JPS6144136B2 - - Google Patents

Info

Publication number
JPS6144136B2
JPS6144136B2 JP57166834A JP16683482A JPS6144136B2 JP S6144136 B2 JPS6144136 B2 JP S6144136B2 JP 57166834 A JP57166834 A JP 57166834A JP 16683482 A JP16683482 A JP 16683482A JP S6144136 B2 JPS6144136 B2 JP S6144136B2
Authority
JP
Japan
Prior art keywords
less
corrosion resistance
intergranular
corrosion
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57166834A
Other languages
Japanese (ja)
Other versions
JPS5956556A (en
Inventor
Koichiro Osozawa
Rikio Nemoto
Yoshihito Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP16683482A priority Critical patent/JPS5956556A/en
Publication of JPS5956556A publication Critical patent/JPS5956556A/en
Publication of JPS6144136B2 publication Critical patent/JPS6144136B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐粒界腐食性および耐応力腐食割れ
性に優れるNi基合金に関するものであり、特に
本発明は、高温水中での粒界型応力腐食割れを改
善したCrを含有するNi基合金に関するものであ
る。 近年化学工業、エネルギー産業の発展によつて
装置材料の受ける使用環境は多岐にわたり厳しい
条件下で使用される場合が多くなつており、安全
性に対する信頼性要求の高まりと共に安定した耐
食性を有する材料が要求されている。このような
理由から、環境の厳しい条件下ではステンレス鋼
やNi基合金が広く使用されている。なかでも塩
化物環境における粒内応力腐食割れに対しては
Ni基合金の方がオーステナイトステンレス鋼よ
りも優れた抵抗性を有するが、高Ni基合金にあ
つてはCの固溶量が少ないため粒界が鋭敏化し易
い欠点があり、高温水中で粒界型応力腐食割れが
懸念される。 前記Ni基合金の粒界腐食および粒界応力腐食
割れに対しては従来TiまたはNbなど安定化元素
を添加して、固溶Cを固定する安定化熱処理を施
す対策がとられているが、溶接熱影響部、特に高
温熱影響部においては上記安定化効果が消えて溶
接時及びその後の歪取り焼鈍などの熱処理により
粒界が鋭敏化されることが少なくなかつた。上記
粒界の鋭敏化は粒界に炭化クロムが析出すること
により粒界近傍においてCrが減少する、いわゆ
るCr欠乏に起因する現象である。従つて実機を
考慮した場合には溶接部をも考慮した耐粒界腐食
性ならびに耐粒内および耐粒界応力腐食割れ性に
優れる合金が必要であることが要望されていた。 1981年4月に行われた日本金属学会講演会の講
演概要集第268頁によれば、インコネル600合金の
耐粒界腐食性改善のためにはCを0.01%以下にす
るか、あるいはNbを添加することが有効である
と記載され、さらにNは粒界鋭敏化を促進するの
で有害であると記載されている。しかしながらこ
の合金はCおよびNの含有量が低くなると機械的
強度が低くなり、0.2%耐力はインコネル600の規
格である25Kg/mm2を下廻るという欠点がある。 また1982年5月に行われた腐食防食協会春期学
術講演大会の講演概要集第160頁にはインコネル
600合金の溶着金属の耐粒界腐食性に対してNbお
よびTiが有効であることが記載されている。し
かしながらこの溶着金属は、耐力を維持するため
Cを0.04%以上にするとNbを多量に添加しなけ
ればならず、コストアツプおよび熱間加工性、溶
接性劣化などの原因になる。 本発明は、従来のインコネル600ならびに上記
日本金属学会および腐食防食協会の講演会で発表
された前記合金の有する欠点を除去し、さらに改
良した合金を提供することを目的とするものであ
り、特許請求の範囲記載の合金を提供することに
よつて前記目的を達成することができる。 次に本発明を詳細に説明する。 Nbは、耐粒界鋭敏化に対して有効なばかりで
なく、C,Nと同様機械的強度に対しても有効で
あることを本発明者等は新規に知見した。すなわ
ち、Nbを所要量含有することでC,Nの含有量
が比較的少量でも機械的強度を充分有することに
着目し、機械的強度を損うことなく耐粒界腐食
性、耐粒界応力腐食割れ性に優れるNi基合金に
想到して本発明を完成した。すなわち本発明合金
は、従来のインコネル600に比べて機械的強度は
同等以上で耐粒界腐食性および耐応力腐食割れ性
の点において優れた合金である。 次に本発明を実験データについて説明する。 第1表に成分組成を示す本発明合金1〜4と比
較合金5〜6をそれぞ大気誘導炉で溶解して6Kg
鋼塊とし、鍛造によつて厚さ10mm、巾70mmにし素
材熱処理として1100℃×1h加熱後水冷し、さら
に870℃×2h加熱後水冷した。かくして得られた
鋼片を機械試験に供した。一方、耐食性試験用と
して第1図に示すように開先加工して多層肉盛
し、600℃×20h熱処理した後空冷し、さらに500
℃×40h熱処理後空冷した鋼片を作つた。溶接は
TIG溶接で行ない、フイラーメタルの成分組成は
第2表のものを用いた。試片はいずれも溶接部断
面を切り出し、最終湿式#800まで研摩した。第
3表に0.2%耐力、粒界腐食試験および高温水応
力腐食割れ試験のそれぞれの結果を示す。 粒界腐食および高温水応力腐食割れ試験後試験
片の断面を光学顕微鏡で観察し、粒界腐食の場合
は最大侵食度dを測定した。また高温水応力腐食
割れの場合は、割れの有無を調べた。
The present invention relates to a Ni-based alloy that has excellent intergranular corrosion resistance and stress corrosion cracking resistance.In particular, the present invention relates to a Cr-containing Ni-based alloy that has improved intergranular stress corrosion cracking in high-temperature water. It is related to. In recent years, due to the development of the chemical and energy industries, equipment materials are being used in a wide variety of environments and are often used under harsh conditions.As demands for safety and reliability have increased, materials with stable corrosion resistance have been needed. requested. For these reasons, stainless steel and Ni-based alloys are widely used in harsh environmental conditions. Among these, for intragranular stress corrosion cracking in chloride environments,
Although Ni-based alloys have better resistance than austenitic stainless steel, high-Ni-based alloys have the disadvantage that grain boundaries tend to become sharp due to the small amount of solid solution of C, and grain boundaries tend to become sharp in high-temperature water. There is a concern about mold stress corrosion cracking. Conventionally, measures have been taken to prevent intergranular corrosion and intergranular stress corrosion cracking in Ni-based alloys by adding stabilizing elements such as Ti or Nb and performing stabilizing heat treatment to fix solid solution C. In the weld heat-affected zone, particularly in the high-temperature heat-affected zone, the above-mentioned stabilizing effect disappears, and grain boundaries often become sensitized during welding and subsequent heat treatment such as strain relief annealing. The grain boundary sensitization described above is a phenomenon caused by so-called Cr deficiency, in which Cr decreases near the grain boundaries due to the precipitation of chromium carbide at the grain boundaries. Therefore, in consideration of actual equipment, there has been a need for an alloy that has excellent intergranular corrosion resistance and intragranular and intergranular stress corrosion cracking resistance in consideration of welded parts. According to page 268 of the abstracts of the Japan Institute of Metals lecture held in April 1981, in order to improve the intergranular corrosion resistance of Inconel 600 alloy, it is necessary to reduce C to 0.01% or less, or to add Nb. It is described that adding N is effective, and furthermore, it is described that N is harmful because it promotes grain boundary sensitization. However, this alloy has the disadvantage that the lower the C and N contents, the lower the mechanical strength, and the 0.2% yield strength is lower than the 25 kg/mm 2 standard for Inconel 600. Also, on page 160 of the lecture summary collection of the Spring Academic Conference of the Corrosion Prevention Association held in May 1982, Inconel
It has been stated that Nb and Ti are effective for intergranular corrosion resistance of weld metal of 600 alloy. However, in order to maintain the yield strength of this weld metal, if the C content is 0.04% or more, a large amount of Nb must be added, which increases cost and causes deterioration in hot workability and weldability. The purpose of the present invention is to eliminate the drawbacks of the conventional Inconel 600 and the alloys presented at the lectures of the Japan Institute of Metals and Corrosion Prevention Association, and to provide a further improved alloy. The above object can be achieved by providing the alloy according to the claims. Next, the present invention will be explained in detail. The present inventors have newly found that Nb is not only effective for grain boundary sensitization, but also effective for mechanical strength like C and N. In other words, we focused on the fact that by containing the required amount of Nb, sufficient mechanical strength can be achieved even with relatively small amounts of C and N. The present invention was completed by devising a Ni-based alloy that has excellent corrosion cracking resistance. In other words, the alloy of the present invention has mechanical strength equivalent to or higher than conventional Inconel 600, and is superior in terms of intergranular corrosion resistance and stress corrosion cracking resistance. Next, the present invention will be explained using experimental data. Inventive alloys 1 to 4 and comparative alloys 5 to 6, whose compositions are shown in Table 1, were melted in an atmospheric induction furnace and weighed 6 kg.
A steel ingot was made by forging to a thickness of 10 mm and a width of 70 mm, and as a material heat treatment, it was heated at 1100°C for 1 hour and then cooled with water, and further heated at 870°C for 2 hours and cooled with water. The thus obtained steel pieces were subjected to mechanical tests. On the other hand, for corrosion resistance testing, as shown in Figure 1, the bevel was processed and multi-layered was applied, heat treated at 600°C for 20 hours, air cooled, and
A steel billet was made which was heat treated for 40 hours at ℃ and then air cooled. Welding is
TIG welding was performed, and the filler metal composition shown in Table 2 was used. For each specimen, the cross section of the welded part was cut out and wet-polished to a final #800. Table 3 shows the results of the 0.2% yield strength, intergranular corrosion test, and high temperature water stress corrosion cracking test. After the intergranular corrosion and high temperature water stress corrosion cracking tests, the cross section of the test piece was observed with an optical microscope, and in the case of intergranular corrosion, the maximum degree of corrosion d was measured. In the case of high-temperature water stress corrosion cracking, the presence or absence of cracking was investigated.

【表】【table】

【表】【table】

【表】【table】

【表】 第3表によれば、本発明合金1〜4の機械的性
質すなわち0.2%耐力(Kg/mm2)はインコネル600
の0.2%耐力規格である25Kg/mm2よりも何れも大
きく、かつ比較合金5〜6のそれに比べても大き
いことが判る。また、粒界腐食試験によれば、本
発明合金1〜4の最大侵食度dは何れも500μ
m/day以下と極めて小さく良好であるが、比較
合金5〜6のそれは何れも1500μm/day以上と
極めて大きかつた。さらに高温水応力腐食割れ試
験による結果では、本発明合金1〜4の何れも割
れがなく良好であるが、比較合金5〜6は何れも
割れが発生した。 第2図は、粒界侵食に及ぼすNbとC量との関
係を示す図で、最大侵食度dが500μm/day以
下とするにはNbは100(%C−0.005)%以上添
加が必要である。 第3図は0.2%耐力σ0.2に及ぼすNbと(C+
N)との関係を示す図であり、インコネル600の
0.2%耐力の規格である25Kg/mm2を上廻るために
はNbを〔3.0−75(%C+%N)〕%以上添加し
なければならない。 次に本発明合金の成分組成を限定する理由につ
いて説明する。 Cは0.040%以上になると溶接部の耐食性劣化
を防止するための添加Nb量を多くしなければな
らず、そうすると熱間加工性が劣化するのでCは
0.040%未満にする必要があり、熱間加工性の点
では0.030%以下のとき最も良い結果が得られ
る。 Siは1.0%より多いと耐粒界腐食性が劣化する
ので、Siは1.0%以下にする必要がある。 Mnは1.0%より多いと耐粒界腐食性が劣化する
ので、Mnは1.0%以下にする必要がある。 Pは0.030%より多いと耐粒界腐食性および溶
接性が劣化するので、Pは0.030%以下にする必
要がある。 Sは0.030%より多いと熱間加工性が劣化する
ので、Sは0.030%以下にする必要がある。 Crは耐食性をを発揮させるのには不可欠の元
素であり、Crが14%より少ないと耐食性が劣化
し一方26%より多いと高温強度が高くなり、製造
性が低下するので、Crは14〜26%の範囲内にす
る必要がある。 Feは25%より多いとNi基合金の特徴である塩
化物環境における耐粒内応力腐食割れ性が劣化す
るので、Feは25%以下にする必要がある。 Nbは耐粒界腐食性および機械的強度の向上に
有効であり、100(%C−0.005)%より少ないと
溶接熱影響部の耐食性が劣化するので100(%C
−0.005)%以上添加する必要があり、一方、
〔3.0−75(%C+%N)〕%より少ないと機械的
強度が劣化するので、Nbは〔3.0−75(%C+%
N)〕%以上添加する必要がある。しかしNbは4
%を超えると熱間加工性が劣化するので4%以下
にする必要がある。 Nは機械的強度、耐粒界腐食性および耐粒界応
力腐食性の向上に有効であるが、Nは0.040%以
上含有されると製造性が低下するのでNは0.040
%未満にする必要がある。 CとNはいずれも機械的強度に有効であり、機
械的強度の点から(C+N)は多い方が良い。し
かしNbも機械的強度に有効であるのでNbを含有
する場合は(C+N)は0.040%未満で充分であ
る。 Ti,Zr,Alはそれぞれ脱酸剤として熱間加工
性の改善に有効な元素であり、またなかでも
Ti,Zrはブローホール発生を抑止する効果が大
きく、かつ溶接高温熱影響部の耐食性を向上させ
る元素であるが、Ti,Zr,Alのなかから選ばれ
るいづれか1種又は2種以上が合計で1%より多
いと上記諸効果が期待されないので、1%以下に
する必要がある。 B,Mgは熱間加工性を向上するが、B,Mgは
それぞれ0.005%、0.05%を超えると逆に熱間加
工性が劣化するので、B,Mgはそれぞれ0.005%
以下、0.05%以下にする必要がある。 以上本発明のNi基合金は0.2%耐力は25Kg/mm2
以上であり、耐粒界腐食性並びに耐応力腐食割れ
性に優れ、さらに熱間加工性に優れる合金であ
り、化学工業並びにエネルギー産業、なかでも原
子力発電用機器として優れた諸特性を有する合金
である。
[Table] According to Table 3, the mechanical properties of the alloys 1 to 4 of the present invention, that is, 0.2% proof stress (Kg/mm 2 ), are as follows: Inconel 600
It can be seen that all of these are larger than the 0.2% proof stress standard of 25 Kg/mm 2 and also larger than that of Comparative Alloys 5 and 6. Furthermore, according to the intergranular corrosion test, the maximum corrosion degree d of the present invention alloys 1 to 4 was all 500μ.
m/day or less, which is very small and good, but comparative alloys 5 and 6 had extremely large values of 1500 μm/day or more. Further, according to the results of the high temperature water stress corrosion cracking test, all of the present invention alloys 1 to 4 were free of cracks and were in good condition, but all of the comparative alloys 5 to 6 had cracks. Figure 2 is a diagram showing the relationship between Nb and C content on grain boundary erosion, and it is necessary to add Nb at 100 (%C - 0.005)% or more in order to reduce the maximum corrosion rate d to 500 μm/day or less. be. Figure 3 shows the effect of Nb and (C+
N) is a diagram showing the relationship with Inconel 600.
In order to exceed the 0.2% yield strength standard of 25Kg/mm 2 , Nb must be added in an amount of [3.0-75 (%C + %N)] or more. Next, the reason for limiting the composition of the alloy of the present invention will be explained. When C exceeds 0.040%, the amount of Nb added must be increased to prevent deterioration of the corrosion resistance of the weld, and hot workability deteriorates, so C is
It needs to be less than 0.040%, and in terms of hot workability, the best results are obtained when it is 0.030% or less. If Si exceeds 1.0%, intergranular corrosion resistance deteriorates, so Si must be kept at 1.0% or less. If Mn exceeds 1.0%, intergranular corrosion resistance deteriorates, so Mn needs to be 1.0% or less. If P exceeds 0.030%, intergranular corrosion resistance and weldability deteriorate, so P must be kept at 0.030% or less. If S exceeds 0.030%, hot workability deteriorates, so S needs to be 0.030% or less. Cr is an essential element for exhibiting corrosion resistance. If Cr is less than 14%, corrosion resistance deteriorates, while if it is more than 26%, high temperature strength increases and manufacturability decreases. Must be within 26%. If the Fe content exceeds 25%, the intragranular stress corrosion cracking resistance in a chloride environment, which is a characteristic of Ni-based alloys, will deteriorate, so the Fe content must be 25% or less. Nb is effective in improving intergranular corrosion resistance and mechanical strength, and if it is less than 100 (%C - 0.005)%, the corrosion resistance of the weld heat affected zone deteriorates.
-0.005)% or more must be added;
If it is less than [3.0-75 (%C + %N)]%, the mechanical strength will deteriorate;
N)]% or more must be added. But Nb is 4
If it exceeds 4%, hot workability deteriorates, so it is necessary to keep it below 4%. N is effective in improving mechanical strength, intergranular corrosion resistance, and intergranular stress corrosion resistance, but if N is contained in an amount of 0.040% or more, manufacturability will decrease.
Must be less than %. Both C and N are effective for mechanical strength, and from the viewpoint of mechanical strength, the more (C+N) the better. However, since Nb is also effective in improving mechanical strength, when Nb is contained, (C+N) of less than 0.040% is sufficient. Ti, Zr, and Al are effective elements for improving hot workability as deoxidizers, and among them,
Ti and Zr are elements that have a great effect on suppressing the occurrence of blowholes and improve the corrosion resistance of the welded high-temperature heat-affected zone. If the content is more than 1%, the above effects cannot be expected, so it is necessary to keep it below 1%. B and Mg improve hot workability, but if B and Mg exceed 0.005% and 0.05%, hot workability will deteriorate, so B and Mg should be set at 0.005% each.
Below, it is necessary to keep it below 0.05%. As mentioned above, the 0.2% yield strength of the Ni-based alloy of the present invention is 25Kg/mm 2
As described above, it is an alloy that has excellent intergranular corrosion resistance and stress corrosion cracking resistance, as well as excellent hot workability, and has excellent properties for use in the chemical industry and energy industry, especially as equipment for nuclear power generation. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は腐食試験に供した溶接試験片の斜視
図、第2図は粒界腐食試験における最大侵食度d
に及ぼすNb含有量とC含有量の影響を示す図、
第3図は機械的強度に及ぼすNb含有量と(C+
N)含有量の影響を示す図である。
Figure 1 is a perspective view of the welded specimen subjected to the corrosion test, and Figure 2 is the maximum corrosion degree d in the intergranular corrosion test.
A diagram showing the influence of Nb content and C content on
Figure 3 shows the effect of Nb content on mechanical strength and (C+
N) is a diagram showing the influence of content.

Claims (1)

【特許請求の範囲】 1 C0.040%未満、Si1.0%以下、Mn1.0%以
下、Cr14〜26%、Fe25%以下、P0.030%以下、
S0.030%以下、N0.040%未満、CとNとの和
0.040%未満、Nbは4%以下、100×(%C−
0.005)%以上かつ〔3.0−75(%C+%N)〕%
以上であり、B0.005%以下、Mg0.05%以下を含
み、残部実質的にはNiよりなる耐粒界腐食性お
よび耐応力腐食割れ性に優れるNi基合金。 2 C0.040%未満、Si1.0%以下、Mn1.0%以
下、Cr14〜26%、Fe25%以下、P0.030%以下、
S0.030%以下、N0.040%未満、CとNとの和
0.040%未満、Nbは4%以下、100×(%C−
0.005)%以上かつ〔3.0−75(%C+%N)〕%
以上であり、B0.005%以下、Mg0.05%以下、
Ti,Zr,Alのなかから選ばれる何れか1種また
は2種以上合計1%以下を含み、残部実質的に
Niよりなる耐粒界腐食性および耐応力腐食割れ
性に優れるNi基合金。
[Claims] 1 C less than 0.040%, Si 1.0% or less, Mn 1.0% or less, Cr 14-26%, Fe 25% or less, P 0.030% or less,
S0.030% or less, N0.040% or less, sum of C and N
Less than 0.040%, Nb less than 4%, 100×(%C-
0.005)% or more and [3.0-75(%C+%N)]%
A Ni-based alloy having excellent intergranular corrosion resistance and stress corrosion cracking resistance, containing 0.005% or less of B, 0.05% or less of Mg, and the remainder being substantially Ni. 2 C less than 0.040%, Si 1.0% or less, Mn 1.0% or less, Cr14-26%, Fe 25% or less, P 0.030% or less,
S0.030% or less, N0.040% or less, sum of C and N
Less than 0.040%, Nb less than 4%, 100×(%C-
0.005)% or more and [3.0-75(%C+%N)]%
or more, B0.005% or less, Mg0.05% or less,
Contains 1% or less of any one or more selected from Ti, Zr, and Al, with the remainder substantially
A Ni-based alloy made of Ni that has excellent intergranular corrosion resistance and stress corrosion cracking resistance.
JP16683482A 1982-09-25 1982-09-25 Ni alloy with superior intergranular corrosion resistance and stress corrosion cracking resistance Granted JPS5956556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16683482A JPS5956556A (en) 1982-09-25 1982-09-25 Ni alloy with superior intergranular corrosion resistance and stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16683482A JPS5956556A (en) 1982-09-25 1982-09-25 Ni alloy with superior intergranular corrosion resistance and stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS5956556A JPS5956556A (en) 1984-04-02
JPS6144136B2 true JPS6144136B2 (en) 1986-10-01

Family

ID=15838514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16683482A Granted JPS5956556A (en) 1982-09-25 1982-09-25 Ni alloy with superior intergranular corrosion resistance and stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS5956556A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626408A (en) * 1984-09-20 1986-12-02 Nippon Yakin Kogyo Kabushiki Kaisha Ni-based alloy excellent in intergranular corrosion resistance, stress corrosion cracking resistance and hot workability
JP5550374B2 (en) * 2010-02-05 2014-07-16 Mmcスーパーアロイ株式会社 Ni-base alloy and method for producing Ni-base alloy
CN105838925B (en) * 2015-01-12 2017-11-28 宝钢特钢有限公司 High temperature oxidation resisting nickel-base alloy
JP6526307B1 (en) * 2018-12-14 2019-06-05 日本冶金工業株式会社 Ni-Cr-Nb-Fe-based alloy excellent in internal quality and hot workability and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738662U (en) * 1980-08-15 1982-03-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738662U (en) * 1980-08-15 1982-03-02

Also Published As

Publication number Publication date
JPS5956556A (en) 1984-04-02

Similar Documents

Publication Publication Date Title
US3306736A (en) Austenitic stainless steel
JP2018122329A (en) Coated arc welding electrode
JPH0325496B2 (en)
JPH11277292A (en) Welding metal and welding joint for high temp. high strength steel
JP2622530B2 (en) Welding material for austenitic steel with excellent high-temperature strength
JPS61288041A (en) Ni-base alloy excellent in intergranular stress corrosion cracking resistance and pitting resistance
JPH07314178A (en) Gas shielded welding wire for austenitic stainless steel
JPS6144136B2 (en)
JP6795038B2 (en) Austenitic heat-resistant alloy and welded joints using it
JP3251424B2 (en) Welding wire for high strength Cr-Mo steel
US2891859A (en) Alloy steel
JPH11170084A (en) Filler metal for ni based high cr alloy
JPS6211059B2 (en)
US2602737A (en) Corrosion resisting steels
JPS6144137B2 (en)
JPH07227693A (en) Welding wire for cryogenic steel
JPH0329859B2 (en)
JP3170166B2 (en) Filler for Ni-base high Cr alloy
JP3263378B2 (en) Heat treatment method for Co-based alloy
JPS6313692A (en) Wire for welding austenitic stainless steel
JPH0328498B2 (en)
US6521060B1 (en) Filler metal for use in welding of Ni-Cr-W alloys
JP2021021130A (en) Austenitic heat-resistant alloy weld joint
JP2021011610A (en) Austenitic heat-resistant alloy weld joint
JPS6117903B2 (en)