JPS6143874B2 - - Google Patents

Info

Publication number
JPS6143874B2
JPS6143874B2 JP52129040A JP12904077A JPS6143874B2 JP S6143874 B2 JPS6143874 B2 JP S6143874B2 JP 52129040 A JP52129040 A JP 52129040A JP 12904077 A JP12904077 A JP 12904077A JP S6143874 B2 JPS6143874 B2 JP S6143874B2
Authority
JP
Japan
Prior art keywords
surface acoustic
magnetic flux
josephson
josephson junction
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52129040A
Other languages
Japanese (ja)
Other versions
JPS5461864A (en
Inventor
Yukihiro Kino
Nobuo Mikoshiba
Seizo Morita
Shozo Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12904077A priority Critical patent/JPS5461864A/en
Publication of JPS5461864A publication Critical patent/JPS5461864A/en
Publication of JPS6143874B2 publication Critical patent/JPS6143874B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/195Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices
    • H03K19/1952Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices with electro-magnetic coupling of the control current

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Logic Circuits (AREA)

Description

【発明の詳細な説明】 本発明は弾性表面波とジヨセフソン接合を組合
わせた論理素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a logic element that combines surface acoustic waves and Josephson junctions.

ジヨセフソン接合中の磁束量子を動かすことを
利用した論理素子にはフラツクスシヤトル
(Flux Shuttle)がある。これにはジヨセフソン
侵入度λJよりもずつと大きな接合中に多数個の
磁束量子をとじこめ多数のアドレスに分割する分
布定数型素子や、λJよりも小さい多数個のジヨ
セフソン接合をインダクタンスで結合して並べた
集中定数型素が考えられている。これらはいずれ
も磁束の存在する位置に外からバイアス電流を流
してシフトレジスタ動作を行なわせる論理素子で
あり、バイアス電流用電極の微細加工を必要とす
る。
A flux shuttle is a logic element that uses the movement of magnetic flux quanta in Josephson junctions. This can be achieved by using a distributed constant type element that confines a large number of magnetic flux quanta in a junction that is larger than the Josephson penetration depth λ J and dividing it into a large number of addresses, or by coupling a large number of Josephson junctions smaller than λ J using inductance. A lumped constant type element arranged as All of these are logic elements that cause a shift register operation to be performed by flowing a bias current from the outside into a position where a magnetic flux exists, and require microfabrication of the bias current electrode.

本発明は弾性表面波によりジヨセフソン接合中
またはジヨセフソン接合アレイ中の磁束量子を音
速で動かして論理動作を行わせるようにしたもの
で、バイアス電流用電極の微細加工が不要とな
り、またビツト密度を向上させた論理素子を提供
するものである。
The present invention uses surface acoustic waves to move magnetic flux quanta in Josephson junctions or Josephson junction arrays at the speed of sound to perform logical operations. This eliminates the need for microfabrication of bias current electrodes and improves bit density. The present invention provides a logic element that has the following functions.

磁束量子を動かす機構は2種類に分類される。
弾性表面波の振動が比較的低い周波数(数10〜数
100メガヘルツ)の場合には、弾性表面波はジヨ
セフソン接合の絶縁膜の厚さ(エル)を変調す
ることにより波状のポテンシヤルを磁束量子に与
える。これを(エル)方式と呼ぶ。一方比較的
高い周波数(1ギガヘルツ以上)の場合には、い
わゆるフオノン誘起エネルギーギヤツプ増
(Phonon−induced enhacement of energy
gap)が生じ、弾性表面波パルスの存在している
部分のエネルギーギヤツプ2Δ(デルタ)が変調
され、パルス状のポテンシヤルを磁束量子に与え
る。これをΔ(デルタ)方式と呼ぶ。
Mechanisms that move magnetic flux quanta are classified into two types.
The vibration of surface acoustic waves has a relatively low frequency (several 10 to several
(100 MHz), the surface acoustic wave imparts a wave-like potential to the magnetic flux quantum by modulating the thickness (L) of the insulating film of the Josephson junction. This is called the (L) method. On the other hand, in the case of relatively high frequencies (above 1 GHz), there is a so-called phonon-induced enhancement of energy gap increase.
gap) occurs, and the energy gap 2Δ (delta) of the portion where the surface acoustic wave pulse exists is modulated, giving a pulse-like potential to the magnetic flux quantum. This is called the Δ (delta) method.

第1図において、1は弾性表面波トランスジユ
ーサでSiやガラスのような基板5上にZnOのよう
な圧電膜2を介して形成される。基板5として圧
電体基板を使用した場合には、圧電薄膜2は不要
である。3はジヨセフソン接合のアレイ、4は信
号検出部としての電極である。
In FIG. 1, a surface acoustic wave transducer 1 is formed on a substrate 5 made of Si or glass with a piezoelectric film 2 made of ZnO interposed therebetween. When a piezoelectric substrate is used as the substrate 5, the piezoelectric thin film 2 is not necessary. 3 is an array of Josephson junctions, and 4 is an electrode as a signal detection section.

ジヨセフソン接合3の詳細を第2図に示す。厚
さのPbOの様な絶縁膜32がPbのような超電
導金属の薄膜31,33でサンドイツチ状にはさ
まれ、その上にSiO2のような絶縁膜34を介し
て金属線路35が形成される。7は磁束量子発生
用の定電流電源、8はジヨセフソン接合3の接合
電圧供給用の直流電圧源である。
Details of the Josephson junction 3 are shown in FIG. A thick insulating film 32 such as PbO is sandwiched between thin films 31 and 33 of superconducting metal such as Pb in a sandwich pattern, and a metal line 35 is formed thereon via an insulating film 34 such as SiO2 . Ru. Reference numeral 7 indicates a constant current power supply for generating magnetic flux quantum, and reference numeral 8 indicates a DC voltage source for supplying junction voltage to Josephson junction 3.

直流電圧源8によりジヨセフソン接合3に電圧
Vを供給すると、周波数=2ev/h(e;電子
電荷、h;ブランク定数)の高周波電磁振動が起
る。
When a voltage V is supplied to the Josephson junction 3 by the DC voltage source 8, high-frequency electromagnetic oscillation with a frequency of 2 ev/h (e: electronic charge, h: Blank constant) occurs.

一方、定電流電源7により金属線路35に臨界
ジヨセフソン電流Icより小さい直流電流Idcを供
給して磁場を発生させると、ジヨセフソン素子2
の絶縁膜32が電磁波のキヤビテイとして動作
し、そのQ値が高いので周波数の電磁波のパワ
ーが内部にとじこめられる。このQ値はジヨセフ
ソン素子2に外部から加えられた磁場で制御され
る。この状態で弾性表面波による波状ポテンシヤ
ルが来ると、絶縁膜32の膜厚が大きくなつた
り小さくなつたりし、これにつれて臨界ジヨセフ
ソン電流Icも最大値Idc maxと最小値Idc minの
間を大きくなつたり小さくなつたりする。そこ
で、Ic>Idc>Idc minとなるようにIdcを設定す
ると、音波によりつくられる波状ポテンシヤルは
音速で動き、ジヨセフソン接合の形をした伝送線
にとじこめられていた磁束量子がこの波状ポテン
シヤルにとらえられて音速で動き出す。すなわ
ち、弾性表面波トランスジユーサ1によつて発生
した弾性表面波ジヨセフソン接合アレイ3の直下
に伝搬してきたとき、それに同期して、定電流源
7によつて各接合にデイジタル信号に対応させて
磁束量子の1または0を与えると、弾性表面波の
波長が各接合間の距離に等しい時、波状ポテンシ
ヤルに磁束量子をとらえ、音速で検出器4に運
ぶ。
On the other hand, when a constant current power supply 7 supplies a direct current Idc smaller than the critical Josephson current Ic to the metal line 35 to generate a magnetic field, the Josephson element 2
The insulating film 32 acts as a cavity for electromagnetic waves, and since its Q value is high, the power of the electromagnetic waves of the frequency is confined inside. This Q value is controlled by a magnetic field applied to the Josephson element 2 from the outside. When a wavy potential due to surface acoustic waves occurs in this state, the thickness of the insulating film 32 increases or decreases, and accordingly, the critical Josephson current Ic also increases between the maximum value Idc max and the minimum value Idc min. It gets smaller. Therefore, if Idc is set so that Ic > Idc > Idc min, the wavy potential created by the sound wave moves at the speed of sound, and the magnetic flux quantum trapped in the Josephson junction-shaped transmission line is captured by this wavy potential. It starts moving at the speed of sound. That is, when the surface acoustic wave generated by the surface acoustic wave transducer 1 propagates directly below the Josephson junction array 3, the constant current source 7 causes each junction to correspond to a digital signal in synchronization with the propagation. When a magnetic flux quantum of 1 or 0 is given, when the wavelength of the surface acoustic wave is equal to the distance between each junction, the magnetic flux quantum is captured by the wavy potential and transported to the detector 4 at the speed of sound.

この結果、検出器4より磁束量子に対応した
1,0のデイジタル信号を読み出すことができ
る。
As a result, a digital signal of 1 and 0 corresponding to the magnetic flux quantum can be read out from the detector 4.

この場合、ジヨセフソン接合3の相互の距離お
よびジヨセフソン接合3と磁束検出器4間の距離
が磁場侵入長よりも小さければ磁束量子はとらえ
られ移動してゆく。一方これらの距離が磁場侵入
長より大きい場合には2つの超伝導線で絶縁体を
はさんだ磁束量子伝送線を用いることにより移動
させることができる。
In this case, if the distance between the Josephson junctions 3 and the distance between the Josephson junctions 3 and the magnetic flux detector 4 are smaller than the magnetic field penetration length, the magnetic flux quanta will be captured and moved. On the other hand, if these distances are larger than the magnetic field penetration length, the movement can be achieved by using a magnetic flux quantum transmission line in which an insulator is sandwiched between two superconducting wires.

一方Δ方式の場合は、弾性表面波トランスジユ
ーサからの弾性表面波パルスがジヨセフソン接合
に直下に伝播してきたときに磁束量子を与える
と、弾性表面波パルス状ポテンシヤルの底に磁束
量子がとらえられ、音束で検出器4に運ばれる。
On the other hand, in the case of the Δ method, if a magnetic flux quantum is applied when the surface acoustic wave pulse from the surface acoustic wave transducer propagates directly below the Josephson junction, the magnetic flux quantum is captured at the bottom of the surface acoustic wave pulse potential. , is carried to the detector 4 in a sound bundle.

ジヨセフソン接合としてはアレイの他の多数の
磁束量子を含む長いジヨセフソン接合を使用する
こともできる。
The Josephson junction can also be a long Josephson junction containing many other flux quanta in the array.

以上のように、本発明は0または少数の磁束量
子を含む短いジヨセフソン接合アレイまたは多数
の磁束量子を含む長いジヨセフソン接合と、弾性
表面波トランスジユーサ、磁束検出器を基板上に
設け、ジヨセフソン接合部の下に弾性表面波の波
状またはパルス状ポテンシヤルを与え、このポテ
ンシヤルにジヨセフソン接合からの磁束量子をと
らえ、これを音束で磁束検出器に運ぶようにした
新規な論理素子を提供するものである。
As described above, the present invention provides a short Josephson junction array containing zero or a small number of magnetic flux quanta or a long Josephson junction containing a large number of magnetic flux quanta, a surface acoustic wave transducer, a magnetic flux detector, and the like, which are provided on a substrate. The present invention provides a novel logic element in which a wave-like or pulse-like potential of a surface acoustic wave is provided under the section, a magnetic flux quantum from a Josephson junction is captured by this potential, and this is carried to a magnetic flux detector as an acoustic flux. be.

このような構成によれば、磁束量子を動かすた
めの微細電極が不要となり、またビツト密度の高
い論理素子を得ることができる。
With such a configuration, there is no need for fine electrodes for moving magnetic flux quanta, and a logic element with high bit density can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面側面図、第
2図は第1図の部分拡大説明図である。 1……弾性表面波トランスジユーサ、2……圧
電薄膜、3……ジヨセフソン接合、4……磁束検
出器、5……基板、7……定電流源、8……直流
電圧源、31,33……超電導金属薄膜、32…
…絶縁膜、34……絶縁膜、35……金属線路。
FIG. 1 is a cross-sectional side view showing an embodiment of the present invention, and FIG. 2 is a partially enlarged explanatory view of FIG. 1. DESCRIPTION OF SYMBOLS 1... Surface acoustic wave transducer, 2... Piezoelectric thin film, 3... Josephson junction, 4... Magnetic flux detector, 5... Substrate, 7... Constant current source, 8... DC voltage source, 31, 33...Superconducting metal thin film, 32...
...insulating film, 34...insulating film, 35...metal line.

Claims (1)

【特許請求の範囲】 1 基板上に互に離間して弾性表面波を発生する
手段および電極を配し、両者の中間に磁場発生手
段を具備するジヨセフソン接合またはそのアレイ
を形成したことを特徴とする論理素子。 2 弾性表面波が波状である特許請求の範囲第1
項記載の論理素子。 3 弾性表面波がパルス状である特許請求の範囲
第1項記載の論理素子。 4 磁場発生手段がジヨセフソン接合上に絶縁膜
を介して形成された金属線路である特許請求の範
囲第1項記載の論理素子。
[Scope of Claims] 1. A device characterized in that a means for generating a surface acoustic wave and an electrode are arranged on a substrate at a distance from each other, and a Josephson junction or an array thereof is formed with a means for generating a magnetic field between the two. A logical element that 2 Claim 1 in which the surface acoustic waves are wavy
Logic elements described in section. 3. The logic element according to claim 1, wherein the surface acoustic waves are pulsed. 4. The logic element according to claim 1, wherein the magnetic field generating means is a metal line formed on the Josephson junction via an insulating film.
JP12904077A 1977-10-26 1977-10-26 Logical element Granted JPS5461864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12904077A JPS5461864A (en) 1977-10-26 1977-10-26 Logical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12904077A JPS5461864A (en) 1977-10-26 1977-10-26 Logical element

Publications (2)

Publication Number Publication Date
JPS5461864A JPS5461864A (en) 1979-05-18
JPS6143874B2 true JPS6143874B2 (en) 1986-09-30

Family

ID=14999603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12904077A Granted JPS5461864A (en) 1977-10-26 1977-10-26 Logical element

Country Status (1)

Country Link
JP (1) JPS5461864A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812935B2 (en) * 1988-02-09 1996-02-07 日本電気株式会社 Superconductor electronic device
US10415873B2 (en) 2017-12-08 2019-09-17 Electrolux Home Products, Inc. Dual asymmetrical and symmetrical architecture cantilever positioning

Also Published As

Publication number Publication date
JPS5461864A (en) 1979-05-18

Similar Documents

Publication Publication Date Title
White Surface elastic-wave propagation and amplification
US3422371A (en) Thin film piezoelectric oscillator
Von Gutfeld et al. 20‐MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces
US3274406A (en) Acoustic-electromagnetic device
US4567393A (en) Surface acoustic wave device having AlN and ZnO layers on a Si substrate
US4019200A (en) Monolithic surface acoustic wave signal storage device
CA1177126A (en) Piezoelectric elastic-wave convolver device
US4209759A (en) Magnetoelastic surface wave interaction device
US3334307A (en) Multi-electrode acoustic amplifier with unitary transducing and translating medium
JPS6143874B2 (en)
US3628184A (en) Superconducting oscillators and method for making the same
US3053941A (en) Magnetostrictive transducer for the recording and reproducing of magnetic information
GB1372235A (en) Acoustic surface wave devices
US3254231A (en) Frequency changer employing a moving sonic-energy-reflecting boundary in a semiconductor medium
US3673474A (en) Means for generating (a source of) surface and bulk elastic wares
US3500461A (en) Kinetomagnetic,piezoelectric and piezoresistive tapping techniques for non-magnetic delay lines
US3714604A (en) Self excited electron phonon resonator
US4314297A (en) Process for generating a magnetic induction field within a magnetic medium
US3412269A (en) Hypersonic transducer
US3568080A (en) Self-transducing ultrasonic amplifier
US4159539A (en) Elastic waves device for memorizing information
US3668441A (en) Method of generation of spontaneous elastic-spin-oscillations in ferromagnetopiezosemiconductor circuits
KR100195676B1 (en) Method and apparatus for thin film formation, device, electro-magnetic apparatus, data, recording/reproduction apparatus, signal, processor, and method of producing, molten crystal
US3290623A (en) Apparatus for the generation of phonons by piezoelectric effects
Grove et al. Sparkostrictive spark chambers with piezoelectric readout