JPS6144000Y2 - - Google Patents

Info

Publication number
JPS6144000Y2
JPS6144000Y2 JP1980150265U JP15026580U JPS6144000Y2 JP S6144000 Y2 JPS6144000 Y2 JP S6144000Y2 JP 1980150265 U JP1980150265 U JP 1980150265U JP 15026580 U JP15026580 U JP 15026580U JP S6144000 Y2 JPS6144000 Y2 JP S6144000Y2
Authority
JP
Japan
Prior art keywords
impeller
return
flow path
protrusion
return flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980150265U
Other languages
Japanese (ja)
Other versions
JPS5771797U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980150265U priority Critical patent/JPS6144000Y2/ja
Publication of JPS5771797U publication Critical patent/JPS5771797U/ja
Application granted granted Critical
Publication of JPS6144000Y2 publication Critical patent/JPS6144000Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【考案の詳細な説明】 この考案は遠心式のターボ又はラジアル形式の
多段ブロワもしくは多段圧縮機(以下単に多段ブ
ロワと称する)に関する。
[Detailed Description of the Invention] This invention relates to a centrifugal turbo or radial type multi-stage blower or multi-stage compressor (hereinafter simply referred to as a multi-stage blower).

多段ブロワでは軸直角方向に設けてある戻り流
路内を軸心に向けて気体が高速度で送られ、軸心
附近にて羽根車吸込口と戻り流路は衝合されてお
り、羽根車吸込口にて該気体は急激な偏向転回作
用を受ける。従来の多段ブロワの戻り流路は軸方
向の幅が軸心に向つて次第に直線状に広くなり、
戻り流路と羽根車吸込口の衝合する近傍は軸を含
む断面の幅が次第に増大して最大となり次第に縮
小して変化し、内周側の、流体の内回りする側、
即ち羽根車側板4に続く所の口金部5の内径側は
円弧又は長円形状をしている。又戻り流路の戻り
翼端は羽根車入口近くまでのびていることが多
い。このような多段ブロワでは羽根車入口附近の
羽根車翼の側板付根附近にははく離を生じる欠点
があり、このため多段ブロワの効率の低下を招く
結果となつている。
In a multi-stage blower, gas is sent at high speed toward the shaft center through the return flow path provided perpendicular to the shaft, and the impeller suction port and return flow path collide near the shaft center. At the suction port, the gas is subjected to a rapid deflection and rotation action. The return flow path of a conventional multi-stage blower has an axial width that gradually widens in a straight line toward the axial center.
In the vicinity where the return flow path and the impeller suction port collide, the width of the cross section including the shaft gradually increases, reaches a maximum, gradually decreases and changes;
That is, the inner diameter side of the base portion 5 that follows the impeller side plate 4 has a circular arc or an elliptical shape. Also, the return blade tips of the return flow path often extend close to the impeller inlet. Such a multi-stage blower has the disadvantage that peeling occurs near the base of the side plate of the impeller blade near the impeller inlet, resulting in a decrease in the efficiency of the multi-stage blower.

この考案は多段ブロワに於いて羽根車翼の側板
付根附近に生ずるはく離現像を解消又は少くして
ブロワ効率の向上を計ることを目的とするもので
ある。
The purpose of this invention is to improve blower efficiency by eliminating or reducing peeling development that occurs near the base of the side plate of an impeller blade in a multi-stage blower.

第1図、第2図は従来型の多段ブロワの軸心を
含む一部断面図である。第1図は戻り流路10を
形成する中胴2端にはライナリング3が固定さ
れ、羽根車1の羽根車口金5の円筒形外周との
間、及び軸6に嵌入されたデイスタンスピース7
と中胴2に取付けられた中胴ブツシユ8との間に
おいてラビリンスにより漏れを少なくするように
してあり、羽根車口金5の内径部周辺は、一円弧
ではないが、マクロに見て大略図示径R1である
内周部転回曲率となつている。この径R1を大き
くして流れの転回をより無理なく行わせる為に第
1図と同断面で示す第2図の構成の転回点を設け
るものがある。第2図において1は羽根車、2は
中胴、3はライナリング、4は羽根車側板、5は
羽根車口金、6は軸、7はデイスタンスピース、
8は中胴ブツシユである。
FIGS. 1 and 2 are partial cross-sectional views including the axis of a conventional multi-stage blower. In FIG. 1, a liner ring 3 is fixed to the end of the middle body 2 forming a return flow path 10, and a distance piece is fitted between the liner ring 3 and the cylindrical outer periphery of the impeller base 5 of the impeller 1 and fitted into the shaft 6. 7
A labyrinth is used to reduce leakage between the inner diameter portion of the impeller cap 5 and the intermediate barrel bushing 8 attached to the intermediate barrel 2.Although the area around the inner diameter of the impeller cap 5 is not an arc, it is approximately the diameter shown in the diagram when viewed from a macroscopic perspective. The inner circumferential turning curvature is R1 . In order to increase this diameter R 1 so that the flow turns more easily, there is a system that provides a turning point as shown in FIG. 2, which is shown in the same cross section as FIG. 1. In Fig. 2, 1 is an impeller, 2 is a middle body, 3 is a liner ring, 4 is an impeller side plate, 5 is an impeller base, 6 is a shaft, 7 is a distance piece,
8 is the middle body bush.

多段ブロワは内周部、外周部において180゜の
流れの転回をくり返しながらブロワ内部を後段へ
と流れていく。これら内周部、外周部のうち、流
路面積が小さく風速が早く、損失が大きい内周部
の180゜の転回を如何にうまく行うかということ
が効率アツプの大きな要因となる。
In a multi-stage blower, the flow repeats 180° rotations at the inner and outer peripheries while flowing inside the blower to the next stage. Of these inner and outer circumferential parts, a major factor in increasing efficiency is how well the inner circumferential part, which has a small flow path area, high wind speed, and large loss, can be rotated through 180 degrees.

上記内周部はは単に風速の早い転回部分である
のみならず、次の段の羽根車入口部につながつて
いる。羽根車1へ流入する流れの乱れの多小はそ
の羽根車1の性能の良悪、効率の高低に極めて大
きな影響を持つている。
The inner peripheral portion is not only a turning portion where the wind speed is high, but also is connected to the inlet portion of the impeller of the next stage. The amount of turbulence in the flow flowing into the impeller 1 has a very large effect on the performance and efficiency of the impeller 1.

第2図において中胴2に交叉斜線部イを設けた
ことにより、内周部の転回点の半径は一円弧では
ないが、マクロ的に見て大略図示半径R2である
内周部転回曲率となり、 R2>R1 であるために流れは第1図のものに比べて転回
がよりゆるやかに、より除々に行われることが期
待され、効率のアツプが期待された。ところがこ
れはそれ程の効率のアツプが得られず、期待に応
えていない。第2図に示すものがそれ程の効率の
アツプが得られていない理由は下記の如くである
と考えられる。
In Fig. 2, the radius of the turning point on the inner periphery is not a single circular arc due to the cross-shaded portion A provided in the middle body 2, but the inner periphery turning curvature is approximately the indicated radius R 2 from a macroscopic perspective. Since R 2 > R 1 , the flow was expected to turn more slowly and more gradually than in the case shown in Figure 1, and an increase in efficiency was expected. However, this method did not achieve that much increase in efficiency and did not meet expectations. The reason why the efficiency shown in FIG. 2 has not been improved to that extent is considered to be as follows.

即ち、多段ブロワ内の流れはメインの流れの他
に二次的な循環流れがある。第1図、第2図にお
いて細い矢印はメインの流れ9、太い矢印は二次
的な循環流れ11である。
That is, the flow within the multistage blower includes a secondary circulating flow in addition to the main flow. In FIGS. 1 and 2, thin arrows indicate the main flow 9, and thick arrows indicate the secondary circulating flow 11.

第1図、第2図のように羽根車側板4裏側のハ
ツチング(交叉斜線)部分ロに、流れのはく離、
ウエーク、渦の生があると効率が低下する。
As shown in Figures 1 and 2, there is a flow separation in the hatched (cross diagonal) part B on the back side of the impeller side plate 4.
If there are wakes or vortices, the efficiency will decrease.

第1図、第2図を比較してみると第2図の方は
内周部の180゜転回の曲率が大きい為、第2図の
ハツチング部分ロの方がはく離が少くなるように
思われるが、ライナリング3と羽根車口金5との
隙間をリークして漏れる二次的な循環流れ11の
吹出しハが第2図の場合は第1図の場合と比べ
て、羽根車翼入口部1′により近い所で起つてお
り、且つラジアル方向であり、この循環流れ11
の吹出しハの影響の為に、転回の曲率を大きくし
たメリツトが減殺されていることが、スタテイツ
クモデルを用いた煙実験の結果から判明した。
Comparing Figures 1 and 2, it appears that since the 180° curvature of the inner periphery in Figure 2 is larger, the hatched part B in Figure 2 seems to have less peeling. However, when the secondary circulation flow 11 leaking through the gap between the liner ring 3 and the impeller base 5 is blown out as shown in FIG. 2, compared to the case shown in FIG. ' and is radial, and this circulating flow 11
The results of a smoke experiment using a static model revealed that the benefits of increasing the curvature of the turn were diminished due to the effect of the blowout.

この考案は以上の実験、考察によりなされたも
のであつて戻り流路内に戻り翼を有する多段ブロ
ワにおいて、転回部の曲率を大きくし乍らも、循
環流れ11は第1図の如くとし、戻り流路内の羽
根車吸込口直前に凸起を羽根車口金部外径よりも
凸起部内径が大なるように設け、その凸起の頂部
手前に戻り翼端を全部又は一部を位置させたもの
である。
This idea was made based on the above experiments and considerations, and in a multi-stage blower having return blades in the return flow path, the curvature of the turning section is increased, but the circulating flow 11 is as shown in Fig. 1, A protrusion is provided immediately before the impeller suction port in the return flow path so that the inner diameter of the protrusion is larger than the outer diameter of the impeller mouthpiece, and the return blade tip is positioned in whole or in part in front of the top of the protrusion. This is what I did.

以下図面に従つて、この考案の実施例について
説明する。第3図は多段ブロワの一部断面で示す
側面図である。胴体12の両側に設けられた軸受
台13,14に固定された軸受15,16には軸
6が回転可能に支持されており、軸6端に固定し
た軸接手17を介して図示されない原動機により
駆動されるようになつている。胴体12には複数
の中胴2が重ね合せてその間に羽根車1が軸6に
デイスタンスピース7と交互に嵌入固定されてい
る。
Embodiments of this invention will be described below with reference to the drawings. FIG. 3 is a partially sectional side view of the multi-stage blower. A shaft 6 is rotatably supported by bearings 15 and 16 fixed to bearing stands 13 and 14 provided on both sides of the body 12, and is rotated by a prime mover (not shown) via a shaft joint 17 fixed to the end of the shaft 6. It is becoming driven. A plurality of intermediate bodies 2 are stacked on a body 12, and impellers 1 are fitted and fixed to a shaft 6 alternately with distance pieces 7 between them.

第4図は第3図の一部拡大図である。中胴2に
はライナリング3が固定されており、羽根車口金
5の外周との間がラビリンス軸封装置となつてい
る。中胴2の内周側の流体の内回りする側、即
ち、羽根車側板4に続く部分円周であつて羽根車
1の吸込口直前には凸起19が設けられ、中胴2
の戻り流路10内の戻り翼20の翼端20′は凸
起19の頂部手前に位置させてある。
FIG. 4 is a partially enlarged view of FIG. 3. A liner ring 3 is fixed to the middle body 2, and a labyrinth shaft sealing device is formed between the liner ring 3 and the outer periphery of the impeller base 5. A protrusion 19 is provided on the inner circumferential side of the middle body 2 on the side where the fluid rotates inward, that is, on the partial circumference following the impeller side plate 4 and immediately before the suction port of the impeller 1.
The blade tip 20' of the return blade 20 in the return flow path 10 is located in front of the top of the protrusion 19.

凸起19は戻り流路10の壁面より断面次第に
***して次第に下る形状の曲線で画されている。
The protrusion 19 is defined by a curved line whose cross section gradually rises from the wall surface of the return flow path 10 and gradually descends.

戻り翼20の翼端20′は全数を第4図及び第
4図のA−A断面図である第5図に実線で示す位
置とするか、或は、例えば一枚置きに実線で示す
位置とし、その他を二点鎖線で示すように戻り流
路10の転回部内に斜設してもよい。これらは第
4図に示す凸起19の頂部と相対するデイスタン
スピース7を介して羽根車主板18に続く戻り流
路10の壁との流路幅ニと、戻り翼20間の円周
方向の距離の積、即ち戻り流路断面積によつて定
められる。
All of the blade tips 20' of the return blades 20 are at the positions shown in solid lines in FIG. 4 and in FIG. The other portions may be provided obliquely within the turning portion of the return flow path 10 as shown by the two-dot chain line. These are the width of the flow path between the top of the protrusion 19 and the wall of the return flow path 10 that continues to the impeller main plate 18 via the distance piece 7 facing the top of the protrusion 19 shown in FIG. 4, and the circumferential direction between the return blades 20. is determined by the product of the distances, that is, the cross-sectional area of the return flow path.

内周部180度転回部の曲率は、一円弧ではない
がマクロに見て大きな半径となし、且つ、ライナ
リング3と羽根車口金5との隙間からの循環流れ
11の吹出しハは羽根板入口部1′から遠ざけ
て、羽根車側板4の裏側に流れのはく離が起り難
いようになつている。
The curvature of the 180-degree turning part of the inner peripheral part is not a single arc, but it has a large radius from a macroscopic perspective, and the circulating flow 11 is blown out from the gap between the liner ring 3 and the impeller base 5 at the vane plate inlet. It is placed away from the portion 1' to prevent flow separation from occurring on the back side of the impeller side plate 4.

第1図、第2図とを比較すれば明かなように戻
り翼20終端近くの軸方向流路幅ニを第1図、第
2図とで同一寸法とすれば第2図の方が羽根車段
間ピツチ(n段目羽根車中心と(n+1)段目羽
根車中心との軸方向間隔)が長くなる。これは第
2図において戻り流路10内周端を二点鎖線で符
号21に示すような形状としたとしても同様であ
る。
As is clear from a comparison between Fig. 1 and Fig. 2, if the axial flow passage width D near the end of the return blade 20 is the same in Fig. 1 and Fig. 2, the impeller stage pitch (the axial distance between the center of the nth stage impeller and the center of the (n+1)th stage impeller) is longer in Fig. 2. This is also the case even if the inner peripheral end of the return passage 10 in Fig. 2 is shaped as shown by the two-dot chain line with reference symbol 21.

羽根車段間ピツチが長くなると、ブロワロータ
のLateralな固有振動数(危険速度)の関係か
ら、軸6の径大、羽根板入口部径大(性能低
下)、ブロワロータが長くなる。従つてブロワロ
ータ重量大、軸受径大、ケーシング重量大、潤滑
装置容量大等の不利を生ずる。
When the pitch between the impeller stages becomes longer, the diameter of the shaft 6 becomes larger, the diameter of the blade inlet part becomes larger (deterioration of performance), and the blower rotor becomes longer due to the relationship with the lateral natural frequency (critical speed) of the blower rotor. Therefore, there are disadvantages such as a large blower rotor weight, a large bearing diameter, a large casing weight, and a large lubricating device capacity.

そこでこの考案の多段ブロワでは凸起19を設
けた場合に第4図、第5図の如き形状として羽根
車段間ピツチを増大せぬようにした。即ち、戻り
翼19終端近くの軸方向流路幅ニを従来例より小
さくした。その結果、第4図においては従来例の
第1図に第4図に示す突起19を設けたものと
ほゞ同じ構造となつている。
Therefore, in the multi-stage blower of this invention, when the protrusions 19 are provided, they are shaped as shown in FIGS. 4 and 5 so as not to increase the pitch between impeller stages. That is, the width of the axial flow path near the end of the return blade 19 is made smaller than that of the conventional example. As a result, the structure shown in FIG. 4 is almost the same as that of the conventional example shown in FIG. 1 except that the protrusion 19 shown in FIG. 4 is provided.

更にこの考案の多段ブロワでは凸起19と羽根
車主板18に続く戻り流路10壁との流路幅ニを
小さくしたための悪影響を避けるため、第4図の
側面図の第5図に示すように戻り翼20の翼端2
0′近傍は戻り翼20が集つてくるので流路面積
が元々狭くなつており、第4図に示すように流路
幅ニが小さくなることが加わる。
Furthermore, in the multi-stage blower of this invention, in order to avoid the adverse effect of reducing the channel width between the protrusion 19 and the wall of the return channel 10 following the impeller main plate 18, the design is as shown in FIG. 5 of the side view of FIG. Return to wing tip 2 of wing 20
Near 0', the return vanes 20 are gathered together, so the flow path area is originally narrow, and as shown in FIG. 4, the flow path width d is also reduced.

そこで第2図に示した如き従来例の多くの場合
においては戻り翼20の翼端20′の形状は戻り
流路10内周端附近より斜設したものであつた
が、この考案の多段ブロワにおいては、戻り翼2
0の全枚数を第4図に実線で示すように凸起19
の手前までとするか、一枚置きに従来例と同じく
斜設したものと、凸起19の手前までのものとを
配することにより、凸起19附近の軸方向の流路
幅ニの縮小を第5図に示す戻り翼20の翼端2
0′間の円周方向の距離の増大によつて流路面積
を補つている。もつとも凸起19の高さが小さい
ときは凸起19の手前までとする戻り翼20の数
は少なくてよい。かくの如くすることにより、戻
り翼20の翼端20′を経て羽根車1へ向う流体
は急激な流路面積変化を経ることなく流れるため
性能効率の良好化につながる。
Therefore, in many cases of the conventional example as shown in FIG. 2, the shape of the blade tip 20' of the return blade 20 is inclined from the vicinity of the inner peripheral end of the return flow path 10, but the multi-stage blower of this invention In the case, return wing 2
The total number of 0's is shown by the solid line in Figure 4.
The width of the channel in the axial direction in the vicinity of the protrusion 19 can be reduced by placing diagonal ones on every other sheet as in the conventional example and ones in front of the protrusion 19. The blade tip 2 of the return blade 20 shown in FIG.
The passage area is compensated for by increasing the circumferential distance between 0'. However, when the height of the protrusion 19 is small, the number of return wings 20 that extend in front of the protrusion 19 may be small. By doing so, the fluid flowing toward the impeller 1 via the blade tip 20' of the return blade 20 flows without undergoing a sudden change in flow path area, leading to improvement in performance efficiency.

このように中胴2の戻り流路10内に凸起19
を設けた多段ブロワを運転すると従来生じた羽根
車側板4における流体のはく離、ウエーク、渦流
現象は解消又は縮少し、同一仕様のブロワにおい
て凸起19を設けたこの考案の多段ブロワと凸起
19を設けず戻り翼端20′を内周側転向部まで
設けた多段ブロワを実験した結果効率が4%以上
向上した。
In this way, the protrusion 19 is formed in the return passage 10 of the middle body 2.
When a multi-stage blower equipped with a ridge 19 is operated, the fluid separation, wake, and vortex phenomena that occur conventionally on the impeller side plate 4 are eliminated or reduced. As a result of experimenting with a multi-stage blower in which the return blade tip 20' was provided up to the inner circumferential turning section without providing the return blade tip 20', the efficiency was improved by more than 4%.

以上のとおり、この考案の多段ブロワによれば
中胴に、羽根車吸込口直前において、凸起を設け
たため、羽根車側板にははく離が生ぜず効率が向
上した。又戻り翼内周側端部を凸起手前に止める
ことにより戻り流路断面積を確保でき多段ブロワ
全長を従来寸法に押えることができた。
As described above, according to the multi-stage blower of this invention, since the protrusion is provided on the middle body just before the impeller suction port, no peeling occurs on the impeller side plate, improving efficiency. In addition, by stopping the inner circumferential end of the return blade in front of the convexity, the cross-sectional area of the return flow path can be secured, and the overall length of the multi-stage blower can be kept to conventional dimensions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来例の断面図、第3図は一
部断面で示すこの考案の実施例の側面図、第4図
は第3図の一部拡大断面図、第5図は第4図のA
−A断面図である。 1……羽根車、2……中胴、3……ライナリン
グ、4……羽根車側板、5……羽根車口金、6…
…軸、9……メインの流れ、10……戻り流路、
11……循環流れ、19……突起、20……戻り
翼、20′……戻り翼の翼端。
Figures 1 and 2 are sectional views of the conventional example, Figure 3 is a side view of the embodiment of this invention partially shown in cross section, Figure 4 is a partially enlarged sectional view of Figure 3, and Figure 5 is a sectional view of the conventional example. A in Figure 4
-A sectional view. 1... Impeller, 2... Middle body, 3... Liner ring, 4... Impeller side plate, 5... Impeller base, 6...
...Axis, 9...Main flow, 10...Return flow path,
11...Circulating flow, 19...Protrusion, 20...Return wing, 20'...Blade tip of return wing.

Claims (1)

【実用新案登録請求の範囲】 1 戻り流路内に戻り翼を有する多段ブロワにお
いて、戻り流路内の羽根車吸込口直前の羽根車
側板に続く部分の円周に断面次第に***して次
第に下る曲線状凸起を羽根車口金部外径よりも
凸起部内径が大なるように設け、戻り流路の戻
り翼端の全部、又は一部を戻り流路内の凸起の
頂部手前に位置させたことを特徴とする多段ブ
ロワ。 2 戻り翼端を一枚置きに戻り流路内の凸起の頂
部手前と頂部よりも転回部内に斜設した実用新
案登録請求の範囲第1項記載の多段ブロワ。
[Claims for Utility Model Registration] 1. In a multi-stage blower having return blades in the return flow path, the cross section of the portion of the return flow path adjacent to the impeller side plate immediately before the impeller suction port has a cross section that gradually rises and gradually descends. The curved protrusion is provided so that the inner diameter of the protrusion is larger than the outer diameter of the impeller mouthpiece, and all or part of the return blade tip of the return flow path is located in front of the top of the protrusion in the return flow path. A multi-stage blower characterized by 2. The multi-stage blower according to claim 1, in which every other return blade tip is disposed obliquely in front of the top of the protrusion in the return flow path and in the turning section rather than the top.
JP1980150265U 1980-10-21 1980-10-21 Expired JPS6144000Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980150265U JPS6144000Y2 (en) 1980-10-21 1980-10-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980150265U JPS6144000Y2 (en) 1980-10-21 1980-10-21

Publications (2)

Publication Number Publication Date
JPS5771797U JPS5771797U (en) 1982-05-01
JPS6144000Y2 true JPS6144000Y2 (en) 1986-12-11

Family

ID=29509640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980150265U Expired JPS6144000Y2 (en) 1980-10-21 1980-10-21

Country Status (1)

Country Link
JP (1) JPS6144000Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707969B2 (en) * 2004-05-19 2011-06-22 株式会社酉島製作所 Multistage fluid machinery
JP6553360B2 (en) * 2015-01-07 2019-07-31 日立グローバルライフソリューションズ株式会社 Electric blower and vacuum cleaner equipped with the same

Also Published As

Publication number Publication date
JPS5771797U (en) 1982-05-01

Similar Documents

Publication Publication Date Title
CA2496543C (en) Recirculation structure for a turbocompressor
CA2495186C (en) Recirculation structure for turbocompressors
WO2011007467A1 (en) Impeller and rotary machine
US7186080B2 (en) Fan inlet and housing for a centrifugal blower whose impeller has forward curved fan blades
US20100189557A1 (en) Impeller and fan
JPH06241197A (en) Diffuser having impeller for centrifugal and mixed flow pump
WO2018147128A1 (en) Centrifugal compressor and turbocharger
JP5029024B2 (en) Centrifugal compressor
KR0180742B1 (en) Vacuum cleaner having an impeller and diffuser
WO2011007466A1 (en) Impeller and rotary machine
JPH04262093A (en) Regenerative centrifugal compressor
JP7005393B2 (en) Diffuser vane and centrifugal compressor
JP7466683B2 (en) Multi-blade centrifugal blower
JP4707969B2 (en) Multistage fluid machinery
JP7429810B2 (en) Multi-stage centrifugal fluid machine
JPS6144000Y2 (en)
JPH05149297A (en) Centrifugal fan
JP2573292B2 (en) High speed centrifugal compressor
JP3311526B2 (en) Axial blower
JPH10331794A (en) Centrifugal compressor
WO1999036701A1 (en) Centrifugal turbomachinery
CN113994072A (en) Pressure booster
JP6768172B1 (en) Centrifugal compressor
CN112648201B (en) Ducted fan with fan housing defining a cavity above the rotor
JPH0474560B2 (en)