposing surface can be effectively removed by forming a hard carbon film, and cutting resistance can also be significantly reduced due to the solid lubrication effect. In addition, the formed carbon film has corrosion resistance and environmental resistance similar to stainless steel, so it can be used in special environments and can be used as tools in various fields.

また、球圧子側に硬質カーボンを形成し、同様
にSUS440Cと摺動させた場合についても、今ま
での結果と同様摺動抵抗が小さく、かつ
SUS440Cとの凝着もなく、鋭利な切削条痕が形
成され、優れた切削性を示した。
In addition, when hard carbon is formed on the ball indenter side and it is made to slide on SUS440C in the same way, the sliding resistance is small and similar to the previous results.
There was no adhesion to SUS440C, and sharp cutting marks were formed, demonstrating excellent machinability.

以上説明したように、本発明工具はグラフアイ
トの固体潤滑性と共にダイヤモンドの高度を備え
ているので、切削抵抗及び工具損傷が小さく、か
つ凝着も生じず、加工物の仕上面を高品位に仕上
げることが可能であり、旋盤、フライス盤、ボー
ル盤等各種切削工具、鍛造、プレス、ダイス、ゲ
ージ類、成型用型、またハサミ、ナイフ、鋸等の
各種の工具に適用すれば、非常に優れた特性を示
す。
As explained above, the tool of the present invention has both the solid lubricity of graphite and the high quality of diamond, so cutting resistance and tool damage are small, and no adhesion occurs, resulting in a high-quality finished surface of the workpiece. It can be applied to various cutting tools such as lathes, milling machines, drilling machines, forging, presses, dies, gauges, molds, as well as various tools such as scissors, knives, saws, etc. Show characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における硬質カーボン膜形成装
置の一例を示す概略図、第2図は本発明に係る工
具の切削性の試験方法の概略図、第3図は摩擦抵
抗の測定結果を示すグラフ、第4図は相手材料の
除去体積の測定結果を示すグラフ、第5図は摩擦
抵抗の測定結果を示すグラフである。 図中符号1は真空容器、2は基盤ホルダ、3は
基盤、4は高圧電源、5はシヤツタ、6は放電維
持用電極、7は電子放出用フイラメント、8は直
流電源、9は直流電源、10,11はガス導入用
可変バルブ、12は排気路、13は永久磁石、2
1は硬質カーボン膜、22は下地材料、23は鋼
球圧子である。
Fig. 1 is a schematic diagram showing an example of a hard carbon film forming apparatus according to the present invention, Fig. 2 is a schematic diagram of a test method for machinability of a tool according to the present invention, and Fig. 3 is a graph showing measurement results of frictional resistance. , FIG. 4 is a graph showing the measurement results of the removed volume of the mating material, and FIG. 5 is a graph showing the measurement results of the frictional resistance. In the figure, 1 is a vacuum container, 2 is a substrate holder, 3 is a substrate, 4 is a high voltage power supply, 5 is a shutter, 6 is a discharge sustaining electrode, 7 is a filament for electron emission, 8 is a DC power supply, 9 is a DC power supply, 10 and 11 are variable valves for gas introduction, 12 is an exhaust path, 13 is a permanent magnet, 2
1 is a hard carbon film, 22 is a base material, and 23 is a steel ball indenter.

Claims (1)

【特許請求の範囲】[Claims] 1 ダイヤモンドとグラフアイトの混晶からなる
硬質カーボン膜を工具材料の表面に形成したこと
を特徴とする硬質カーボン膜被覆工具。
1. A hard carbon film-coated tool characterized by forming a hard carbon film made of a mixed crystal of diamond and graphite on the surface of a tool material.
JP17770783A 1983-09-26 1983-09-26 Hard carbon film-coated tool Granted JPS6070178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17770783A JPS6070178A (en) 1983-09-26 1983-09-26 Hard carbon film-coated tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17770783A JPS6070178A (en) 1983-09-26 1983-09-26 Hard carbon film-coated tool

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP20330487A Division JPS6399138A (en) 1987-08-14 1987-08-14 Manufacture of tool coated with carbon film of hard quality

Publications (2)

Publication Number Publication Date
JPS6070178A JPS6070178A (en) 1985-04-20
JPS6147903B2 true JPS6147903B2 (en) 1986-10-21

Family

ID=16035694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17770783A Granted JPS6070178A (en) 1983-09-26 1983-09-26 Hard carbon film-coated tool

Country Status (1)

Country Link
JP (1) JPS6070178A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123203A (en) * 1983-12-01 1985-07-01 Mitsubishi Metal Corp Surface-clad cemented carbide member for cutting tool and wear resisting tool
JPS6393870A (en) * 1986-10-07 1988-04-25 Ricoh Co Ltd Thin film forming device
US5599144A (en) * 1995-06-23 1997-02-04 International Business Machines Corporation Low friction flute tungsten carbon microdrill
KR100304832B1 (en) * 1999-08-28 2001-09-24 황해웅 A method for improvement for cutting &grinding property of diamond tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127214A (en) * 1983-01-11 1984-07-23 Seiko Epson Corp Magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127214A (en) * 1983-01-11 1984-07-23 Seiko Epson Corp Magnetic head

Also Published As

Publication number Publication date
JPS6070178A (en) 1985-04-20

Similar Documents

Publication Publication Date Title
JPS58171214A (en) Coating for cutter tool
JP2004238736A (en) Hard film, and hard film-coated tool
JP6103040B2 (en) Manufacturing method of coated tool
JP3392115B2 (en) Hard coating tool
US6517688B2 (en) Method of smoothing diamond coating, and method of manufacturing diamond-coated body
JPH07157862A (en) Wear resistant and welding resistant hard film-coated tool and production thereof
JPH08118106A (en) Cutting tool coated with hard layer
JPH0718415A (en) Cutting tool made of surface coated cubic boron nitride base ceramics having hard coating layer with superior adhesion
JP6308298B2 (en) Manufacturing method of coated tool
JP2008142890A (en) Precision working method using cutting tool
CN109868451A (en) A kind of coated cutting tool and its preparation technology of coating
JPS6147903B2 (en)
JPH08267306A (en) Hard-coated cutting tool and manufacture thereof
WO2022085649A1 (en) Cermet insert and cutting tool comprising same
JP2005224902A (en) Substrate processing method of base material surface, base material having substrate processed surface by this method and product
JP6528936B2 (en) Method of manufacturing coated tool
JPH04310325A (en) Manufacture of hard film covered high speed steel
JPS6399138A (en) Manufacture of tool coated with carbon film of hard quality
CN1093453C (en) Manufacture of diamond film cutter and tool
JP5983878B2 (en) Coated cutting tool
JPH0760521A (en) Diamond-coated drill and manufacture thereof
JP5239059B2 (en) Coated cBN sintered tool for high precision cutting
JP2004082230A (en) Rigid film draping insert for precision lathe working
JP4105795B2 (en) Hard film and hard film coated member with excellent wear resistance and crack resistance
JP2002160108A (en) Cutting tool for precise machining and its manufacturing method