JPS614530A - Radioactive nuclide and heavy metal collecting material - Google Patents

Radioactive nuclide and heavy metal collecting material

Info

Publication number
JPS614530A
JPS614530A JP12297984A JP12297984A JPS614530A JP S614530 A JPS614530 A JP S614530A JP 12297984 A JP12297984 A JP 12297984A JP 12297984 A JP12297984 A JP 12297984A JP S614530 A JPS614530 A JP S614530A
Authority
JP
Japan
Prior art keywords
collection
immersed
acrylic fibers
mno2
collecting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12297984A
Other languages
Japanese (ja)
Other versions
JPS6324415B2 (en
Inventor
Hideo Higuchi
樋口 英雄
Nobuhiro Nonaka
野中 信博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON BUNSEKI CENTER
Original Assignee
NIPPON BUNSEKI CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON BUNSEKI CENTER filed Critical NIPPON BUNSEKI CENTER
Priority to JP12297984A priority Critical patent/JPS614530A/en
Priority to US06/719,433 priority patent/US4720422A/en
Publication of JPS614530A publication Critical patent/JPS614530A/en
Publication of JPS6324415B2 publication Critical patent/JPS6324415B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To separate and remove efficiently radioactive nuclides and heavy metals contained in radioactive waste liquid, ocean, river and industrial waste water or the like by depositing and fixing MnO2 on acrylic fibers to form the radioactive nuclide and the heavy metal collecting material. CONSTITUTION:When acrylic fibers are immersed into aq. potassium permanganate soln. for four days and the fiber shows black, it is drawn up, washed with pure water and dried at 60-70 deg.C to obtain the black collecting material deposited and fixed with MnO2 on the acrylic fibers. Separately, after acrylic fibers are immersed into aq. potassium ferrocyanide soln. under heating, they are immersed in aq. MII(NO3)2 (MII is Co and Zn, etc.) soln. under heating and washed with water. Thereafter, when they are immersed into aq. potassium permanganate soln. for four days and the fiber shows black, they are drawn up, washed with pure water and dried at 60-70 deg.C to obtain the collecting material in which the compd. shown by K2MII[Fe(CN)6] and MnO2 are deposited and fixed on the acrylic fibers.

Description

【発明の詳細な説明】 (イ)発明の目的 本発明は放射性核種および重金属等の捕集材である。[Detailed description of the invention] (b) Purpose of the invention The present invention is a collection material for radionuclides, heavy metals, etc.

本発明は原子力発電所、放射性同位元素取扱等事業所を
始めとする原子力施設から発生する放射性廃液中に含ま
れる放射性核種の分離除去および“海洋河川“あるいは
産業廃水等に含まれている放射性核種および重金属等の
分離除去に利用される。
The present invention is directed to the separation and removal of radionuclides contained in radioactive waste fluid generated from nuclear facilities such as nuclear power plants and radioisotope handling facilities, and the separation and removal of radionuclides contained in "marine rivers" or industrial wastewater. It is also used for separating and removing heavy metals, etc.

従来の技術 原子力発電所(水型)、放射性同位元素取扱事業所等各
種原子力施設から発生する放射性廃液には各種放射性核
種が含まれている。これらの放射性廃液の処理において
は、被曝低減の観点などから廃液中に含まれる放射性核
種を分離除去して放射線レベルを低減させることが必要
である。又、海洋河川中には微量ではあるが60CO1
54Mn、90Sr、65zn、137C8など種々の
人工性核種の存在が確認されており、これらの放射性核
種の濃度および分布に関するデータを長期間にわたり蓄
積することは海洋学、海洋生態学また中低レベル放射性
廃棄物の海洋投棄などの観点から重要なことである。
BACKGROUND OF THE INVENTION Radioactive waste fluid generated from various nuclear power facilities, such as nuclear power plants (water type) and facilities that handle radioactive isotopes, contains various radionuclides. In the treatment of these radioactive waste liquids, it is necessary to separate and remove radionuclides contained in the waste liquids to reduce the radiation level from the perspective of reducing exposure. Also, although it is a small amount, 60CO1 is present in oceanic rivers.
The existence of various artificial nuclides such as 54Mn, 90Sr, 65zn, and 137C8 has been confirmed, and it is important to accumulate data on the concentration and distribution of these radionuclides over a long period of time in order to study oceanography, marine ecology, and medium- and low-level radioactivity. This is important from the perspective of preventing waste from being dumped into the ocean.

従来、放射性廃液中の放射性核種の分離・除去あるいは
海洋河川からの放射性核種および重金属の回収には主と
して凝集沈殿法およ、びイオン交換法が利用されている
Conventionally, coagulation-sedimentation methods and ion exchange methods have been mainly used to separate and remove radionuclides from radioactive waste liquids or to recover radionuclides and heavy metals from marine rivers.

凝集沈殿法は、廃液に凝集剤を混合して放射性物質の電
荷を中和し、これを凝集させて大きな分子の集団、すな
わちフロックを生成させ、このフロックを沈降、分離さ
せる処理方法で、一般にAc1(SO4)3 + Ca
(OH)2 、粘土(+高分子凝集剤)、FeCl3 
+Na2S 、 Na3PO4+Ca(OH)2等が凝
集剤として使用されている。この方法は、小量ないし複
雑な廃液の処理には、手数がかかる割に除染係数は大き
くなるが安価簡便であり、単純な液質の大量廃液を肌理
するのに適するので広く用いられている。イオン交換法
は各種合成陽イオン交換体、合成陰イオン交換体、混床
イオン交換樹脂、あるいは石炭、褐炭、泥炭等をベース
とする天然有機交換体、グリンサイド、カオリナイト、
ゼオライ処理を行う方法である。かかる凝集沈殿法およ
びイオン交換法によって廃液を処理するとき放射能は各
々スラッジ(汚泥)および再生廃液に濃縮される。非放
射性廃液の場合には浄化された水を得さえすればこれら
濃縮液は一般に放置廃棄されるのであるが、放射性廃液
の場合には濃縮放射能を再拡散させず保持固定するため
二次処理が必要である。現在、かかるスラッジ、再生廃
液は沈降、砂床口過、加圧口過、真空口過、遠心分離、
オートクレーブ処理等の二次処理方法で脱水減容をはか
った後固型化が施されているが、これらの二次処理によ
る減容比は各々く1.4.5〜10.10〜15.25
〜35および2〜4というのが実情である。
The coagulation-sedimentation method is a treatment method in which a flocculant is mixed with the waste liquid to neutralize the electric charge of the radioactive material, and this is coagulated to produce a group of large molecules, that is, a floc, and this floc is settled and separated. Ac1(SO4)3 + Ca
(OH)2, clay (+polymer flocculant), FeCl3
+Na2S, Na3PO4+Ca(OH)2, etc. are used as flocculants. This method is widely used for treating small volumes or complex waste liquids, although it requires a lot of work and a large decontamination coefficient, but it is cheap and simple, and is suitable for cleaning large quantities of simple liquid waste liquids. There is. The ion exchange method uses various synthetic cation exchangers, synthetic anion exchangers, mixed bed ion exchange resins, natural organic exchangers based on coal, lignite, peat, etc., greenside, kaolinite,
This method involves zeolite treatment. When wastewater is treated by such coagulation-sedimentation and ion exchange methods, radioactivity is concentrated into sludge and recycled wastewater, respectively. In the case of non-radioactive waste liquids, these concentrated liquids are generally disposed of as long as purified water is obtained, but in the case of radioactive waste liquids, secondary treatment is required to retain and fix the concentrated radioactivity without re-diffusion. is necessary. Currently, such sludge and recycled waste liquid are processed through sedimentation, sand bed filtration, pressure filtration, vacuum filtration, centrifugation,
Solidification is performed after dehydration and volume reduction using secondary treatment methods such as autoclave treatment, but the volume reduction ratios due to these secondary treatments are 1.4.5 to 10.10 to 15. 25
-35 and 2-4 are the actual circumstances.

上述した理由により、各種原子力事業所から発生する放
射性廃液に含まれ6放射性核種・海洋河     イ用
あるいは産業廃水等に含まれる放射性核種あるいは重金
属を効率よく分離・除去し且つ減容比が高い捕集材が斯
界で望まれていた。
For the reasons mentioned above, it is possible to efficiently separate and remove 6 radionuclides contained in radioactive waste fluids generated from various nuclear power plants, radionuclides or heavy metals contained in marine or industrial wastewater, etc., and to achieve a high volume reduction ratio. Collection of materials was desired in this industry.

本発明者等はアクリル繊維に一般式に2M■[’ Fe
 C(CN)6〕CMHはコバルト、亜鉛、=ノケル等
2価の金属〕で表わされるフェロシアン酸塩化合物を担
持・固定して成る放射性核種および重金属捕集材(以下
ゝゝ捕捕集−KCFC“と略記する場合がある)を開発
してすでに特許出願した〔特願昭59−°り特開昭  
     〉〕。捕集あることがわかった。そこで本発
明者等は鋭意研の開発に成功した。
The present inventors have applied the general formula 2M [' Fe to acrylic fibers.
C(CN)6 [CMH is a divalent metal such as cobalt, zinc, or nokel] A radioactive nuclide and heavy metal trapping material (hereinafter referred to as a trapping material) is made by supporting and fixing a ferrocyanate compound represented by cobalt, zinc, or a divalent metal such as Nokel. KCFC (sometimes abbreviated as "KCFC") has been developed and a patent application has been filed.
〉〕. It turned out that there was a catch. Therefore, the present inventors succeeded in developing the Eiriken.

発明が解決しようとする問題点 本発明によって捕集効率および減容比の高い放射性核種
および重金属捕集材が提供される、本発明によってpH
7〜9の範囲で放射性廃液、海洋河川あるいは産業廃水
中に含まれる放射性核種特に54M+1.59F、 6
0oo、 65Zn]03+106.u。
Problems to be Solved by the Invention The present invention provides a radionuclide and heavy metal trapping material with high collection efficiency and volume reduction ratio.
Radioactive nuclides contained in radioactive waste liquids, marine rivers or industrial wastewater in the range of 7 to 9, especially 54M + 1.59F, 6
0oo, 65Zn]03+106. u.

134+]37c3.144ce  を多量のNa十 
存在下にぢいてもほぼ100%の高い効率で捕集し且つ
高い比率で減容される捕集材が提供される。
134+]37c3.144ce with a large amount of Na+
Provided is a collection material that can collect with a high efficiency of almost 100% even in the presence of water and whose volume is reduced at a high rate.

本発明によって深属海水中の微量放射性核種を採水現場
で捕集することが可能な捕集材が提供される。
The present invention provides a collection material capable of collecting trace amounts of radionuclides in deep seawater at a water sampling site.

本発明によって解決される問題点は以下逐次間らかにさ
れる。
The problems solved by the present invention will be successively identified below.

口)発明の構成 問題点を解決するための手段 上述した問題点は捕集材−KCFCとアクリル繊堆にM
nO2を担持・固定した捕集材(以下ゝゝゝ集1オーM
nO2“と略記する場合がある)を捕集装置内に混合し
て使用するか、両袖集材を連結して使用することによっ
て解決される。更に、別法としては上述した問題点は、
アクリル繊維に一般式に2M■CFe (CN)6 ]
で表わされるフェロシアン酸塩化合物(、h、h−c−
MuはCo、 Zn、 Ni、 Zr等2価金属から選
ばれる一種)およびMnO2を同時に担持・固定1−た
捕集材(以下“捕集材−KCFC+MnO2“ と略記
する場合がある)を使用することによって解決される。
(1) Means for solving the structural problems of the invention The above-mentioned problems are solved by using M
A collection material that supports and fixes nO2 (hereinafter referred to as a collection of 1 Ohm
This can be solved by mixing ``nO2'' (sometimes abbreviated as ``nO2'') in the collection device or by connecting both sleeves of collected material.Furthermore, as an alternative method, the above-mentioned problems can be solved by:
2M■CFe (CN)6 in general formula for acrylic fiber]
A ferrocyanate compound represented by (, h, h-c-
Mu is a type selected from divalent metals such as Co, Zn, Ni, and Zr) and MnO2 are supported and fixed at the same time (hereinafter sometimes abbreviated as "collection material-KCFC+MnO2"). This is solved by

以下、本発明の捕集材の製造方法の一態様について述べ
る。
Hereinafter, one embodiment of the method for manufacturing the collection material of the present invention will be described.

アクリル繊維100Fを10%フェロンアン化カリウム
水溶液に浸漬し3時間加温し、取り出した後、10%M
■(NO3)2 (MnはCo1Zn 、 Ni 。
Acrylic fiber 100F was immersed in a 10% potassium ferronanide aqueous solution, heated for 3 hours, taken out, and 10% M
■(NO3)2 (Mn is Co1Zn, Ni.

Zr等2価の金属)水溶液に浸漬し3時間加温した後水
洗後60〜70 ’Cで10時間乾燥し、この操作を3
回繰返すことによってアクリル繊維に一般式に2M” 
[Fe (CN) 6 :] (MIIはCo、 Ni
、 ZnSZr等2価の金属)を担持・固定させた赤褐
色の捕集材が製造される。
Divalent metal such as Zr) was immersed in an aqueous solution, heated for 3 hours, washed with water, and dried at 60-70'C for 10 hours.
The general formula for acrylic fiber is 2M” by repeating it several times.
[Fe (CN) 6:] (MII is Co, Ni
, ZnSZr, and other divalent metals) are supported and fixed thereon. A reddish-brown collection material is produced.

捕集材−Mn02 アクリル繊維]00Jを0.5M過マンガンカリa  
      t″水溶液に4日間浸漬し繊維が黒色を示
はら引き上げ過剰の過マンガン酸カリウムを純水で洗浄
したのち、60〜70 ℃で乾燥することによってアク
リル繊維にMnO2を担持・固定させた黒色の捕集材が
製造される。
Collection material - Mn02 acrylic fiber] 00J with 0.5M permanganese potassium a
The fibers were immersed in a t'' aqueous solution for 4 days, turned black, pulled up, washed with pure water to remove excess potassium permanganate, and dried at 60 to 70°C to produce a black colored acrylic fiber with MnO2 supported and fixed. A collection material is manufactured.

捕集材−KC,F C+Mn O2 アクリル繊維10Orを10%フェロンアン化カリウム
水溶液に浸漬し3時間加温し、取り出した後、10%M
■(NO3) 2 (MllはC01Zn、Ni、Zr
等2価の金属水溶液に浸漬し3時間加温した後水洗後6
0〜70℃で10時間乾燥する。この操作を3回繰返し
再び0.5M過マンガン酸カリウム水溶液に4日間浸漬
し、繊維が黒色を示したら引き上げ過剰の過マンガン酸
カリウムを純水で洗浄したのち60〜70℃で乾燥する
ことによってアクリル繊維に一般式K2MII(Fe(
CN)6)で表わされるフェロシアン酸塩化合物および
MnO2を同時に担持・固定した捕集材が製造される。
Collection material - KC, FC + Mn O2 Acrylic fiber 10Or was immersed in 10% potassium ferronanide aqueous solution, heated for 3 hours, taken out, and 10% Mn O2
■(NO3) 2 (Mll is C01Zn, Ni, Zr
After immersing in a divalent metal aqueous solution and heating for 3 hours, washing with water 6
Dry at 0-70°C for 10 hours. This operation was repeated three times, and the fibers were immersed in a 0.5M potassium permanganate aqueous solution for 4 days. When the fibers turned black, they were pulled up, washed with pure water to remove excess potassium permanganate, and then dried at 60 to 70°C. General formula K2MII (Fe(
A collection material is produced in which a ferrocyanate compound represented by CN)6) and MnO2 are simultaneously supported and fixed.

又、別の方法としては、アクリル繊維1007を1o%
Mll(No3)2(Mllは前述した通り)水溶液7
浸清13時間加L・取9出l後”°%7       
 ンエロシアン化カリウム水溶液に浸漬し3時間加温し
た後水洗後60〜70℃で10時間乾燥する。
In addition, as another method, acrylic fiber 1007 is 10%
Mll (No. 3) 2 (Mll is as described above) aqueous solution 7
After soaking for 13 hours and removing 9 liters ”°% 7
The sample was immersed in an aqueous potassium erocyanide solution, heated for 3 hours, washed with water, and dried at 60 to 70°C for 10 hours.

この操作を3回繰返し再び上述した0、5M過マンガン
酸カリウム水溶液による処理以下の処理を施すことによ
っても捕集材−KCFC+MnO2が製造される。
A collection material -KCFC+MnO2 is also produced by repeating this operation three times and performing the following treatment with the 0.5 M potassium permanganate aqueous solution described above.

本発明者等が本発明以前に開発した捕集材−K CF 
CはJ34+l37C8,59Fe、−65Zn、およ
び144Ce等をほぼ100%捕集することが出来るが
54Mnを高捕集率で捕集することが出来ない。
Collection material developed by the present inventors prior to the present invention - K CF
C can collect almost 100% of J34+l37C8, 59Fe, -65Zn, 144Ce, etc., but cannot collect 54Mn at a high collection rate.

一方、本発明の捕集材の一部を構成する捕集材−八’1
n02は54Mnの他65znおよび144Ce  等
を100%捕集することが出来る。而って、捕集材−K
CFCおよび捕集材−Mn02を捕集装置内に混合して
入れるか、両袖集材を連結して使用することによって5
41VIn、  59F、  60Co、  65Zn
、 134+]37C3および144Ce等を100%
捕集することが出来る。更に、捕集材−K CF Cと
捕集材−Mn02を併用する代りにアクリルM維にに2
M” (Fe (CN) 6 )(MIIは前述した通
り)で表わされるフエロシアント庄塩化合物およびMn
O2を同時に担持・固定させた抽隅材−K CF C4
MnO2を使用しても同じ捕集効果を得ることが出来る
On the other hand, the collection material-8'1 constituting a part of the collection material of the present invention
n02 can collect 100% of 65zn, 144Ce, etc. in addition to 54Mn. So, the collection material-K
By mixing CFC and collection material-Mn02 into the collection device, or by using both sleeves of collection material connected,
41VIn, 59F, 60Co, 65Zn
, 134+] 100% of 37C3 and 144Ce, etc.
It can be collected. Furthermore, instead of using the collection material-KCF C and the collection material-Mn02 together, 2
A ferrocyant salt compound represented by M” (Fe (CN) 6 ) (MII is as described above) and Mn
Bolt corner material that simultaneously supports and fixes O2 - K CF C4
The same trapping effect can be obtained using MnO2.

本発明の捕集材を製造するのに使用されるアクリル繊維
は繊径18μm、8wt%のアクリル酸メチルを共重合
したものでアニオン基として0.05meq/g繊維の
SO3−を含有している。30%以下の塩酸、硝酸、硫
酸等の耐酸性は非常に強く、逆に耐アルカリ性は弱く1
%水酸化ナトリウム溶液でも変性する。
The acrylic fiber used to produce the collection material of the present invention has a fiber diameter of 18 μm, is copolymerized with 8 wt% methyl acrylate, and contains 0.05 meq/g fiber SO3- as an anion group. . Acid resistance of 30% or less, such as hydrochloric acid, nitric acid, and sulfuric acid, is very strong, while alkali resistance is weak.
% sodium hydroxide solution.

本発明の捕集材はpH7〜9の範囲Q 54Mn、65
Zn、59F、 60Co1103+106Ru、  
137C8および144ceを略々100%捕集する。
The collection material of the present invention has a pH range of 7 to 9 Q 54Mn, 65
Zn, 59F, 60Co1103+106Ru,
Almost 100% of 137C8 and 144ce are collected.

更に重要なことは多量のNa+の存在下においても上記
核種を捕集することが出来るという特徴をもっている。
More importantly, it has the characteristic of being able to collect the above-mentioned nuclides even in the presence of a large amount of Na+.

本発明の捕集材は放射性廃液の態様によって使い分ける
ことが好ましい、例えば軽水P−次冷却水系中の放射性
核種を分離・除去するにはフェロシアン化コバルト舎カ
リウムに替えてフェロシアン化ニンケル・カリウムおよ
び二酸化マンガンを担持・固定させた捕集材を用いる方
が好ましい。
It is preferable to use the collection material of the present invention depending on the type of radioactive waste liquid. For example, in order to separate and remove radionuclides in a light water P-cooling water system, ferrocyanide nickel potassium ferrocyanide should be used instead of ferrocyanide cobalt potassium. It is preferable to use a collection material supporting and fixing manganese dioxide.

以下実施例および参考例によって本発明をより具体的に
説明する。
The present invention will be explained in more detail below using Examples and Reference Examples.

実施例−捕集材の製造 材料および試薬 (a)  アクリル繊維:繊径18μm、8wt%のア
クリル酸メチルを共重合したもので、アニオン基として
0.05 meq/g繊維の5o3−を含有している。
Examples - Materials and reagents for manufacturing the collection material (a) Acrylic fiber: Copolymerized with 8 wt% methyl acrylate with a fiber diameter of 18 μm, containing 0.05 meq/g fiber of 5O3- as an anion group. ing.

(b)  フェロシアン化カリウム:試薬特級(c) 
 硝酸コバルト:試薬特級 (d)  過マンガン酸カリウム:試薬特級実施例−1 捕集材−Mn02 アクリル繊維100Jを0.5M過マンガン酸カリウム
溶液に4日間浸漬し繊維が黒色を呈したら引き上げ過剰
の過マンガン酸カリウムを純水で洗浄したのち60〜7
0℃で乾燥することによって黒色の綿状捕集材−Mn0
2を製造した。
(b) Potassium ferrocyanide: special reagent grade (c)
Cobalt nitrate: Reagent special grade (d) Potassium permanganate: Reagent special grade Example-1 Collection material - Mn02 100 J of acrylic fibers are immersed in a 0.5M potassium permanganate solution for 4 days, and when the fibers turn black, the excessive After washing potassium permanganate with pure water, 60-7
Black flocculent absorbent - Mn0 by drying at 0 °C
2 was manufactured.

実施例−2 捕集材−KCFC アクリル繊維10ozを10%フェロシアン化カリウム
溶液に浸漬し3時間加温した。取り出した後、10%硝
酸コバルト溶液に浸漬し3時間加温した。水洗後60°
〜7o℃で10時間乾燥した。
Example-2 Collection material - KCFC 10 oz of acrylic fiber was immersed in a 10% potassium ferrocyanide solution and heated for 3 hours. After taking it out, it was immersed in a 10% cobalt nitrate solution and heated for 3 hours. 60° after washing
It was dried at ~7oC for 10 hours.

この操作を3回繰り返してアクリル繊維にフェロシアン
化コバルト、カリウム(K2Co[Fe (CN) 6
1 )を担持・固定した赤褐色の綿状捕集材−KCFC
を製造した。
This operation was repeated three times to coat the acrylic fiber with cobalt ferrocyanide and potassium (K2Co[Fe (CN) 6
1) Reddish brown cotton-like collection material supporting and fixing - KCFC
was manufactured.

実施例−3 捕集材−KCFC+MnO2 アクリル繊維1001を10%フェロシアン化カリウム
水溶液に浸漬し3時間加温した。取り出した後、10%
硝酸コバルト水溶液に浸漬し3時間加温した。水洗後6
0°C〜70℃で10時間乾燥した。この操作を3回繰
り返し、再び0.5M過マンガンカリウム水溶液に4日
間浸漬し、繊維が黒色を示したら引き上げ、過剰の過マ
ンガン酸カリウムを純水で洗浄したのち、60〜70’
Cで乾燥して黒色の綿状捕集材−K CF C+ Mn
O2を製造     ・イした。
Example-3 Collection material-KCFC+MnO2 Acrylic fiber 1001 was immersed in a 10% potassium ferrocyanide aqueous solution and heated for 3 hours. 10% after taking out
It was immersed in a cobalt nitrate aqueous solution and heated for 3 hours. After washing with water 6
It was dried at 0°C to 70°C for 10 hours. This operation was repeated three times, and the fibers were immersed in a 0.5M potassium permanganate aqueous solution for 4 days. When the fibers turned black, they were pulled out, and the excess potassium permanganate was washed with pure water.
Dried with C to form black cotton-like collection material-K CF C+ Mn
Manufacture O2.

次に実施例で製造した3種の捕集材を使用して海水から
の各種放射性核種の捕集テストを行って得た結果を参考
例として記載する。
Next, the results obtained by performing a collection test of various radionuclides from seawater using the three types of collection materials manufactured in the examples will be described as a reference example.

参考例 1、実験材料 A、カラム ガラス製、内径15胴χ′、長さ20偏を使用した。Reference example 1. Experimental materials A, column It was made of glass, had an inner diameter of 15 mm, and had a length of 20 mm.

B、海 水 海水(千葉県勝浦市で採水)は富士フィルム社製・ミク
ロフィルター(045μm)で口過したものを使用し、
トレーサーとしての各種の放射性核種添加後、塩酸なら
びに水酸化ナトリウム溶液でpliを8.0−1−0.
5に調整した。また使用した海水の塩分は337%であ
った。
B. Seawater Seawater (collected in Katsuura City, Chiba Prefecture) was passed through a microfilter (045 μm) manufactured by Fuji Film.
After adding various radionuclides as tracers, the pli was adjusted to 8.0-1-0 with hydrochloric acid and sodium hydroxide solution.
Adjusted to 5. Moreover, the salinity of the seawater used was 337%.

C1使用核種 54Mn(Mncz2.+ o、56ce)  無担体
59Fe (FeC13,0,5NHCe)   1]
mCi/mgFe60Co (CoC12= 0.1N
HC1)  136mC1/mgC。
C1 used nuclide 54Mn (Mncz2.+ o, 56ce) carrier-free 59Fe (FeC13,0,5NHCe) 1]
mCi/mgFe60Co (CoC12= 0.1N
HC1) 136mC1/mgC.

65Zn (ZnCJ2,0.5NHCe)   2.
8mC1/mgZn85Sr (SrC1!2,0.5
NHC/)   7.4mC1/ingsr106Ru
 (塩化物、4NHC1)    7.7mC1/rn
gRu137Cs(CsC/! 、0.5NHC/’)
    9.0mC1/ingcs144Ce(CeC
1!3.  1NHcl)、  250mC4/ing
ceこれらの核種を放射能濃度として約100nCi/
ineに希釈したのち海水に添加した。
65Zn (ZnCJ2, 0.5NHCe) 2.
8mC1/mgZn85Sr (SrC1!2,0.5
NHC/) 7.4mC1/ingsr106Ru
(chloride, 4NHC1) 7.7mC1/rn
gRu137Cs (CsC/!, 0.5NHC/')
9.0mC1/ingcs144Ce (CeC
1!3. 1N Hcl), 250mC4/ing
ce These nuclides have a radioactivity concentration of approximately 100 nCi/
It was added to seawater after being diluted with 1.

D、  NaI(TIりシンチレーシ邑ンスベクトロメ
ーター7440X51mm井戸型NaI(TI)検出器
ヲAe o k a 社IJJ ユニバーサルスケーラ
(モデルTDC−501)に接続して測定した。
D. NaI (TI) scintillation was measured using a 7440 x 51 mm well-type NaI (TI) detector connected to an IJJ universal scaler (model TDC-501) manufactured by Aeoka.

2実験際作 2.1  バッチ法による攪拌時間と捕集率3つのバッ
チの海水200m1毎に各種のトレーサーを添加した。
2 Experimental Work 2.1 Stirring time and collection rate by batch method Various tracers were added to every 200 ml of seawater in three batches.

これに実施例1〜3で製造した捕集材を加え、攪拌時間
を2.5.10.20分と変化させた。各攪拌時間が終
了した後、海水の一定量を測定用ポリエチレン管に移し
入れ、NaI(Tjり検出器で測定し捕集率を求めた。
The collection materials produced in Examples 1 to 3 were added to this, and the stirring time was changed to 2, 5, 10, and 20 minutes. After each stirring period ended, a certain amount of seawater was transferred into a polyethylene tube for measurement, and the collection rate was determined by measuring with a NaI (Tj) detector.

捕集率Aは次式のように定義した。パンチ法による実験
条件を表−1に示す。
The collection rate A was defined as follows. Table 1 shows the experimental conditions for the punch method.

A(%)=((R1−R2)/R1)X100A :繊
維(KCFC)の捕集率 R1ニドレーサー添加海水の計数率 R2:攪拌後の海水の計数率 表−1バッチ法の実験条件 ’          2.2.  カラム法による流
速と捕集率内径15mflのガラス製捕集カラムに実施
例1〜3で製造した捕集材を詰め、トレーサーを添加し
た海水200m1を流速を変化させて通した。通過液の
一定量を測定用ポリエチレン管に移し入れ、NaI(T
/)検出器で測定し捕集率を求めた。捕集率Aは次式の
ように定義した。カラム法による実験条件を表−2に示
す。
A (%) = ((R1-R2)/R1) .2. Flow rate and collection rate by column method A glass collection column with an inner diameter of 15 mfl was filled with the collection materials produced in Examples 1 to 3, and 200 ml of seawater added with a tracer was passed through it at varying flow rates. Transfer a certain amount of the flow through to a polyethylene tube for measurement, and add NaI(T
/) The collection rate was determined by measuring with a detector. The collection rate A was defined as follows. Table 2 shows the experimental conditions for the column method.

A(%) = ((R1−R3)/R1)X100A 
: 繊維(KCFC)の捕集率 R1: トレーサー添加海水の計数率 R3:  繊維(KCFC)カラム通過液の計数率銅 3結果と考察 31 攪拌時間と捕集率 バッチ法での実験結果を第1〜3図に示した。
A (%) = ((R1-R3)/R1)X100A
: Collection rate of fiber (KCFC) R1: Count rate of tracer-added seawater R3: Count rate of fiber (KCFC) column passing liquid Copper 3 Results and discussion 31 Stirring time and collection rate - Shown in Figure 3.

図から明らかなように捕集材−Mn02には20分間の
攪拌時間で54Mn、60Co、I 44Ceがほぼ1
00%捕集されている。一方、捕集材−KCFCには2
0分間の攪拌時間で65Zn、106Ru、144Ce
が90%以上とよく捕集される他、54Mn、60Co
、59Fe が一部捕集されている。しかしながら85
Srは全く捕集されていないことが明らかとなった。
As is clear from the figure, 54Mn, 60Co, and I44Ce were added to the scavenger Mn02 at a rate of about 1 after stirring for 20 minutes.
00% collected. On the other hand, the collection material - KCFC has 2
65Zn, 106Ru, 144Ce with stirring time of 0 minutes
In addition to 90% or more of 54Mn, 60Co
, 59Fe were partially collected. However, 85
It became clear that Sr was not collected at all.

捕集材−Mn02で捕集率の低かった]06Ruαζ抽
集材−KCFCで91%と高い捕集率を示したのは非常
に興味深い結果である。又、捕集材−Mn02と捕輿材
−KCFCの両方の機能を有する捕集材−K CF C
+MnO2は54Mn、 59Fe1’       
      60Co、65.。、137C8オヨff
 144r28ヲはぼ100%捕集することがわかる。
The collection rate was low with the collection material Mn02] It is a very interesting result that the collection rate was as high as 91% with the 06Ruαζ extraction material-KCFC. In addition, a collection material that has the functions of both a collection material - Mn02 and a collection material - KCFC - K CF C
+MnO2 is 54Mn, 59Fe1'
60Co, 65. . , 137C8 oyoff
It can be seen that almost 100% of 144r28 is collected.

32 流速と捕集率 結果を第4〜6図に示した。第4図かられがるように、
捕集材−Mn02の場合流速20m1/minで144
C8,54Mn、 60Co、 65Znの捕集率は9
0%以上であり、流速を200 mlJ /min以上
に増加しても144Ceおよび54Mnの捕集率は90
%以上を保持している。一方、第5図かられかるように
捕集材−KCFCの場合、流速20m1/minで59
F、、60Co、 65Zn、137C,。
32 The flow rate and collection rate results are shown in Figures 4-6. As shown in Figure 4,
Collection material - In the case of Mn02, 144 at a flow rate of 20 m1/min
The collection rate of C8,54Mn, 60Co, and 65Zn is 9
0% or more, and even if the flow rate was increased to 200 mlJ/min or more, the collection rate of 144Ce and 54Mn remained at 90%.
% or more. On the other hand, as shown in Figure 5, in the case of the collection material - KCFC, the flow rate is 59 m1/min at a flow rate of 20 m1/min.
F,, 60Co, 65Zn, 137C,.

144Ceの捕集率は90%以上であり、180m1/
minと流速を増加しても、これらの核種は80%と高
い捕集率を示した。65Zn、137C8,144Ce
では捕集率の減少がみられなかったが、59Feで5%
、60Coで10%の減少が認められた。106Ruは
20 ml/minと180のall/minでは55
%と大幅な減少を示した。第6図は捕集材−Mn02と
捕集材−KCFCの両方の機能を有する捕集材−KCF
C+MnO2の結−果を        イ示すグラフ
であるが、流速を180〜200m11分の間で54M
n、 137C,,144Ce、60co、65zn、
59Feをほぼ90%以上の捕集率で捕集することがわ
かる。
The collection rate of 144Ce is over 90%, and 180m1/
Even when the min and flow rate were increased, these nuclides showed a high collection rate of 80%. 65Zn, 137C8, 144Ce
No decrease in collection rate was observed with 59Fe, but 5% with 59Fe.
, 60Co, a 10% decrease was observed. 106Ru is 55 at 20 ml/min and 180 all/min
%, which showed a significant decrease. Figure 6 shows a collection material - KCF that has the functions of both a collection material - Mn02 and a collection material - KCFC.
This is a graph showing the results of C+MnO2.
n, 137C,, 144Ce, 60co, 65zn,
It can be seen that 59Fe is collected with a collection rate of approximately 90% or more.

以上の実験より、アクリル繊維にMnO2を担持・固定
させて成る捕集材とアクリル繊維に一般式K2MII(
Fe (CN) 6)で表わされるフェロシアン酸塩化
合物を担持・固定させて族6捕集材を併用するか又はア
クリル繊維にMnO2および一般式に2Mn(Fe(C
N)6)  で表わされるフェロシアン酸塩化合物を同
時に担持・固定させて成る捕集材を使用することによっ
て主として54Mn、 59Fe、60Co。
From the above experiments, we found that the general formula K2MII (
A ferrocyanate compound represented by Fe (CN) 6) can be supported and fixed and a group 6 trapping material can be used in combination, or MnO2 and 2Mn (Fe(C
N) 6) Mainly 54Mn, 59Fe, and 60Co by using a collection material that supports and immobilizes the ferrocyanate compounds represented by 6) at the same time.

捕集することがわかる。You can see that it can be collected.

発明の効果 以上を通覧することによって本発明の捕集材は;(1)
  p87〜9の範囲で54Mn、 59Fe、 60
Co、 65Zn。
By reviewing the effects of the invention, the collection material of the present invention has; (1)
54Mn, 59Fe, 60 in the p87-9 range
Co, 65Zn.

103+106Ru、 134+137C8,144C
e  を捕集すること、 (2)多量のNa+の存在下に於いても上記核種を捕集
すること、 (3)綿状であるためフィルターへの加工が容易であり
またカートリッジ式にも加工出来ること、(4)綿状で
あるため燃焼させると廃棄物としての処理が極めて容易
である。等の効果があること等が理解される。
103+106Ru, 134+137C8, 144C
(2) To collect the above-mentioned nuclides even in the presence of a large amount of Na+; (3) Because it is cotton-like, it can be easily processed into filters, and it can also be processed into cartridge type. (4) Since it is flocculent, it is extremely easy to dispose of it as waste when burned. It is understood that it has the following effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は捕集材−Mn02を用いた攪拌時間と捕集率と
の関係を示すグラフ、 第2図は捕集材−KCFCを用いた攪拌時間と捕集率と
を示すグラフ、 第3図は捕集材−KCFC+MnO2を用いた撹拌時間
との関係を示すグラフ、 第4図は捕集材−Mn02を用いた流速と捕集率との関
係を示すグラフ、 第5図は捕集材−KCFCを用いた流速と捕集率との関
係を示すグラフ、 第6図は捕集材−KCFC+MnO2を用いた流速と捕
集率との関係を示すグラフである。 特許出願人  財団法人 日本分析センター0(D@G
0688 @si@−X 0Φ・GOe5 のe 悪@@+メ 鳶−催λ
Fig. 1 is a graph showing the relationship between stirring time and collection rate using the collection material Mn02, Fig. 2 is a graph showing the relationship between stirring time and collection rate using the collection material KCFC, and Fig. 3 The figure is a graph showing the relationship between stirring time using the scavenger - KCFC + MnO2. Figure 4 is a graph showing the relationship between flow rate and collection rate using the scavenger - Mn02. Figure 5 is the graph showing the relationship between the collection rate and the scavenger - KCFC + MnO2. - A graph showing the relationship between the flow rate and the collection rate using KCFC. Fig. 6 is a graph showing the relationship between the flow rate and the collection rate using the collection material -KCFC+MnO2. Patent applicant Japan Analysis Center 0 (D@G)
0688 @si@-X 0Φ・GOe5 noe evil@@+Metobi-event λ

Claims (4)

【特許請求の範囲】[Claims] (1)アクリル繊維にMnO_2を担持・固定させて成
る放射性核種および重金属捕集材。
(1) Radioactive nuclide and heavy metal trapping material made by supporting and fixing MnO_2 on acrylic fibers.
(2)アクリル繊維に一般式K_2M^II(Fe(CN
)_6)(M^IIは2価の金属)で表わされるフェロシ
アン酸塩化合物を担持・固定させて成る捕集材およびア
クリル繊維にMnO_2を担持・固定させて成る捕集材
の組合せから成る放射性核種および重金属捕集材。
(2) General formula K_2M^II (Fe(CN)
)_6) (M^II is a divalent metal) consisting of a combination of a collection material made by supporting and fixing a ferrocyanate compound and a collecting material made by supporting and fixing MnO_2 on acrylic fibers. Radionuclide and heavy metal trapping material.
(3)アクリル繊維に一般式K_2M^II(Fe(CN
)_6)(M^IIは2価の金属)およびMnO_2を担
持・固定させて成る放射性核種および重金属捕集材。
(3) General formula K_2M^II (Fe(CN)
)_6) (M^II is a divalent metal) and MnO_2 are supported and fixed on the radioactive nuclide and heavy metal collecting material.
(4)M^IIがCo、Zn、ZrおよびNiから成る群
から選択される特許請求の範囲第2又は3項記載の放射
性核種および重金属捕集材。
(4) The radionuclide and heavy metal collecting material according to claim 2 or 3, wherein M^II is selected from the group consisting of Co, Zn, Zr and Ni.
JP12297984A 1984-06-06 1984-06-15 Radioactive nuclide and heavy metal collecting material Granted JPS614530A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12297984A JPS614530A (en) 1984-06-15 1984-06-15 Radioactive nuclide and heavy metal collecting material
US06/719,433 US4720422A (en) 1984-06-06 1985-04-03 Material for collecting radionuclides and heavy metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12297984A JPS614530A (en) 1984-06-15 1984-06-15 Radioactive nuclide and heavy metal collecting material

Publications (2)

Publication Number Publication Date
JPS614530A true JPS614530A (en) 1986-01-10
JPS6324415B2 JPS6324415B2 (en) 1988-05-20

Family

ID=14849304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12297984A Granted JPS614530A (en) 1984-06-06 1984-06-15 Radioactive nuclide and heavy metal collecting material

Country Status (1)

Country Link
JP (1) JPS614530A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439600A (en) * 1987-08-06 1989-02-09 Ebara Corp Treatment of radioactive waste liquid containing salts at high concentration
EP0666577A1 (en) * 1994-02-07 1995-08-09 BRADTEC Limited Magnetic particles, a method for the preparation thereof and their use in the purification of solutions
JP2012046399A (en) * 2010-08-30 2012-03-08 National Institute Of Advanced Industrial Science & Technology Electrode material for lithium ion secondary battery using non-defective prussian blue analogue
JP2012250904A (en) * 2011-05-06 2012-12-20 National Institute Of Advanced Industrial Science & Technology Composite containing metal complex, and radiocesium adsorbent using the same
WO2013065829A1 (en) * 2011-11-02 2013-05-10 ダイワボウホールディングス株式会社 Radioactive-substance adsorbent, method for manufacturing same, and textile good including radioactive-substance adsorbent
JP2013142573A (en) * 2012-01-10 2013-07-22 Japan Atomic Energy Agency Method for separating/removing radioactive element from liquid
JP2014102240A (en) * 2012-11-20 2014-06-05 Kankyo Joka Kenkyusho:Kk Method for decontaminating accumulated radioactive liquid and device for the same
JPWO2013027652A1 (en) * 2011-08-19 2015-03-19 一般財団法人生産技術研究奨励会 Radioactive cesium adsorbent, method for producing the same, and method for removing radioactive cesium in the environment using the adsorbent
WO2015083688A1 (en) * 2013-12-02 2015-06-11 国立大学法人東京工業大学 Cesium adsorption agent, production method therefor, and cesium removal method using cesium adsorption agent
JP2017121616A (en) * 2016-01-08 2017-07-13 日本化学工業株式会社 Absorbent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061220A (en) * 2011-09-13 2013-04-04 Futaba Shoji Kk Radioactive cesium adsorptive cloth

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932466A (en) * 1972-07-24 1974-03-25
JPS5035753A (en) * 1973-06-14 1975-04-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932466A (en) * 1972-07-24 1974-03-25
JPS5035753A (en) * 1973-06-14 1975-04-04

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439600A (en) * 1987-08-06 1989-02-09 Ebara Corp Treatment of radioactive waste liquid containing salts at high concentration
EP0666577A1 (en) * 1994-02-07 1995-08-09 BRADTEC Limited Magnetic particles, a method for the preparation thereof and their use in the purification of solutions
JP2012046399A (en) * 2010-08-30 2012-03-08 National Institute Of Advanced Industrial Science & Technology Electrode material for lithium ion secondary battery using non-defective prussian blue analogue
JP2012250904A (en) * 2011-05-06 2012-12-20 National Institute Of Advanced Industrial Science & Technology Composite containing metal complex, and radiocesium adsorbent using the same
JPWO2013027652A1 (en) * 2011-08-19 2015-03-19 一般財団法人生産技術研究奨励会 Radioactive cesium adsorbent, method for producing the same, and method for removing radioactive cesium in the environment using the adsorbent
WO2013065829A1 (en) * 2011-11-02 2013-05-10 ダイワボウホールディングス株式会社 Radioactive-substance adsorbent, method for manufacturing same, and textile good including radioactive-substance adsorbent
JP2013142573A (en) * 2012-01-10 2013-07-22 Japan Atomic Energy Agency Method for separating/removing radioactive element from liquid
JP2014102240A (en) * 2012-11-20 2014-06-05 Kankyo Joka Kenkyusho:Kk Method for decontaminating accumulated radioactive liquid and device for the same
WO2015083688A1 (en) * 2013-12-02 2015-06-11 国立大学法人東京工業大学 Cesium adsorption agent, production method therefor, and cesium removal method using cesium adsorption agent
JP2015128760A (en) * 2013-12-02 2015-07-16 国立大学法人東京工業大学 Cesium adsorbent, manufacturing method thereof, and method for removing cesium using cesium adsorbent
JP2017121616A (en) * 2016-01-08 2017-07-13 日本化学工業株式会社 Absorbent

Also Published As

Publication number Publication date
JPS6324415B2 (en) 1988-05-20

Similar Documents

Publication Publication Date Title
Rogers et al. An isotope dilution–precipitation process for removing radioactive cesium from wastewater
US7083732B1 (en) Method and installation for removal of metal cations from a liquid by resins with polyazacycloalkanes grafted on a support
JP5922193B2 (en) NOVEL ADSORBENT, METHOD FOR PRODUCING THE SAME AND USE THEREOF
JPS614530A (en) Radioactive nuclide and heavy metal collecting material
US4720422A (en) Material for collecting radionuclides and heavy metals
Byrne et al. Rapid neutron activation analysis of arsenic in a wide range of samples by solvent extraction of the iodide
Rao et al. Copper ferrocyanide—polyurethane foam as a composite ion exchanger for removal of radioactive cesium
JPS60260000A (en) Radioactive nuclide and heavy-metal capture material
Merritt Radiochemical analysis for long-lived fission products in environmental materials
JPS58182596A (en) Method of processing radioactive liquid waste
Aldridge et al. Degradation of tetraphenylphosphonium bromide at high pH and its effect on radionuclide solubility
Kawabata Studies on the sorption and release of radionuclides by river sediments
Kosyakov et al. Preparation, properties, and application of modified mikoton sorbents
Hakimi Improved iodine-125 removal in anionic form of iodate by column method using laterite soil
KR101581278B1 (en) Method for purifying radionuclide-contaminated water using magnetically separated particles isolated from soil
Banerjee et al. Removal of 106 Ru traces from NH 4 NO 3 effluent generated during recycling of sintered depleted uranium fuel pellets
Jan et al. Removal of silver and antimony radionuclides from low-level liquid radioactive waste of a research reactor through different scavenging precipitations
Orth et al. Review and assessment of technologies for the separation of strontium from alkaline and acidic media
Bahmanova et al. Adsorption properties of uranium on the chelating sorbent modified with acetylacetone and application of the results to wastewater samples
El-Tabl et al. A prototype system for the removal of 137 Cs from liquid radioactive waste using reverse osmosis membrane
Sakuma et al. Combined treatment of aqueous radioactive waste containing uranium, thorium and radium radionuclides by chemical precipitation and laterite soil sorbtion
Sidhu Extraction chromatographic separation of Sr, Pu and Am in environmental samples
Poirier et al. Filtration of Actual Savannah River Waste Treated with Permanganate or Monosodium Titanate
Lo et al. Preoconcentration of nickel-63 in sea water for liwuid scintillation counting
Kim et al. A Study on the Performance of Flocculating agent for Radioactively Contaminated Soil by Soil Washing Process

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees