JPS6147659A - Lsi multichip mounting structure - Google Patents

Lsi multichip mounting structure

Info

Publication number
JPS6147659A
JPS6147659A JP59169352A JP16935284A JPS6147659A JP S6147659 A JPS6147659 A JP S6147659A JP 59169352 A JP59169352 A JP 59169352A JP 16935284 A JP16935284 A JP 16935284A JP S6147659 A JPS6147659 A JP S6147659A
Authority
JP
Japan
Prior art keywords
chip
board
multilayer wiring
wiring board
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59169352A
Other languages
Japanese (ja)
Inventor
Tasao Soga
太佐男 曽我
Yasutoshi Kurihara
保敏 栗原
Komei Yatsuno
八野 耕明
Kenji Miyata
健治 宮田
Masahiro Okamura
岡村 昌弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59169352A priority Critical patent/JPS6147659A/en
Publication of JPS6147659A publication Critical patent/JPS6147659A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/057Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads being parallel to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/1627Disposition stacked type assemblies, e.g. stacked multi-cavities

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To realize small size cubic mounting structure and high speed arithmetic operation by providing an output pin to the side where LSI chip is mounted in the periphery of multilayered plate. CONSTITUTION:An Si chip 2 is mounted on a composite substrate obtained by laminating SiC plate 11 on to an organic multilayered wiring plate 9 having a low dielectric coefficient. For example, an input/output pin 27 is soldered to the SiC plate 26 using Sn-18% Bi 45% Pb solder after providing a through hole 32 and a land 28 to SiC plate 2. The terminals of chip 2 within the housing are connected through the through hole conductor 41 and internal wiring 40 and are also connected to the external input/output pin 27. The input/output pin is connected to the modules of upper and lower stages. A small size and multistage multichip module can be configurated by extracting upward the pin using the space at the side wall of housing. Accordingly, a high capacity and high speed ultra-large scale computer can be realized with small size structure.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超大型コンピュータ本体の主要部を形成する論
理、記憶装置の高出力LSIマルチチップ実装構造に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a high-output LSI multi-chip mounting structure for logic and storage devices forming the main part of a super-large computer main body.

〔発明の背景〕[Background of the invention]

近年、電子計算機は大容量化、高速化、小型化が要請さ
れ、その主要部を構成するLSIは微細加工技術の改良
により一層高密度化が図られている。このため必然的に
チップibの消費電力換言すれば、単位面積当りの発熱
量が急速に増している。そこでLSIのマルチチップ実
装に際しては。
In recent years, electronic computers have been required to have larger capacities, faster speeds, and smaller sizes, and the LSIs that constitute the main components thereof are becoming more dense due to improvements in microfabrication technology. For this reason, the power consumption of the chip ib, in other words, the amount of heat generated per unit area is inevitably increasing rapidly. Therefore, when implementing multi-chip LSI.

水冷方式が必須条件になシつつある。Water cooling is becoming an essential requirement.

第1図はAlton多層板1にSiチップ2をCCB 
(Controlled Co11apse Bond
ing )法で多数個接続したマルチチップモジュール
構造を示している。Siチップ2の裏面と冷却水通路6
をもつハウジング3とをはんだ4で接着し、水冷する方
式でおる( U、5.patent 4081825 
、3゜28.1978)。封止方式は金属ガスケット7
による機械的な圧着である。このマルチチップモジュー
ルの入出力ピン8は多層プリント板(図示せず)に接続
するため下側に取出す構造になっている。しかし、この
構造、基板材料ではよυ大容量、高速化を目的とした場
合のコンピュータの実装構造としては次のような問題が
ある。
Figure 1 shows a CCB with a Si chip 2 mounted on an Alton multilayer board 1.
(Controlled Co11apse Bond
This figure shows a multi-chip module structure in which a large number of chips are connected using the ing method. Back side of Si chip 2 and cooling water passage 6
The housing 3 with the housing 3 is bonded with solder 4 and cooled with water (U, 5. patent 4081825
, 3°28.1978). Sealing method is metal gasket 7
This is mechanical crimping. The input/output pins 8 of this multichip module are designed to be taken out on the bottom side for connection to a multilayer printed board (not shown). However, this structure and board material have the following problems when it comes to mounting a computer for purposes of high capacity and high speed.

即ち、第1の問題点は、入出力ピン8をAltos多層
板1の裏面の主要部分から引き出して、多層プリント基
板のスルーホールにピン付、もしくはコネクタ接続され
る構造になっている。このため、この構造のマルチチッ
プモジュールを多段に重ねて組合せる構造とした場合、
ピンが邪魔になシ、実装できないという欠点がある第2
の問題点は、最も基本的であるが、A7zOa多層板(
Wペースト、もしくはMOペースト導体使用)は誘電率
が高く(6キ9.3)、高速計算に不利であることであ
る。従って、大容量で小型構造の高速電算機用のLSI
実装構造としては不十分である。
That is, the first problem is that the input/output pins 8 are pulled out from the main part of the back surface of the Altos multilayer board 1 and connected to through holes in the multilayer printed circuit board with pins or connectors. Therefore, when multi-chip modules with this structure are stacked and combined in multiple stages,
The second problem is that the pins get in the way and cannot be mounted.
The problem with A7zOa multilayer board (
W paste or MO paste conductor) has a high dielectric constant (6 x 9.3), which is disadvantageous for high-speed calculation. Therefore, LSIs for high-speed computers with large capacity and small structure
This is insufficient as a mounting structure.

〔発明の目的〕[Purpose of the invention]

本発明の目的屹上述の問題点を解決したLSIマルチチ
ップ実装構造を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an LSI multi-chip mounting structure that solves the above-mentioned problems.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、入出力ピンを多層板の周辺部のLSI
チップを載置する側に設ける点にある。
The feature of the present invention is that the input/output pins are connected to the LSI on the periphery of the multilayer board.
The reason is that it is provided on the side where the chip is placed.

これによシ、各段のマルチチップモジュールを重ね合わ
すことが可能になシ、小型で立方体実装構造とすること
ができる。そして好ましい実施例では多層板を、低誘電
率の有機多層基板(例えば、ポリイミド、イソメラミン
系樹脂等)とCu導体の組合せとすることによシ誘電率
(ε)を3.5まで下げることが可能となるため、高速
計算が期待できる。
This allows the multi-chip modules of each stage to be stacked on top of each other, resulting in a compact cubic mounting structure. In a preferred embodiment, the dielectric constant (ε) can be lowered to 3.5 by making the multilayer board a combination of a low dielectric constant organic multilayer substrate (for example, polyimide, isomelamine resin, etc.) and a Cu conductor. Therefore, high-speed calculation can be expected.

この有機多層配線基板に10w0の高出力チップを7エ
ースダクン法で実装する上での問題点は、■有機多層板
の熱伝導率が著しく低いこと(A40g 多層板に比べ
1150)である。このため、全面はんだバンプからの
熱伝導によシ、発熱量の10〜20チの熱が有機多層配
線基板側から放散される。この結果、有機多層配線基板
の温度上昇をもたらすため、基板の反シなどによシもた
らされるはんだバンプにかかる応力のため寿命低下の新
たな問題がでてくる。また、冷却効果を上げるためにも
基板側の冷却も必要である。
The problem in mounting a 10W0 high output chip on this organic multilayer wiring board using the 7AceDakun method is that (1) the thermal conductivity of the organic multilayer board is extremely low (1150 compared to an A40g multilayer board). Therefore, 10 to 20 inches of heat is dissipated from the organic multilayer wiring board side due to heat conduction from the solder bumps all over the surface. As a result, the temperature of the organic multilayer wiring board increases, and a new problem arises in that the life of the solder bump is shortened due to the stress exerted on the solder bumps caused by the deformation of the board. Furthermore, cooling on the substrate side is also necessary to increase the cooling effect.

■ 有機多層基板は複合化(α=0.7 X 10’−
’/Cのアラミドクロスファイバ入シ)シても、Cu導
体(α=17.5X10−’/C)を用いるため、基板
の熱膨張係数が下がらず、10m”チップのはんだバン
プ寿命がコンピュータに要求されている寿免を満たすこ
とはできないこと。
■ Organic multilayer substrates are composite (α = 0.7 x 10'-
Even if an aramid cross fiber of '/C is inserted, the thermal expansion coefficient of the board does not decrease because a Cu conductor (α = 17.5 It is impossible to meet the required longevity exemption.

■ 有機多層配線基板は吸湿性があるため、この基板だ
けでハウジング内部と外部を接することはできない。
■ Because the organic multilayer wiring board is hygroscopic, it is not possible to connect the inside and outside of the housing with this board alone.

有機多層板を使用することによシ生ずる上記■■、■の
問題点を解決するためは、以下a)、(2)。
In order to solve the above-mentioned problems (■) and (2) caused by using an organic multilayer board, the following steps a) and (2) are carried out.

(3)を施せばよい。Just apply (3).

(1)有機多層配線板よシも十分厚く、伸び剛性が犬で
、かつ熱伝導性に優れた3iC(特願55−75601
、熱伝導率0.71Cat/crn、 s 、 Cr熱
膨張係数3.9 X 1o−’/C)板を有機多層配線
板の裏面に張り合わせた複合配線基板とする。(2)、
入出力端子は有機多層配線板の対向する2つの周囲の表
面層に出す。(3)冷却チップの素子側(全面バング−
有機配線板−8iC板)のSiC板長面と、3iチツプ
の裏面側に低融点はんだで接着したSiC板、との両側
で水冷する構造とする。
(1) 3iC (patent application No. 55-75601
, a thermal conductivity of 0.71 Cat/crn, s, and a Cr thermal expansion coefficient of 3.9 X 1o-'/C) plate is laminated on the back surface of an organic multilayer wiring board to provide a composite wiring board. (2),
The input/output terminals are exposed to two opposing peripheral surface layers of the organic multilayer wiring board. (3) Element side of cooling chip (full-face bang)
The long side of the SiC board of the organic wiring board (8iC board) and the SiC board bonded to the back side of the 3i chip with low melting point solder are water-cooled on both sides.

これによシ有機多層配線板を用いても基板の反シ及び大
型チップのはんだバンプの信頼性低下等の問題を克服し
、有機多層配線基板の特徴を生かした大容量で高速計算
を可能にする高出力LSIマルチチップモジュール実装
を提供である。
As a result, even when using an organic multilayer wiring board, problems such as board distortion and decreased reliability of solder bumps on large chips can be overcome, and high-capacity and high-speed calculations that take advantage of the characteristics of organic multilayer wiring boards are possible. We provide high-power LSI multi-chip module packaging.

〔発明の実施例〕[Embodiments of the invention]

第1図は、ε=3.5の有機多層配線板9(例えばイソ
メラミン樹脂とアラミドクロスファイバ混入)に8iC
板]1を張合わせた複合基板上に、10■0Siチツプ
2を搭載した断面図である。
Figure 1 shows an organic multilayer wiring board 9 with ε=3.5 (e.g., isomelamine resin and aramid cross fiber mixed) with 8iC
1 is a cross-sectional view of a 100Si chip 2 mounted on a composite substrate laminated with a 100Si chip 2.

有機多層配線板は20層で、スルーホール12に接続さ
れたCuリード13で連結されている。
The organic multilayer wiring board has 20 layers connected by Cu leads 13 connected to through holes 12.

Siチップ2上のはんだパンダ7の接続端子チップは2
50μmで、はんだバンプ16の径は1゛30μmφ、
有機多層配線板上のペデスタル14の径ti140μm
φでおる。この複合基板は約120InI0で、チップ
温度が800に達しても反シは無視できる程度に小さい
。複合基板は5〜6X10’−’/Cで、SaC板11
の熱膨張係数は3.9X10−’/l:l’と両者は接
近している。
The connection terminal chip of the solder panda 7 on the Si chip 2 is 2
50 μm, the diameter of the solder bump 16 is 1゛30 μmφ,
Diameter ti of pedestal 14 on organic multilayer wiring board 140 μm
It's φ. This composite substrate has approximately 120InI0, and even if the chip temperature reaches 800℃, the resistance is so small that it can be ignored. The composite substrate is 5~6X10'-'/C, SaC board 11
The coefficient of thermal expansion is 3.9X10-'/l:l', which is close to each other.

SiC板11の厚さは3■で十分である。複合基板の反
シの程度は、基板の熱膨張係数1寸法、両板の厚さの比
、温度差などで変る。また、StC。
A thickness of 3 mm is sufficient for the SiC plate 11. The degree of warping of a composite substrate varies depending on the thermal expansion coefficient of the substrate, the ratio of the thicknesses of the two plates, the temperature difference, etc. Also, StC.

板と有機多層配線板とを接着した樹脂10は塑性変形に
優れているため、最も応力のかかる基板周辺部において
もSiC板を破壊させることはない。
Since the resin 10 used to bond the board and the organic multilayer wiring board has excellent plastic deformation, the SiC board will not be destroyed even at the periphery of the board, where the most stress is applied.

以下接続を中心とするプロセスについて示す。複合基板
上のCuペデスタル4(12μm厚)上に、81チツプ
の端子を位置決めして、240t:’でボンディングし
た。はんだ組成はpb−60チSnである。ペデスタル
部以外ははんだ流出防止用のレジスト15が形成されて
いる。このはんだバンプ7の接続と同時に複合基板と・
・ウジフグ側壁部の片面をpb−60’18nで接合す
る。なお、ペデスタル端子はスルーホールを避けて、隣
接部に設けた。
The following describes the process centered on connections. Terminals of 81 chips were positioned on the Cu pedestal 4 (12 μm thick) on the composite substrate and bonded at 240t:'. The solder composition is PB-60Sn. A resist 15 for preventing solder from flowing out is formed in areas other than the pedestal portion. At the same time as this solder bump 7 is connected, the composite board and
・Join one side of the Ujifugu side wall with pb-60'18n. Note that the pedestal terminal was placed adjacent to the through hole, avoiding the through hole.

第2図は水冷ヒートシンク20へのSiテップ2の裏面
の接着部19、封止部22の接着部の断面図である。冷
却水路は対向する2辺の1つの側に設けである。対向す
る2辺の他の1つの周囲には封止部の外側において入出
力端子27のピン接合部を設けである。第3図は第2図
と異なる側のハウジング側壁部の入出力端子のおる側の
断面を示す。ピンをSiチップを載置した側に設けた理
由はモジュールの両面を冷却し、多段構造にして小型化
するために障害とならないためである。プリント板上の
SiC板2板端6端 4用するのは熱放散性を目的とするだけではなく、多層
板が直接外気に接しない防湿構造とすることを目的とし
ている、従って、SiC板2板金4Cr−Cuメタライ
ズ)の接続は、はんだバンプ接続、ハウジング側壁部の
多層配線板への接続と同時にPb−60チSnで取付け
られる。
FIG. 2 is a sectional view of the adhesive portion 19 on the back surface of the Si tip 2 and the adhesive portion of the sealing portion 22 to the water-cooled heat sink 20. The cooling water channel is provided on one of the two opposing sides. A pin joint portion for the input/output terminal 27 is provided on the outside of the sealing portion around the other two opposing sides. FIG. 3 shows a cross section of the side wall of the housing, which is different from that in FIG. 2, on the side where the input/output terminals are located. The reason why the pins are provided on the side on which the Si chip is mounted is to cool both sides of the module so that it does not become an obstacle to miniaturization by forming a multi-stage structure. The use of the SiC board 2 on the printed board is not only for the purpose of heat dissipation, but also for the purpose of creating a moisture-proof structure where the multilayer board does not come into direct contact with the outside air. The connection of the sheet metal (4Cr-Cu metallized) is made by solder bump connection and the connection to the multilayer wiring board of the side wall of the housing, and is simultaneously attached with Pb-60chiSn.

入出力ピン27は、あらかじめSiC板26にスルーホ
ール導体32、ランド部28を設け、5n−181Bi
−45%Pbはんだを用いSiC板26にはんだ付され
る。ノ・ウジング内部のチップの端子はスルーホール導
体41及び内部の配線4oを通して接続され、外部の人
出ピン27′に接続される。入出力ピンはコネクターを
介して、上下各段のモジュールに接続される。このよう
にハウジング側壁部の空間を利用してピンを上向きに取
出すことよシ、小型で多段のマルチチップモジュール構
造を可能とした。第4図はモジュールを平面的に切断し
た断面である。入出力ピンは上下に、冷却水路は左右に
取付けた構造である。
The input/output pin 27 is made by providing a through-hole conductor 32 and a land portion 28 on the SiC board 26 in advance, and using a 5n-181Bi
It is soldered to the SiC board 26 using -45% Pb solder. The terminals of the chip inside the housing are connected through the through-hole conductor 41 and the internal wiring 4o, and are connected to the external lead pin 27'. The input/output pins are connected to the upper and lower modules via connectors. In this way, by utilizing the space in the side wall of the housing to take out the pins upward, a compact and multi-stage multi-chip module structure has become possible. FIG. 4 is a cross section of the module cut in a plane. The input/output pins are installed on the top and bottom, and the cooling channels are installed on the left and right sides.

Siチップ近くのはんだ接続は、まず、Pd−60チS
nのはんだバンプを接続後、あらかじめSiチップ裏面
にCr  (::u  Au18をメタライズされた層
の上に、約500μm厚さの低融点はんだ8n−18*
B1−45*Pb (特願昭5 8−011293,同
相温度136G,液相温度168r)箔を載せて溶融さ
せて接続した。また、同時に・・ウジング側壁部の最終
村上部にも、メタライズしたSiC板2板側2側壁材2
00μm厚さのはんだ箔を載せて接合した。低温はんだ
の接合条件はmax178Gである。接合時の雰囲気は
H2 、 H e r N* + A r等のいずれで
も可能である。
For solder connections near the Si chip, first use Pd-60 chip S.
After connecting the n solder bumps, a low melting point solder 8n-18* with a thickness of about 500 μm is applied on the Cr(::u) Au18 metalized layer on the back side of the Si chip.
B1-45*Pb (Japanese Patent Application No. 58-011293, in-phase temperature 136G, liquidus temperature 168R) was placed on a foil and melted to connect. At the same time, 2 metalized SiC plates 2 plate side 2 side wall material 2
00 μm thick solder foil was placed and bonded. The low temperature solder bonding conditions are max 178G. The atmosphere during bonding may be H2, HerN*+Ar, or the like.

第5図はマルチチップモジュールの2段重ね構造を示す
。(a)は冷却水路を境に対称的に重ねる方式、(b)
は同一方向に重ねる方式等を示したモデル図でおる。(
a)  構造では温度上昇が著しい水路と温度上昇の少
ない水路が交互にくるので、流量を調節する必要がちる
。(b)  構造では各段とも同一温度上昇になる。
FIG. 5 shows a two-tier stacked structure of multi-chip modules. (a) is a symmetrical stacking method with cooling channels as a boundary; (b)
is a model diagram showing a method of overlapping in the same direction, etc. (
a) In the structure, waterways with a significant temperature rise alternate with waterways with a small temperature rise, so it is often necessary to adjust the flow rate. (b) In the structure, the temperature rise is the same in each stage.

(a)、(b)構造にはそれぞれ一長一短がある。Si
Cのヒートシンク20とヒートシンク20の中間に設け
られている冷却水路には、流れに対して平行に、しかも
何列にも配置されているチップ列に沿ってSiCフィン
31が細かく、かつ長く設けられていて、流れやすく、
熱放散性を良くしである。
Structures (a) and (b) each have advantages and disadvantages. Si
In the cooling channel provided between the heat sinks 20 of C, fine and long SiC fins 31 are provided parallel to the flow and along the chip rows arranged in many rows. Easy to flow,
This improves heat dissipation.

29は冷却水入口、38は冷却水出口で、30は冷却水
の取付部である。第5図(C)は第5図(a)、 (b
)において、AB断面で切断した場合の1段目と2段目
のマルチチップモジュールの冷却水路断面を示す。水路
はSiCの板11.20で狭まれている。
29 is a cooling water inlet, 38 is a cooling water outlet, and 30 is a cooling water attachment part. Figure 5(C) shows Figures 5(a) and (b).
) shows the cooling water cross section of the first and second stage multi-chip modules when cut along the AB cross section. The water channel is narrowed by a SiC plate 11.20.

第6図はチップの温度上昇が高い場合に、冷却層を多段
にした実施例である。第6図(a)は第5図(a)と同
じく対称構造を示し、温度上昇の著しいチップ裏面にお
いて、冷却効果を上げるため3層の冷却層を設け、はん
だバンプ側の冷却においては1層の冷却層を設けた断面
のモデルを示す。3層の中間層は両側の層と逆の流れに
することによシ各チップの温度上昇を均一化することが
できる。
FIG. 6 shows an embodiment in which cooling layers are provided in multiple stages when the temperature rise of the chip is high. Figure 6(a) shows the same symmetrical structure as Figure 5(a), with three cooling layers provided on the back side of the chip where the temperature rises significantly to increase the cooling effect, and one layer for cooling the solder bump side. A cross-sectional model with a cooling layer is shown. By making the three intermediate layers flow in the opposite direction to the layers on both sides, it is possible to equalize the temperature rise of each chip.

第6図(b)は同一方向チップ配置構造を示す。この構
造では各段共、水路方向を逆にした2層の冷却層を設け
た。
FIG. 6(b) shows a structure in which chips are arranged in the same direction. In this structure, two cooling layers were provided in each stage with the direction of the waterways reversed.

前述の第1〜6図は、多層配線板と・・ウジング天井材
をSiチップを介して、はんだで接着する構造を示した
が、熱伝導性の優れた有機接着剤の使用も可能である。
The above-mentioned Figures 1 to 6 show a structure in which the multilayer wiring board and the ceiling material are bonded by solder via a Si chip, but it is also possible to use an organic adhesive with excellent thermal conductivity. .

この接着構造は、・・ウジング上下の基板同志の熱膨張
係数がほぼ等しいことから、若干の熱膨張係数の差によ
り生じた接続部、封止部の応力、歪を融点に階層を設け
た伸び、絞シに優れた低融点はんだで緩和することを基
本にしたものである。
This bonding structure...Since the coefficients of thermal expansion of the substrates on the upper and lower sides of the housing are almost the same, the stress and strain at the connection and sealing parts caused by slight differences in the coefficients of thermal expansion are caused by a layered elongation at the melting point. This is based on the use of low melting point solder, which has excellent shrinkage resistance.

しかし大型基板になると、寸法効果のため、歪量が大き
くなシ問題になってくることが予想される。
However, when it comes to large substrates, it is expected that the amount of distortion will become a problem due to size effects.

この場合は、例えば第7図に示すよづにベローズ37構
造(空気だめ35付水銀34人シ)にすれば、上下だけ
でなく、水平方向の変位に対しても解放できる。また、
ベローズの中にフィン31を設けた水冷構造にすれば、
大型基板に対しても冷却効果を損なわず、本方式の構造
は有効である。
In this case, for example, if the bellows 37 structure shown in FIG. 7 (mercury 34 cylinder with air reservoir 35) is used, it can be released not only against vertical displacement but also against horizontal displacement. Also,
If you use a water cooling structure with fins 31 inside the bellows,
The structure of this method is effective even for large substrates without impairing the cooling effect.

なお、封止部、チップ接合に融点の異なるはんだを用い
たのは、故障チップを修理するときに融点の高いはんだ
を溶かさないで、外し、再取付けするリペプ性を考慮し
ているためである。また、応力、歪緩和に対しても、低
融点はんだの使用の効果は大きい。
The reason why we used solders with different melting points for the sealing part and chip joints was to take into consideration the repeatability of removing and reattaching a defective chip without melting the solder with a higher melting point. . Furthermore, the use of low melting point solder has a great effect on stress and strain relaxation.

なお、複合多層配線基板に使用しているSiC板、ハウ
ジング天井に使用しているSiC板等の代りに熱伝導性
に優れ、かつ熱膨張係数を8i並みに合わすことができ
る銅・カーボン複合材を用いることも可能である。
In addition, instead of the SiC board used in the composite multilayer wiring board and the SiC board used in the ceiling of the housing, a copper/carbon composite material with excellent thermal conductivity and a coefficient of thermal expansion that can be matched to 8i is used. It is also possible to use

多段モジュールの冷却構造として、各モジュールごとに
独立して両側に冷却層を設けてから、重ねて多段化する
方式は、取外し再取付けに優れている長所があるので当
然考えられる実装構造である。
As a cooling structure for a multi-stage module, a method in which cooling layers are independently provided on both sides of each module and then stacked to form multiple stages is a natural mounting structure that can be considered because it has the advantage of being easy to remove and reinstall.

〔発明の効果〕〔Effect of the invention〕

本発明によシ、計算゛速度の大幅な向上が期待できる有
機多層板上への、101o10の大型高出力チップ(2
o−:40W)の高密度実装を可能にしたことによシ、
従来にない小型構造で大容量・高速の超大型計算機が可
能になる。
According to the present invention, a large high-power chip (101x10) (2
o-:40W), which enables high-density mounting.
This makes it possible to create ultra-large computers with large capacity and high speed with an unprecedentedly compact structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる多層配線基板の断面図、第2図
は本発明を適用したモジュールのハウジング部の断面図
、第3図は本発明モジュールの封止部及び入出力端子部
の拡大図、第4図は本発明モジュールの平面図、第5図
はマルチチップモジュールを2段に重ねた本発明の他の
実施例を示す断面図、第6図は冷却層を2〜3層にした
場合の実施例を示す断面図、第7図はベローズを用いた
冷却構造のチップ周辺の断面図、第8図は従来のマルチ
チップモジュールの断面図である。 2・・・Siチップ、9・・・有機多層配線板、11・
・・SiC板。
Fig. 1 is a cross-sectional view of a multilayer wiring board used in the present invention, Fig. 2 is a cross-sectional view of the housing portion of a module to which the present invention is applied, and Fig. 3 is an enlarged view of the sealed portion and input/output terminal portion of the module of the present invention. 4 is a plan view of the module of the present invention, FIG. 5 is a sectional view showing another embodiment of the present invention in which multi-chip modules are stacked in two layers, and FIG. 6 is a cooling layer of 2 to 3 layers. FIG. 7 is a cross-sectional view of the periphery of a chip having a cooling structure using bellows, and FIG. 8 is a cross-sectional view of a conventional multi-chip module. 2...Si chip, 9...Organic multilayer wiring board, 11.
...SiC board.

Claims (1)

【特許請求の範囲】 1、はんだ電極端子を有し、多数個の素子領域が形成さ
れてなる多数個の半導体チップを多層配線基板上にはん
だ接合したマルチチップモジュールにおいて、 多層配線基板上のチップが搭載された側とは反対側の面
及びチップを接着したハウジングの裏側面が液冷される
ように、多層配線基板、ヒートシンクを多段積層したこ
とを特徴とするLSIマルチチップ実装構造。 2、特許請求の範囲第1項において、多層配線基板は有
機多層配線板とSiC板とを接着した複合基板であるこ
とを特徴とするLSIマルチチップ実装構造。 3、特許請求の範囲第1項または第2項において、ハウ
ジングはSiCであることを特徴とするLSIマルチチ
ップ実装構造。 4、特許請求の範囲第1項、第2項または第3項におい
て、入出力ピンはハウジング外部の多層配線基板の半導
体チップ側から取出したことを特徴とするLSIマルチ
チップ実装構造。
[Scope of Claims] 1. A multi-chip module in which a number of semiconductor chips each having a solder electrode terminal and having a number of element regions formed therein are soldered onto a multilayer wiring board, comprising: a chip on the multilayer wiring board; An LSI multi-chip mounting structure characterized by stacking multilayer wiring boards and heat sinks in multiple stages so that the side opposite to the side on which the chip is mounted and the back side of the housing to which the chip is bonded are liquid-cooled. 2. The LSI multi-chip mounting structure according to claim 1, wherein the multilayer wiring board is a composite board made by bonding an organic multilayer wiring board and a SiC board. 3. The LSI multi-chip mounting structure according to claim 1 or 2, wherein the housing is made of SiC. 4. The LSI multi-chip mounting structure according to claim 1, 2 or 3, characterized in that the input/output pins are taken out from the semiconductor chip side of the multilayer wiring board outside the housing.
JP59169352A 1984-08-15 1984-08-15 Lsi multichip mounting structure Pending JPS6147659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59169352A JPS6147659A (en) 1984-08-15 1984-08-15 Lsi multichip mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59169352A JPS6147659A (en) 1984-08-15 1984-08-15 Lsi multichip mounting structure

Publications (1)

Publication Number Publication Date
JPS6147659A true JPS6147659A (en) 1986-03-08

Family

ID=15884973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59169352A Pending JPS6147659A (en) 1984-08-15 1984-08-15 Lsi multichip mounting structure

Country Status (1)

Country Link
JP (1) JPS6147659A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315486A (en) * 1991-12-16 1994-05-24 General Electric Company Hermetically packaged HDI electronic system
JP2007012719A (en) * 2005-06-28 2007-01-18 Honda Motor Co Ltd Cooler and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315486A (en) * 1991-12-16 1994-05-24 General Electric Company Hermetically packaged HDI electronic system
JP2007012719A (en) * 2005-06-28 2007-01-18 Honda Motor Co Ltd Cooler and manufacturing method thereof
JP4721412B2 (en) * 2005-06-28 2011-07-13 本田技研工業株式会社 Cooler and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3239909B2 (en) Stackable 3D multi-chip semiconductor device and its manufacturing method
KR100310398B1 (en) Pad Array Semiconductor Device with Thermal Conductor and Manufacturing Method Thereof
US8772927B2 (en) Semiconductor package structures having liquid cooler integrated with first level chip package modules
US5644161A (en) Ultra-high density warp-resistant memory module
KR0167800B1 (en) Semiconductor device and method of producing the same
US4758926A (en) Fluid-cooled integrated circuit package
US7196411B2 (en) Heat dissipation for chip-on-chip IC packages
US8115302B2 (en) Electronic module with carrier substrates, multiple integrated circuit (IC) chips and microchannel cooling device
TWI419243B (en) Low profile ball grid array (bga) package with exposed die and method of making same
US4860444A (en) Method of assembling a fluid-cooled integrated circuit package
JP2910670B2 (en) Semiconductor mounting structure
US7071569B2 (en) Electrical package capable of increasing the density of bonding pads and fine circuit lines inside a interconnection
JPH01253942A (en) Semiconductor package and computer using the same
JPH05275865A (en) High density package
JPS61201452A (en) Cooling device for integrated circuit chip
JPH0846085A (en) Semiconductor device and method of manufacture
JPH09167813A (en) Integrated circuit package
JP2001060645A (en) Interposer for mounting semiconductor die on board
JPH07170098A (en) Mounting structure of electronic parts and mounting method
US4964019A (en) Multilayer bonding and cooling of integrated circuit devices
JPS6147659A (en) Lsi multichip mounting structure
JP3910391B2 (en) Multilayer semiconductor device
JP2865496B2 (en) Multi-chip module
JP2891426B2 (en) Semiconductor device
JP3093278B2 (en) Electronic package with improved pad design