JPS6146708A - Suspension control device - Google Patents

Suspension control device

Info

Publication number
JPS6146708A
JPS6146708A JP16983984A JP16983984A JPS6146708A JP S6146708 A JPS6146708 A JP S6146708A JP 16983984 A JP16983984 A JP 16983984A JP 16983984 A JP16983984 A JP 16983984A JP S6146708 A JPS6146708 A JP S6146708A
Authority
JP
Japan
Prior art keywords
sensor
signal
vehicle
spring constant
detects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16983984A
Other languages
Japanese (ja)
Other versions
JPH043326B2 (en
Inventor
Kunitaka Furuya
古谷 国貴
Hiromi Inagaki
裕巳 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP16983984A priority Critical patent/JPS6146708A/en
Priority to US06/765,341 priority patent/US4616846A/en
Priority to DE19853529178 priority patent/DE3529178A1/en
Priority to FR858512407A priority patent/FR2569144B1/en
Priority to GB08520340A priority patent/GB2163104B/en
Publication of JPS6146708A publication Critical patent/JPS6146708A/en
Publication of JPH043326B2 publication Critical patent/JPH043326B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/006Attaching arms to sprung or unsprung part of vehicle, characterised by comprising attachment means controlled by an external actuator, e.g. a fluid or electrical motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • F16F13/28Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions specially adapted for units of the bushing type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/14Mounting of suspension arms

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To increase the spring constant of a suspension unit, regarding the control ability of a vehicle as being important, even in any running condition of the vehicle, by automatically carrying out a variable control to increase the spring constant when any one of four kinds of detection signals is detected. CONSTITUTION:A G sensor 1 detects the acceleration G of vertical vibration ¦G¦ of a vehicle body while a B sensor 3 detects the turn-on and turn-off condition of a brake switch, and a V sensor 4 detects the high speed condition of a vehicle. Further, an H-signal which indicates that the spring constant is large is fed from the output terminal of an OR circuit 8. When this H-signal is issued, it is fed through a timer 13 to energize a solenoid 23 which closes passages 25, 26, thereby the spring constants of both fluid charged bushings 31, 41 are automatically controlled to be made large. Further, when signals Gf, ¦S¦ which are components of frequency in the vicinity of the higher resonant frequency of the equivalent spring exceed set values Gf1, ¦S2¦, when a brake signal 13 is turned on and off, or when the vehicle speed V exceeds a high speed value V1, a signal from the circuit 8 is made to be the H-signal.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は車両用のサスペンション制御装置に関する。 (従来の技術) 車両のサスペンションを構成するラジアスロッド等のサ
スペンションリンクの両端に流体封入ブツシュを設ける
ことが行われる。 (発明が解決しようとする問題点) 斯かる流体封入ブツシュにおいて、車体前後方向のばね
定数を大きく設定すると、ステアリング操作時の応答性
は良いが、乗心地が若干犠牲になり、逆にばね定数を小
さく設定すると、乗心地は良いが、ステアリング操作時
の応答遅れが大きく、サスペンション形式によってはト
ー変化が大きくなり、また高速走行中の操安性が若干犠
牲になる傾向にある。 そこで、両流体封入ブツシュの車体前後方向に対するば
ね定数を流体圧を制御して大、小の2段階に同時に可変
制御することが考えられる。 本発明の目的は、サスペンションリンクの両端に設けた
流体封入ブツシュの車体前後方向に対するばね定数を流
体圧を制御して大、小の2段階以上に同時に可変制御す
るようにした車両において、ステアリング操作及びブレ
ーキ状態、更に車速状態に基づく走行状態並びに路面状
態の変化に追従してサスペンションリンク両端の流体封
入ブツシュのばね定数を自動的に同時に可変制御するこ
とができ、特にステアリング操作状態、ブレーキ状態、
高速走行状態及びうねりがある比較的悪い路面を走行し
ている状態の何れの場合にも操安性を重視してばね定数
が大きくなるようにしたサスベンジせン制御装置を提供
するにある。 (問題点を解決するための手段) 従って本発明は、ステアリング操作状態を検出するセン
サ(2)と、ブレーキ状態を検出するセンサ(3)と、
車両の高速状態を検出するセンサ(0と、車体の上下振
動加速度センサ(1)からの信号を入力して車体のばね
上共振周波数付近の加速度の信号を出力する処理回路(
5)、(6)と、これら4種の信号を入力して走行及び
路面状態に応じた2段階以上の信号を出力する制御回路
(8)と、その出力信号を受けてサスペンションリンク
(54)両端の流体封入ブツシュ(31)、(41)の
車体前後方向に対するばね定数を流体圧を制御して大、
小の2段階以上に自動的に同時に切換えるアクチェータ
(21)とから成り、前記4種の検出信号の何れかを検
出したときはばね定数を大の方に自動的に可変制御する
サスペンション制御装置を構成したことを特徴とする。 (実施例) 以下に本発明の好適一実施例を添付図面に基づいて詳述
する。 第5図はサスペンション形式の一例を示す斜視図で、(
51)はハブ、(52)はロアアーム、(53)はダン
パ、(54)はラジアスロッドであり、ラジアスロッド
(54)前後端に第2図に示す如き流体封入ブツシュ(
31)、(41’)が備えられる。 両ブツシュ(31) 、(41)は、車体側またはチッ
クル偶の支持ピンが挿通される内筒(32)、(42)
とラジアスロッド(50前後端に固着される外筒(33
)、(43)とを径方向のゴム壁(34)、(44)に
て結合し、これにより各自・外筒(32)、(33) 
、 (42)、(43)間に車体前後方向に位置する流
体室(35)、(3B)、(45)、(413)を形成
して成る。 そして両ブツシュ(31〕、(4りのともに前部流体室
(35)、(45)を連通ずる通路(25)と、後部流
体室(36)、(46)を連通ずる通路(2B)とを設
け、更に両通路(25)、(2B)を同時に開閉する切
換弁(21)を設ける。切換弁(21)はソレノイド(
22) 、(23)によって作動し、一方のソレノイド
(22)の通電で図示の如く通路(25) 、(2G)
を開状態とし、他方のソレノイド(23)の通電で閉状
態とする。第2図はラジアスロッド(54)に外力が作
用しない自由状態を示す。 第3図はラジアスロッド(54)に引張力が作用した状
態で、この場合、通路(25) 、(2B)が図示の如
く開状態にあれば、外力が作用する前方ブー2シユ(3
1)の前部流体室(35)から通路(25)を通って後
方ブツシュ(41)の前部流体室(45)に液体が流れ
、また後方ブツシュ(41)の後部流体室(46)から
通路(25)を通って前方ブー2シユ(31)の後部流
体室(36)に液体が流れる。従って車体前後方向に対
するばね定数は小さい。逆にソレノイド(23)を通電
して通路(25) 、 (2El)を遮断すると液体の
流れが阻止され、車体前後方向に対するばね定数が大き
くなる。 第4図はラジアスロッド(54)に圧縮力が作用した状
態で、液体の流れは第3図と逆になる。 次に第1図を基に制御回路を説明する。 (1)は路面状IEと車速変化に対応する車体の一ヒ下
振動加速度日を検出するセンサ(以下Gセンサという)
、(2)はステアリング角1sIを検出するセンサ(以
下Sセンサという) 、 (3)はプレーキスイー、チ
の0N−OFF状態を検出するセンサ(以下Bセンサと
いう) 、 (4)は車両の高速状態を検出するセンサ
(以下■センサという)である。 Gセンサ(1)からの出力信号口をバンドパスフィルタ
(5)に人力し、車体のばね上共振周波数付近の周波数
成分の信号Gfを出力し、これをコンパレータ(8)に
入力し、この出力信号Gfがある定められた値Gf、以
上のときは
(Industrial Application Field) The present invention relates to a suspension control device for a vehicle. (Prior Art) Fluid-filled bushings are provided at both ends of suspension links such as radius rods that constitute the suspension of a vehicle. (Problem to be Solved by the Invention) In such a fluid-filled bushing, if the spring constant in the longitudinal direction of the vehicle body is set to a large value, the response during steering operation is good, but the riding comfort is slightly sacrificed, and conversely, the spring constant is When set to a small value, the ride quality is good, but there is a large response delay during steering operation, and depending on the suspension type, the toe change becomes large, and the steering stability during high-speed driving tends to be slightly sacrificed. Therefore, it is conceivable to simultaneously variably control the spring constants of both fluid-filled bushings in the longitudinal direction of the vehicle body in two stages, large and small, by controlling the fluid pressure. An object of the present invention is to provide a vehicle in which the spring constant of fluid-filled bushings provided at both ends of a suspension link in the longitudinal direction of the vehicle body is simultaneously variably controlled in two or more stages of large and small by controlling fluid pressure. It is possible to automatically and simultaneously variably control the spring constant of the fluid-filled bushings at both ends of the suspension link in accordance with changes in the running condition and road surface condition based on the vehicle speed condition, the steering operation condition, the brake condition, and the braking condition.
To provide a suspension control device in which a spring constant is increased with emphasis on steering stability both in high-speed running conditions and in running conditions on relatively bad road surfaces with undulations. (Means for Solving the Problems) Therefore, the present invention provides a sensor (2) for detecting a steering operation state, a sensor (3) for detecting a brake state,
A processing circuit that inputs signals from a sensor (0) that detects the high-speed state of the vehicle and a vehicle body vertical vibration acceleration sensor (1) and outputs an acceleration signal near the sprung mass resonance frequency of the vehicle body (
5), (6), a control circuit (8) that inputs these four types of signals and outputs signals of two or more levels depending on driving and road surface conditions, and a suspension link (54) that receives the output signals. The spring constant of the fluid-filled bushes (31) and (41) at both ends in the longitudinal direction of the vehicle body is increased by controlling the fluid pressure.
The suspension control device comprises an actuator (21) that automatically switches between two or more stages of small and small at the same time, and automatically controls the spring constant to a large when any of the four detection signals is detected. It is characterized by having been configured. (Embodiment) A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings. Figure 5 is a perspective view showing an example of a suspension type.
51) is a hub, (52) is a lower arm, (53) is a damper, and (54) is a radius rod, and the front and rear ends of the radius rod (54) are equipped with fluid-filled bushings (as shown in FIG. 2).
31) and (41') are provided. Both bushes (31) and (41) are inner cylinders (32) and (42) into which support pins on the vehicle body side or tickle joints are inserted.
and the outer cylinder (33) fixed to the front and rear ends of the radius rod (50).
) and (43) are connected by radial rubber walls (34) and (44), thereby making the respective outer cylinders (32) and (33)
, (42), and (43) are formed with fluid chambers (35), (3B), (45), and (413) located in the longitudinal direction of the vehicle body. Both bushes (31) and (4) have a passageway (25) that communicates with the front fluid chambers (35) and (45), and a passageway (2B) that communicates with the rear fluid chambers (36) and (46). and a switching valve (21) that opens and closes both passages (25) and (2B) at the same time.The switching valve (21) is equipped with a solenoid (
22) and (23), and when one solenoid (22) is energized, the passages (25) and (2G) are activated as shown in the figure.
is opened, and energized to the other solenoid (23) to close it. FIG. 2 shows a free state in which no external force acts on the radius rod (54). Figure 3 shows a state in which a tensile force is applied to the radius rod (54). In this case, if the passages (25) and (2B) are in the open state as shown in the figure, the front boot 2 (3) on which the external force is applied
Liquid flows from the front fluid chamber (35) of 1) through the passage (25) to the front fluid chamber (45) of the rear bushing (41), and from the rear fluid chamber (46) of the rear bushing (41). Liquid flows through the passageway (25) to the rear fluid chamber (36) of the forward boot (31). Therefore, the spring constant in the longitudinal direction of the vehicle body is small. Conversely, when the solenoid (23) is energized to block the passages (25) and (2El), the flow of liquid is blocked and the spring constant in the longitudinal direction of the vehicle increases. FIG. 4 shows a state in which a compressive force is applied to the radius rod (54), and the flow of liquid is opposite to that in FIG. 3. Next, the control circuit will be explained based on FIG. (1) is a sensor (hereinafter referred to as G sensor) that detects the downward vibration acceleration of the vehicle body corresponding to road surface condition IE and changes in vehicle speed.
, (2) is a sensor that detects the steering angle 1sI (hereinafter referred to as S sensor), (3) is a sensor that detects the ON-OFF state of the steering wheel and switch (hereinafter referred to as B sensor), and (4) is a sensor that detects the steering angle of 1sI (hereinafter referred to as B sensor). This is a sensor that detects high-speed conditions (hereinafter referred to as ■sensor). The output signal port from the G sensor (1) is connected to a band pass filter (5), which outputs a signal Gf with a frequency component near the sprung resonance frequency of the vehicle body, which is input to a comparator (8), and this output is When the signal Gf exceeds a certain value Gf,

【1]、未禍のときは【0】 の信号にし、
ディレィ回路(7)に入力し、この入力信号にある一定
のディレィタイムを設けてロジック回路(8)のOR回
路(9)に入力する。ここでディレィ回路(7)は継目
のある路面に対して遅延させるためにある。 Sセンサ(2)からの出力信号1sIはある定められた
値1sJ以上を[1]、未満を[01の信号にし、Sセ
ンサ(3)からの出力信号BはブレーキスイッチON状
態を[11、OFF状態を[01の信号にし、斯かる両
信号を前記OR回路(8)に入力する。 ■センサ(4)からの出力信号Vは高速状態を示すある
定められた値V、以上を[1]、未満を[0]の信号に
し、この信号と前記OR回路(8)の信号とを次段のO
R回路(10)に入力する。 そしてOR回路(10)の出力端子にはばね定数[大1
を表す【Hlの信号を出力し、この信号[Hlが出力さ
れるとタイマー(13)を経て通路(25) 、(28
)を閉状態とするツレ/イド(23)を通電して両流体
封入ブツシュ(31)、(41’)のばね定数を[大]
に自動制御する。 またOR回路(lO)からの信号を分岐してNOT回路
(11)に入力し、このNOT回路(11)の出力端子
にはばね定数 (小lを表す[L]の信号を出力し、こ
の信号[し1が出力されると通路(25) 、 (2B
)を開状態とするソレノイド(22)を通電してばね定
数を 〔小1に自動制御する。 以上において、車体のばね上共振周波数付近の周波数成
分の信号Gfが設定値Gf、以上、ステアリング角信号
+31が設定値1sJ以上、ブレーキ信号BがON状態
、車速Vが71以上の高速状態のときの何れの場合にも
ロジック回路(8)の出力信号を [旧とする。 その真理値表を路面及び走行状態、つまり環境条件とと
もに下記に示す。 次に各環境条件について説明する。 先ず条件lはうねりが殆ど無い比較的良い路面りを直進
走行しており、ノーブレーキで、低・中速走行のため、
乗心地を重視して前後のブツシュ(31)、(41)の
車体前後方向に対するばね定数を[小]にする。 そして条件2は大きなうねりのある比較的悪い路面を走
行しているときで、条件3はコーナリング状態、また条
件4はブレーキング状態のため、何れの場合も操安性を
重視してばね定数を L大1にする。 更に条件5は高速走行のため、車の高速安定性を重視し
てばね定数を同じく[大]にする。 尚、流体封入ブツシュ装置は、切換弁に流路面積の異な
る複数組の流路を更に設け、機械作動式等の7クチエー
タで多段階に制御してばね定数の可変段数を3段以上と
することも可能である。 (発明の効果) 以上のように本発明のサスペンション制御装置によれば
、ステアリングセンサと、ブレーキセンサと、高速検出
用の車速センサと、車体の上下振動加速度センサからの
信号を入力して車体のばね上共振周波数刊近の加速度の
信号を出力する処理回路と、これらの信号を入力して走
行及び路面状態に応じた2段階以上の信号を出力する制
御回路と、その出力信号を受けてサスペンションリンク
の両端の液体封入ブツシュの車体前後方向に対するばね
定数を流体圧を制御して大、小の2段階以−ヒに同時に
切換えるアクチェータとから成るため、ステアリング操
作角、ブレーキ、車速並びに路面情報に基づく走行条件
の変化に対応して両流体射入ブツシュの車体前後方向ば
ね定数を自動的に同時に可変制御することができ2酷に
ステアリング操作状態、ブレーキ状態、高速走行状態及
びうねりがある比較的悪い路面を走行している状態の何
れの場合にも操安性を重視して大の方のばね定数に自動
制御することができる。
[1], when there is no disaster, set the signal to [0],
The input signal is input to a delay circuit (7), a certain delay time is provided to this input signal, and the input signal is input to an OR circuit (9) of a logic circuit (8). Here, the delay circuit (7) is provided to delay the road surface with joints. The output signal 1sI from the S sensor (2) is a signal of [1] when it is more than a certain predetermined value 1sJ, and [01 when it is less than a certain value, and the output signal B from the S sensor (3) is a signal that indicates the ON state of the brake switch. The OFF state is set to the signal [01], and both of these signals are input to the OR circuit (8). ■The output signal V from the sensor (4) is a predetermined value V indicating a high-speed state, and if it is more than or equal to [1], if it is less than [0], this signal and the signal from the OR circuit (8) are combined. Next stage O
Input to R circuit (10). The output terminal of the OR circuit (10) has a spring constant [large 1
A signal [Hl representing
) is in the closed state and the spring constant of the bushings (31) and (41') filled with both fluids is set to [large] by energizing the thread/id (23).
automatically controlled. In addition, the signal from the OR circuit (lO) is branched and input to the NOT circuit (11), and a signal [L] representing a spring constant (small l) is output to the output terminal of this NOT circuit (11). When the signal [shi1 is output, the path (25), (2B
) is energized to open the solenoid (22), and the spring constant is automatically controlled to [small 1]. In the above, when the signal Gf of the frequency component near the sprung resonance frequency of the vehicle body is equal to or higher than the set value Gf, the steering angle signal +31 is equal to or higher than the set value 1 sJ, the brake signal B is in the ON state, and the vehicle speed V is in a high speed state of 71 or higher. In either case, the output signal of the logic circuit (8) is [old]. The truth table is shown below along with the road surface and driving conditions, that is, the environmental conditions. Next, each environmental condition will be explained. First, condition 1 is driving straight on a relatively good road surface with almost no undulations, no brakes, and driving at low to medium speeds.
With emphasis on riding comfort, the spring constants of the front and rear bushings (31) and (41) in the longitudinal direction of the vehicle body are set to [small]. Condition 2 is when driving on a relatively bad road surface with large undulations, Condition 3 is a cornering condition, and Condition 4 is a braking condition, so in each case, the spring constant is set with emphasis on maneuverability. Make L large 1. Furthermore, since condition 5 is for high-speed driving, the spring constant is also set to [large], with emphasis on the high-speed stability of the car. In addition, in the fluid-filled bushing device, the switching valve is further provided with a plurality of sets of flow passages having different flow passage areas, and is controlled in multiple stages using a seven-actuator, such as a mechanically operated type, so that the number of stages in which the spring constant can be varied is three or more stages. It is also possible. (Effects of the Invention) As described above, according to the suspension control device of the present invention, signals from the steering sensor, the brake sensor, the vehicle speed sensor for high speed detection, and the vertical vibration acceleration sensor of the vehicle body are inputted to control the vehicle body. A processing circuit that outputs a signal of acceleration near the sprung mass resonance frequency, a control circuit that inputs these signals and outputs a signal of two or more levels depending on driving and road surface conditions, and a suspension control circuit that receives the output signal. It consists of an actuator that simultaneously switches the spring constant of the liquid-filled bushes at both ends of the link in the longitudinal direction of the vehicle between two levels (large and small) by controlling the fluid pressure, so it is possible to control the steering angle, brakes, vehicle speed, and road surface information. The spring constants of both fluid injection bushings in the longitudinal direction of the vehicle body can be automatically and variably controlled simultaneously in response to changes in driving conditions. In any case where the vehicle is traveling on a bad road surface, the spring constant can be automatically controlled to a larger value with emphasis on steering stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は制御回路を示すブロック図、第2図は流体封入
ブツシュ装置の断面図でロッド部材に外力が作用しない
自由状態の図、第3図は引張力作用状態の図、第4図は
圧縮力作用状態の図、第5図はサスペンション形式の一
例を示す斜視図である。   − 尚、図面中(21)は切換弁、(25) 、(2B)は
通路、(31)、(41)は流体封入ブツシュ、(32
) 、(42)は内筒、(33) 、 (a3)は外筒
、(34) 、(44)はゴム壁、(35) 、 (3
13) 、 (45) 、(4B)は流体室、(50は
サスペンションリンク、(5)、(8)は処理回路、(
8)はロジック回路である。 第3図 第4図
Fig. 1 is a block diagram showing the control circuit, Fig. 2 is a sectional view of the fluid-filled bushing device in a free state in which no external force is applied to the rod member, Fig. 3 is a drawing in a state in which a tensile force is applied, and Fig. 4 is a sectional view of the fluid-filled bushing device. FIG. 5 is a perspective view showing an example of a suspension type. - In the drawing, (21) is a switching valve, (25) and (2B) are passages, (31) and (41) are fluid-filled bushes, and (32) are
), (42) are inner cylinders, (33), (a3) are outer cylinders, (34), (44) are rubber walls, (35), (3
13), (45), (4B) are fluid chambers, (50 is a suspension link, (5), (8) are processing circuits, (
8) is a logic circuit. Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] サスペンションリンクの両端に設けた流体封入ブッシュ
の車体前後方向に対するばね定数を流体圧を制御して大
、小の2段階以上に同時に可変制御するようにした車両
のサスペンションにおいて、ステアリング操作状態を検
出するセンサと、ブレーキ状態を検出するセンサと、車
両の高速状態を検出するセンサと、車体の上下振動加速
度センサからの信号を入力して車体のばね上共振周波数
付近の加速度の信号を出力する処理回路と、これら4種
の信号を入力して走行及び路面状態に応じた2段階以上
の信号を出力する制御回路と、該制御回路からの信号を
受けて両ブッシュのばね定数を自動的に同時に切換える
アクチエータとを備え、前記4種の検出信号の何れかを
検出したときはばね定数を大の方に自動的に可変制御す
るよう構成したことを特徴とするサスペンション制御装
置。
Detects steering operation status in a vehicle suspension in which the spring constant of a fluid-filled bush provided at both ends of a suspension link in the longitudinal direction of the vehicle body is simultaneously variably controlled in two or more stages (large and small) by controlling fluid pressure. A processing circuit that inputs signals from a sensor, a sensor that detects the brake state, a sensor that detects the high-speed state of the vehicle, and a vehicle body vertical vibration acceleration sensor and outputs a signal of acceleration near the vehicle body's sprung mass resonance frequency. , a control circuit that inputs these four types of signals and outputs two or more levels of signals depending on driving and road surface conditions, and automatically switches the spring constants of both bushes at the same time in response to signals from the control circuit. 1. A suspension control device comprising: an actuator, and configured to automatically control a spring constant to a larger value when any one of the four types of detection signals is detected.
JP16983984A 1984-08-14 1984-08-14 Suspension control device Granted JPS6146708A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16983984A JPS6146708A (en) 1984-08-14 1984-08-14 Suspension control device
US06/765,341 US4616846A (en) 1984-08-14 1985-08-13 Control device for a suspension
DE19853529178 DE3529178A1 (en) 1984-08-14 1985-08-14 CONTROL DEVICE FOR A WHEEL SUSPENSION
FR858512407A FR2569144B1 (en) 1984-08-14 1985-08-14 DEVICE FOR ADJUSTING A SUSPENSION
GB08520340A GB2163104B (en) 1984-08-14 1985-08-14 Control device for a suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16983984A JPS6146708A (en) 1984-08-14 1984-08-14 Suspension control device

Publications (2)

Publication Number Publication Date
JPS6146708A true JPS6146708A (en) 1986-03-07
JPH043326B2 JPH043326B2 (en) 1992-01-22

Family

ID=15893877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16983984A Granted JPS6146708A (en) 1984-08-14 1984-08-14 Suspension control device

Country Status (1)

Country Link
JP (1) JPS6146708A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237205U (en) * 1988-09-01 1990-03-12
US7654756B2 (en) 2004-06-14 2010-02-02 Rohm Co., Ltd. Actuator drive circuit and actuator device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326021A (en) * 1976-08-19 1978-03-10 Honda Motor Co Ltd Adjustable suspension for vehicle
JPS5798909U (en) * 1980-12-10 1982-06-17
JPS5950807A (en) * 1982-09-17 1984-03-24 Kayaba Ind Co Ltd Suspension device for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326021A (en) * 1976-08-19 1978-03-10 Honda Motor Co Ltd Adjustable suspension for vehicle
JPS5798909U (en) * 1980-12-10 1982-06-17
JPS5950807A (en) * 1982-09-17 1984-03-24 Kayaba Ind Co Ltd Suspension device for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237205U (en) * 1988-09-01 1990-03-12
US7654756B2 (en) 2004-06-14 2010-02-02 Rohm Co., Ltd. Actuator drive circuit and actuator device

Also Published As

Publication number Publication date
JPH043326B2 (en) 1992-01-22

Similar Documents

Publication Publication Date Title
US4616846A (en) Control device for a suspension
JPH04163220A (en) Vehicular suspension device
US4856815A (en) Vehicle suspension apparatus
JPS61169310A (en) Rear suspension control device
JP2515364B2 (en) Wheel camber angle control device
JPS6146708A (en) Suspension control device
JPS6146704A (en) Suspension control device
JPS611512A (en) Suspension control device
JPS6092977A (en) Tack-in controller
JPS6146703A (en) Suspension control device
JPS611510A (en) Suspension control device
JPS611511A (en) Suspension control device
JPH0747366B2 (en) Suspension device for automobile
JPS61268509A (en) Device for controlling active type suspension
JPS59186708A (en) Suspension for automobile
JPS59156813A (en) Suspension for car
JP3555323B2 (en) Electronically controlled suspension
JPS611513A (en) Suspension control device
JPS59186710A (en) Suspension for automobile
JPH0431114A (en) Suspension control device
JPH0319447Y2 (en)
JPS611518A (en) Suspension control device
JPH03204324A (en) Vehicle suspension device
JPS60193710A (en) Characteristic controller for car suspension
JP3035317B2 (en) Vehicle suspension device