JPS6147127B2 - - Google Patents

Info

Publication number
JPS6147127B2
JPS6147127B2 JP53057027A JP5702778A JPS6147127B2 JP S6147127 B2 JPS6147127 B2 JP S6147127B2 JP 53057027 A JP53057027 A JP 53057027A JP 5702778 A JP5702778 A JP 5702778A JP S6147127 B2 JPS6147127 B2 JP S6147127B2
Authority
JP
Japan
Prior art keywords
catalyst
air
exhaust gas
dust
soot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53057027A
Other languages
Japanese (ja)
Other versions
JPS54151557A (en
Inventor
Hiroaki Ida
Sadao Sekida
Katsumi Myata
Yoshinobu Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP5702778A priority Critical patent/JPS54151557A/en
Publication of JPS54151557A publication Critical patent/JPS54151557A/en
Publication of JPS6147127B2 publication Critical patent/JPS6147127B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 本発明は乾式脱硝装置における間歇移動層ある
いは連続移動層の触媒反応塔によつて、排ガス中
の窒素酸化物を除去するうえで、触媒の供給口お
よび取出口でのシール法に関する。
Detailed Description of the Invention The present invention provides a method for removing nitrogen oxides from exhaust gas using an intermittent moving bed or continuous moving bed catalytic reaction tower in a dry denitration equipment. Regarding the seal law.

排ガス中の窒素酸化物を処理するために使用す
る触媒は、機械的強度の弱いものがあり、特にダ
ーテイ排ガスを対象として、触媒層の圧損回復閉
塞現象の回避を目ざして触媒の一部を取出し、そ
してその分を新たに供給する触媒層の移動層化を
とるにあたつて、この際の大気中との接点でのシ
ール法が問題になつていた。すなわちバルブ、コ
ツク類の弁によればたちまちそこで触媒粒子が壊
われかみ込み現象等が生じ機能を果たさなくな
る。
Some of the catalysts used to treat nitrogen oxides in exhaust gas have weak mechanical strength, and in order to avoid the pressure drop recovery and blockage phenomenon in the catalyst layer, especially for dirty exhaust gas, a part of the catalyst is removed. , and when creating a moving bed for the catalyst layer to newly supply that amount, the sealing method at the point of contact with the atmosphere has become a problem. In other words, in the case of valves and other types of valves, the catalyst particles are immediately destroyed and entrapment phenomena occur, causing the valves to no longer function.

本発明はかゝる現象に対し研究を積み重さねエ
ア・シール法によつて処理すべき排ガスの装置内
から大気中への漏れを完全に遮断し、且つ触媒の
装置内への移動または装置内からの抜き出しも円
滑にしたものである。
The present invention has been developed based on extensive research into such phenomena, and uses an air seal method to completely block the leakage of exhaust gas to be treated from the inside of the equipment to the atmosphere, and to prevent the movement of the catalyst into the equipment. It also facilitates extraction from the inside of the device.

更に本発明に関して著しい効果を発揮するもの
として、触媒粒子に付着した煤塵の分離操作をエ
ア・シール法を行なう傍ら進行できる点である。
Furthermore, a remarkable effect of the present invention is that the separation operation of soot and dust adhering to catalyst particles can be carried out while performing the air sealing method.

一般にダーテイ排ガスに関しては、排ガス中に
含有する煤塵等によつて触媒層の圧損が上昇する
が、これを定期的あるいは連続的に装置内から抜
き取り振動篩いをかけ煤塵を取り除き触媒層抵抗
を軽減した後、塔上部から再充填する方法をとる
のが普通である。ところで振動篩いで完全に煤塵
の除去を行なうことは、振動篩い容量を非常に大
きくしないかぎり無理であり、ある程度の煤塵量
は触媒粒子に付着したまま再度塔内に充填され、
触媒粒子に被覆する煤塵が残ることにより、初期
触媒層圧損ベースより徐々に増加傾向に至るだけ
でなく、煤塵被覆により触媒性能が低下すること
が知られている。
Generally speaking, with regard to dirty exhaust gas, the pressure loss of the catalyst layer increases due to the soot and dust contained in the exhaust gas, but this is periodically or continuously extracted from the equipment and passed through a vibrating sieve to remove the soot and dust and reduce the resistance of the catalyst layer. After that, it is common to refill the column from the top. However, it is impossible to completely remove soot and dust using a vibrating sieve unless the capacity of the vibrating sieve is made very large, and a certain amount of soot and dust remains attached to the catalyst particles and is refilled into the column.
It is known that due to the soot and dust coating the catalyst particles remaining, not only does the pressure drop of the initial catalyst layer tend to increase gradually from the base level, but also the catalyst performance decreases due to the soot and dust coating.

しかるに本発明はエア・シールしながら除塵操
作を行ない、ダーテイ排ガスの処理分野に対し、
その工業的価値は極めて大きいものである。すな
わち、触媒供給口及び取出口に塔内静圧より高い
空気を注入し、かつ触媒粒子の流動化速度より低
くなるよう空気注入地点から触媒層までの距離を
設けることによつて、該触媒層までの距離を通過
した空気に煤塵を含有させ除塵操作を可能とした
ものである。
However, the present invention performs dust removal operation while air sealing, and is suitable for the field of dirty exhaust gas treatment.
Its industrial value is extremely large. That is, by injecting air higher than the static pressure inside the column into the catalyst supply port and the catalyst outlet port, and by providing a distance from the air injection point to the catalyst layer so as to be lower than the fluidization speed of the catalyst particles, the catalyst bed This makes it possible to remove dust by allowing the air that has passed through the distance to contain soot and dust.

固体粒子は一般に粒度および比重が大きくなる
に伴ない流動化速度も大になる傾向がある。そこ
で本発明ではエア・シールに対し触媒粒子に比べ
非常に微粒の煤塵や粉じんを触媒粒子の流動化速
度より低い値で流通させることにより、容易にこ
れらの煤塵または粉塵を吹き飛ばし、さらに振動
篩での分離を加え再クリーニングすることで大き
くその触媒粒子を浄化する役割を果すものであ
る。
Generally, as the particle size and specific gravity of solid particles increase, the fluidization rate tends to increase as well. Therefore, in the present invention, the soot and dust particles, which are much finer than the catalyst particles, are allowed to flow through the air seal at a rate lower than the fluidization speed of the catalyst particles, so that the soot and dust particles can be easily blown away, and further, the soot and dust particles can be easily blown away using a vibrating sieve. By adding separation and re-cleaning, it plays a large role in purifying the catalyst particles.

また、本発明ではエア・シールの空気をできる
限り少量でかつ塔内静圧より高い圧力の空気を注
入できるように、滑降分配管の枝別れ地点及び該
触媒充填層から触媒取出口に至る滑降集合管の枝
別れ地点にて、シールエアの導入口を設けた点に
特徴を有する。すなわちエアシールの導入口から
大気開放端までの距離をできる限り長くとること
により、低い流速で高いエアシール圧を得ること
にある。更に本発明ではいずれも一側と他側に枝
別れした滑降分配管及び滑降集合管の枝別れ地点
において、系外にこれらの管から流出しようとす
る排ガスの流出方向に対し、一側を直角方向にか
つ他側を正反対方向となるよう共に塔内静圧より
高いエアが注入されることである。つまり処理す
べき排ガスの系外への漏れに対し、分岐点にて排
ガスが漏れる方向に対して一側をエア・カーテン
のごとく排ガスの漏れようとする流れ方向に対し
直角に吐き出すことにより遮断し、かつ他側を漏
れようとする方向に対し正反対方向になるごとく
エア・シール用の空気を注入して、処理すべき排
ガスが系外へ流出するのをいつそう効果的に阻止
するものである。そして塔内ガス静圧より僅かに
高い圧力によるこのようなエア・シール注入法に
よつて、処理すべき排ガスが系外へ放出するのを
さえぎるだけでなく、大半のエア・シールガスに
煤塵等を同伴させる空気輸送の役目を荷なわせ、
触媒の洗浄効果の作用をも有するものである。
In addition, in the present invention, in order to inject air into the air seal as small as possible and with a pressure higher than the static pressure inside the column, the downhill branching point of the downhill distribution piping and the downhill slope from the catalyst packed bed to the catalyst outlet The feature is that the seal air inlet is provided at the branching point of the collecting pipe. That is, the objective is to obtain a high air seal pressure at a low flow rate by making the distance from the inlet of the air seal to the end open to the atmosphere as long as possible. Furthermore, in the present invention, at the branching point of the downhill distribution pipe and the downhill collecting pipe that are branched into one side and the other side, one side is set at right angles to the outflow direction of the exhaust gas that is about to flow out of these pipes to the outside of the system. Air that is higher than the static pressure inside the column is injected in one direction and in the opposite direction on the other side. In other words, the leakage of exhaust gas to be treated outside the system is blocked by discharging one side of the exhaust gas in the direction in which it is leaking at a branch point, like an air curtain, at a right angle to the flow direction in which the exhaust gas is trying to leak. , and inject air for air sealing in the opposite direction to the direction in which the other side is attempting to leak, thereby effectively preventing the exhaust gas to be treated from flowing out of the system. . This air seal injection method, which uses a pressure slightly higher than the static pressure of the gas inside the tower, not only prevents the exhaust gas to be treated from being discharged outside the system, but also eliminates soot and dust from most of the air seal gas. The role of pneumatic transportation that accompanies the cargo,
It also has the effect of cleaning the catalyst.

次に本発明の実施態様を図面を参照しつつ説明
するが、本発明は実施例に限定されるものではな
い。
Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the embodiments.

第1図は本発明法をたて型移動層反応装置に適
用した概略図を示す。第1図において1は反応塔
2に充填された触媒層である。排ガス中の煤塵が
この塔2内の触媒に付着して圧力損失を生ぜしめ
るようになると塔2の下方から触媒の一部を滑降
集合管3により取出し、取出した分だけ塔2上方
に設けた触媒供給ホツパ4より新たな触媒を滑降
分配管5を介して分配供給して圧損の上昇を防
ぐ。一方滑降集合管3から取出された触媒は触媒
篩い分け機6によつて煤塵等を浄化し、浄化した
触媒は搬送機7によつて触媒供給ホツパ4に搬送
して再使用する。9はエア・シール用空気輸送管
であり、この空気輸送管9からは触媒の取出しと
供給を行うときに処理されるべき排ガスが、この
滑降集合管3及び滑降分配管5から漏れないよう
にフアン10によつてエアシール用の空気を注入
する。空気輸送管9の空気注入口11は、第2
図、第3図に示すように滑降集合管3及び滑降分
配管5の枝別れ地点12,13に臨ませてあり、
枝別れしている一側管14,15においてはこの
管14,15から排ガスが漏れようとする方向
a,bに対し直角な方向に、また他側管16,1
7に対してはこの管16,17から排ガスが漏れ
ようとする流れ方向c,dに対し正反対の方向に
エア・シール用の空気が注入されるようになつて
いる。このエア・シール用に注入された空気は、
滑降集合管3の触媒取出口18及び滑降分配管5
の触媒供給口19を出た後は煤塵含有空気輸送管
21により除塵機22に集めて浄化することが出
来、フアン23により浄化空気管24から排出さ
れる。
FIG. 1 shows a schematic diagram in which the method of the present invention is applied to a vertical moving bed reactor. In FIG. 1, 1 is a catalyst layer filled in a reaction tower 2. When soot and dust in the exhaust gas adheres to the catalyst in this tower 2 and causes a pressure loss, a part of the catalyst is taken out from the bottom of the tower 2 through the down collecting pipe 3, and the removed part is placed above the tower 2. New catalyst is distributed and supplied from the catalyst supply hopper 4 via the downhill distribution pipe 5 to prevent an increase in pressure loss. On the other hand, the catalyst taken out from the downhill collecting pipe 3 is purified of soot and dust by a catalyst sieve 6, and the purified catalyst is conveyed to the catalyst supply hopper 4 by a conveyor 7 for reuse. Reference numeral 9 denotes an air transport pipe for air sealing, and the air transport pipe 9 is used to prevent exhaust gas to be treated when taking out and supplying the catalyst from leaking from the downhill collecting pipe 3 and the downhill distribution pipe 5. Air for air sealing is injected by a fan 10. The air inlet 11 of the air transport pipe 9 is connected to the second
As shown in FIG.
In the branched pipes 14, 15 on one side, the pipes 16, 1
7, air for air sealing is injected from the pipes 16 and 17 in a direction exactly opposite to the flow directions c and d in which the exhaust gas tends to leak. The air injected for this air seal is
Catalyst outlet 18 of downhill collecting pipe 3 and downhill distribution pipe 5
After exiting the catalyst supply port 19, the dust can be collected and purified by a dust remover 22 through a dust-containing air transport pipe 21, and then discharged from a purified air pipe 24 by a fan 23.

そこで処理すべき排ガスは触媒層1の支持面に
対して直角に流れている。こゝで排ガス中の煤塵
等の微粒物質が触媒層1に堆積するに従つて、触
媒層1の圧損は上昇するため連続的あるいは間歇
的に滑降集合管3の取出口18から触媒を抜き取
り、触媒篩い分け機6などで分別操作を行なつた
後、触媒は搬送機7に積み込まれ上部の触媒供給
ホツパ4へと搬送されていくものである。
The exhaust gas to be treated there flows at right angles to the support surface of the catalyst layer 1. As particulate matter such as soot in the exhaust gas accumulates on the catalyst layer 1, the pressure loss of the catalyst layer 1 increases, so the catalyst is continuously or intermittently extracted from the outlet 18 of the down collecting pipe 3. After being separated by a catalyst sieving machine 6 or the like, the catalyst is loaded onto a conveyor 7 and conveyed to the catalyst supply hopper 4 in the upper part.

ところで触媒供給口19および触媒取出口18
からの処理すべき排ガスの系外への流出を封じる
ために、エアシールフアン10で外気空気を吸い
空気輸送管9を通過して、滑降分配管5及び滑降
集合管3の枝別れ地点12,13に注入される。
こゝにエアシール圧力は排ガスの所有するガス圧
より高くすることで、排ガスの系外への漏れは完
全に遮断される。しかるにエアシール流速は触媒
の流動化速度以下になるよう、空気注入地点から
触媒供給ホツパ4内の触媒上面までの距離また触
媒取出口18までの距離を十分にとり、触媒層1
への触媒移動を円滑にできる様にする一方、エア
シール流速で微粒子ごときの触媒粒子に被覆した
煤塵を該シール流速で飛散させるものである。
By the way, the catalyst supply port 19 and the catalyst outlet port 18
In order to prevent the exhaust gas to be treated from flowing out of the system, the air is sucked by the air seal fan 10 and passed through the air transport pipe 9 to branch points 12 and 13 of the downhill distribution pipe 5 and the downhill collecting pipe 3. is injected into.
By setting the air seal pressure higher than the gas pressure possessed by the exhaust gas, leakage of the exhaust gas to the outside of the system is completely blocked. However, the distance from the air injection point to the top surface of the catalyst in the catalyst supply hopper 4 and the distance to the catalyst outlet 18 is set sufficiently so that the air seal flow velocity is less than the fluidization velocity of the catalyst.
While allowing the catalyst to move smoothly, the soot dust coated on the catalyst particles such as fine particles is scattered at the air seal flow rate.

例えば移動層乾式脱硝に使用される工業用触媒
の流動化速度は触媒粒径、比重、使用温度などに
より若干異なるが、大方0.7〜3.0m/s程度のもの
である。一方触媒に被覆している煤塵等のフライ
アツシユごときものは0.01〜0.1m/s程度でも、
流動化点を越え浮遊化状態を呈しているのがみら
れる。従つて0.1〜0.7m/sの流速範囲にエアシー
ル流速を設定すれば、触媒供給および抜き出しを
可能にし、かつ触媒篩い分け機6で除去できなか
つた微粒子をエアシールガスに同伴させ空気輸送
ができるようになる。
For example, the fluidization speed of industrial catalysts used in moving bed dry denitrification varies slightly depending on the catalyst particle size, specific gravity, operating temperature, etc., but is generally about 0.7 to 3.0 m/s. On the other hand, fly ash such as soot dust coating the catalyst can
It can be seen that it has exceeded the fluidization point and is in a floating state. Therefore, by setting the air seal flow velocity within the flow velocity range of 0.1 to 0.7 m/s, it is possible to supply and extract the catalyst, and also to entrain the fine particles that could not be removed by the catalyst sieving device 6 with the air seal gas so that they can be transported by air. become.

そして煤塵を含んだガスは煤塵含有空気輸送管
21を経て除塵機22で煤塵を分離した後、フア
ン23を通じ浄化空気管24から清浄ガスとして
排風される。
Then, the gas containing soot and dust passes through a soot and dust-containing air transport pipe 21, and after separating the soot and dust with a dust remover 22, it is exhausted as clean gas from a purified air pipe 24 through a fan 23.

また次に第2図、第3図に示すように、滑降分
配管5の枝別れ地点及び滑降集合管3の枝別れ地
点12にて系外へ流出しようとする排ガスは、塔
2内からの排ガスの流れ方向に対し、一側管1
5,14については直角方向にかつ他側管17,
16については排ガスの流れに対し正反対となる
ようそれぞれ塔2内静圧より高いエアを注入し、
処理すべき排ガスの系外への流出をさえぎるもの
である。特に第2図に関しては供給ホツパ4部を
拡大することによりシールエアの最終線速度が弱
まり、分配管5での流速と充填触媒の流動化速度
以上にあげても何ら支障なく、よりいつそう効果
的にエアシールガスと接触する過程で除塵操作を
行なうことが可能である。
Next, as shown in FIGS. 2 and 3, the exhaust gas that is about to flow out of the system at the branching point of the downhill distribution pipe 5 and the branching point 12 of the downhill collecting pipe 3 is discharged from the tower 2. One side pipe 1 with respect to the flow direction of exhaust gas
5, 14 in the right angle direction and the other side pipe 17,
For No. 16, air higher than the static pressure inside the tower 2 was injected so as to be directly opposite to the flow of exhaust gas.
This prevents the exhaust gas to be treated from flowing out of the system. In particular, regarding Fig. 2, the final linear velocity of the seal air is weakened by enlarging the supply hopper 4, and there is no problem even if the flow velocity in the distribution pipe 5 and the fluidization velocity of the packed catalyst are increased, making it more effective. It is possible to perform a dust removal operation during the process of contact with air seal gas.

以上のごとく本発明はかゝるエア・シール構造
によつてバルブ、コツク類を使用せず、粉化しや
すい触媒にも危害を与えずして間歇移動層あるい
は連続移動層の脱硝装置における触媒供給口及び
触媒取出口での排ガスの系外への漏れを完全に遮
断し、一方エアシールの流速を調整することによ
り、触媒払い出し後の分別手段に加えてエア・シ
ール過程でなお触媒粒子に被覆していた煤塵等の
微粒物質を吹き飛ばし、エアシールガスに同伴さ
せることで触媒層に至る前に、再度触媒に浄化作
用を及ぼすものであり、移動層方式の反応器に広
く適用でき多大の効果が期待できるものである。
As described above, the present invention uses such an air seal structure to supply catalyst to an intermittent moving bed or continuous moving bed denitrification device without using valves or containers and without harming catalysts that are easily powdered. By completely blocking the leakage of exhaust gas to the outside of the system at the port and catalyst outlet, and adjusting the flow rate of the air seal, in addition to the separation means after discharging the catalyst, it is possible to prevent the exhaust gas from being coated with catalyst particles during the air sealing process. By blowing out particulate matter such as soot dust and entraining it with the air seal gas, it exerts a purifying effect on the catalyst again before it reaches the catalyst layer.It can be widely applied to moving bed reactors and is expected to have great effects. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発方法の実施態様を示す乾式脱硝装
置の全体図、第2図は滑降分配管の拡大断面図、
第3図は滑降集合管の拡大断面図である。 1……触媒層、2……反応塔、3……滑降集合
管、4……触媒供給ホツパ、5……滑降分配管、
9……空気輸送管、11……エア・シール用の空
気注入口、12,13……枝別れ地点、21……
煤塵含有空気輸送管。
Fig. 1 is an overall view of a dry denitrification device showing an embodiment of the present method, Fig. 2 is an enlarged sectional view of a downhill distribution pipe,
FIG. 3 is an enlarged sectional view of the downhill manifold. 1... Catalyst layer, 2... Reaction tower, 3... Downhill collecting pipe, 4... Catalyst supply hopper, 5... Downhill distribution pipe,
9... Air transport pipe, 11... Air inlet for air seal, 12, 13... Branch parting point, 21...
Air transport pipe containing soot and dust.

Claims (1)

【特許請求の範囲】 1 排ガス中の窒素酸化物を反応塔内に形成され
た間歇或は連続移動の触媒層に接触させて処理す
る乾式脱硝装置において、前記触媒層に触媒を供
給する滑落分配管と該触媒層より触媒を取出す滑
降集合管にそれぞれ前記塔内静圧より高い空気を
触媒粒子の流動化速度より低くなるように、注入
地点から触媒供給口及び取出口近傍までの距離を
長くして注入して、排ガスが前記各管から系外に
漏れるのを防ぐことを特徴とする乾式脱硝装置に
おけるエア・シール法。 2 いずれも一側と他側に枝別れしている滑落分
配管及び滑落集合管の枝別れ地点に、排ガスの流
出方向に対し一側には直角方向に他側には正反対
方向に向けて空気を注入することを特徴とする特
許請求の範囲第1項記載の乾式脱硝装置における
エア・シール法。
[Claims] 1. In a dry denitrification device that processes nitrogen oxides in exhaust gas by bringing them into contact with an intermittent or continuously moving catalyst layer formed in a reaction tower, a sliding portion that supplies catalyst to the catalyst layer The distance from the injection point to the vicinity of the catalyst supply port and the catalyst removal port is lengthened so that air higher than the static pressure inside the column is lower than the fluidization speed of the catalyst particles into the piping and the sliding collecting pipe that takes out the catalyst from the catalyst bed. An air sealing method in a dry denitrification device, characterized in that the exhaust gas is injected into the system to prevent exhaust gas from leaking out of the system from each of the pipes. 2 At the branching points of the sliding distribution pipe and the sliding collecting pipe, which are branched into one side and the other, air is directed at right angles to one side and in the opposite direction to the other side with respect to the exhaust gas outflow direction. An air seal method in a dry denitrification apparatus according to claim 1, characterized in that:
JP5702778A 1978-05-12 1978-05-12 Air seal in dry type denitrificator Granted JPS54151557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5702778A JPS54151557A (en) 1978-05-12 1978-05-12 Air seal in dry type denitrificator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5702778A JPS54151557A (en) 1978-05-12 1978-05-12 Air seal in dry type denitrificator

Publications (2)

Publication Number Publication Date
JPS54151557A JPS54151557A (en) 1979-11-28
JPS6147127B2 true JPS6147127B2 (en) 1986-10-17

Family

ID=13043941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5702778A Granted JPS54151557A (en) 1978-05-12 1978-05-12 Air seal in dry type denitrificator

Country Status (1)

Country Link
JP (1) JPS54151557A (en)

Also Published As

Publication number Publication date
JPS54151557A (en) 1979-11-28

Similar Documents

Publication Publication Date Title
KR100963537B1 (en) Multi-layer cleansing type removing apparatus for condensible tar in exhaust gas
NZ211584A (en) Scrubbing particles from gas stream:particles removed by water spray
US6736171B2 (en) Assembly for delivering solid particulate matter for loading
CN208626952U (en) The desulfuring and denitrifying apparatus of NO_x Reduction by Effective
JPS60172330A (en) Pre-dust-removing method of dry fluidized bed type adsorption tower
CA2658067A1 (en) Apparatus and method for the removal of gaseous pollutants from an upwardly flowing gas stream
JPH07116523A (en) Method and device for regenerating denox catalyst
CN208561752U (en) A kind of device polluted for handling underground water volatile organic matter
CN109364747A (en) A kind of collecting smoke dust from coke oven desulphurization system and technique
JPS6147127B2 (en)
JPH0742488Y2 (en) Moving bed type dedusting / reactor
CN207591501U (en) A kind of activated coke dry method flue gas processing system
KR20080070608A (en) Dust filtering collector for removing smoke and method for filtering smoke using same
KR20080070517A (en) Dust filtering collector for removing smoke and method for filtering smoke using same
CZ20998A3 (en) Process of purifying gases containing noxious substances and apparatus for making the same
US4256045A (en) Apparatus and method for treating a gas with a liquid
JPH04215838A (en) Granular agent
CN107854924B (en) Activated coke dry method flue gas treatment method and system
JPS6230803B2 (en)
JPH06170157A (en) Treatment of exhaust gas
JPS6219208B2 (en)
JPH10165765A (en) Process and device for treating exhaust gas
JP2001170436A (en) Gas treating device
JPH02298306A (en) Device for filtering dust-containing fluid and method thereof
JPH0355418A (en) Exhaust gas disposing device for incinerator