JPS6143536B2 - - Google Patents

Info

Publication number
JPS6143536B2
JPS6143536B2 JP52064712A JP6471277A JPS6143536B2 JP S6143536 B2 JPS6143536 B2 JP S6143536B2 JP 52064712 A JP52064712 A JP 52064712A JP 6471277 A JP6471277 A JP 6471277A JP S6143536 B2 JPS6143536 B2 JP S6143536B2
Authority
JP
Japan
Prior art keywords
engine
volatile memory
changes
control
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52064712A
Other languages
Japanese (ja)
Other versions
JPS54112A (en
Inventor
Teruo Yamauchi
Takashige Ooyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6471277A priority Critical patent/JPS54112A/en
Publication of JPS54112A publication Critical patent/JPS54112A/en
Publication of JPS6143536B2 publication Critical patent/JPS6143536B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は内燃機関の燃焼制御に係り、特に内燃
機関の空燃比または点火時期を運転状態に応じて
最適に制御できる燃焼制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to combustion control of an internal combustion engine, and more particularly to a combustion control device that can optimally control the air-fuel ratio or ignition timing of an internal combustion engine depending on operating conditions.

〔発明の背景〕[Background of the invention]

最初に考えられた内燃機関の燃焼制御方式は運
転状態の検出値から制御値が一方的に決定される
オープンループ方式であつた。この方式は制御回
路も簡単なアナログ回路であつたので制御精度は
極めて低かつた。次に排気ガスの浄化のため制御
精度の高いフイードバツク制御方式が開発され
た。この方式は排気ガス中の酸素濃度を検出する
酸素濃度検出器を備え、その出力に基づいて空燃
比の変動を補正する方式で、エンジンの定常運転
では高い制御精度が得られた。しかし、この方式
は排気ガスの状態に基づき吸気側に供給される燃
料供給量を補正する方式のため、燃料供給量の補
正が行われてからその結果が検出されるまでの遅
れ要素の影響が大きく、過度運転状態の制御精度
を向上させることが困難であつた。
The first combustion control method for internal combustion engines was an open-loop method in which control values were unilaterally determined from detected values of operating conditions. Since the control circuit of this system was a simple analog circuit, the control accuracy was extremely low. Next, a feedback control method with high control accuracy was developed to purify exhaust gas. This system is equipped with an oxygen concentration detector that detects the oxygen concentration in the exhaust gas, and uses the output to correct for fluctuations in the air-fuel ratio, achieving high control accuracy during steady engine operation. However, since this method corrects the amount of fuel supplied to the intake side based on the state of the exhaust gas, there is no effect of the delay factor from the time the fuel supply amount is corrected until the result is detected. Therefore, it has been difficult to improve control accuracy in excessive operating conditions.

制御制度を向上させる方式として上記フイード
バツク方式と共にプログラム制御方式も開発され
た。この方式は例えば特開昭50−90826号公報に
開示されている方式で内燃機関の点火時期や燃料
供給量、排気ガス還流量を小型電子計算器を用い
て木目細かく制御する方式である。例えばエンジ
ンの状態に応じた制御値がパターンとして上記電
子計算器の記憶装置にプログラムと共に予め記憶
されており、エンジンの状態に応じて上記パター
ンから高精度の制御値が読みだれされる。この方
式の問題点は制御プログラムや上記制御パターン
が予め記憶装置に固定されており、エンジンの経
時変化や燃料の質の変化等がプログラムされてい
ないことにより制御制度の低下である。即ち、プ
ログラム制御方式ではエンジンが最適に制御され
るよう予め作られたプログラムを記憶回路に記憶
し、このプログラムに従つて常にエンジンを制御
するため、機械的な摩耗によるエンジンの劣化や
燃料の質の変化には対応できない。
In addition to the above-mentioned feedback method, a program control method has also been developed as a method for improving the control system. This method is disclosed, for example, in Japanese Patent Application Laid-Open No. 50-90826, and is a method in which the ignition timing, fuel supply amount, and exhaust gas recirculation amount of the internal combustion engine are precisely controlled using a small electronic calculator. For example, control values depending on the state of the engine are stored in advance as a pattern in the storage device of the computer along with a program, and highly accurate control values are read out from the pattern depending on the state of the engine. The problem with this method is that the control program and the control pattern are fixed in advance in a storage device, and changes in the engine over time, changes in fuel quality, etc. are not programmed, resulting in poor control accuracy. In other words, in the program control method, a program created in advance to optimally control the engine is stored in the memory circuit, and the engine is always controlled according to this program, so there is no risk of engine deterioration due to mechanical wear or fuel quality. cannot respond to changes in

上記問題を解決する方式としていわゆる学習制
御方式が特開昭51−106826号公報に開示されてい
る。この方式は燃料供給量の制御が常に最適に行
われるように非揮発性メモリに補正データを記憶
し、制御結果を自己判定し、常に最適な制御が行
われるように、上記データを自己修正するもので
ある。しかし、非揮発性メモリに補正データを記
憶することは次のような問題がある。
As a method for solving the above problem, a so-called learning control method is disclosed in Japanese Patent Laid-Open No. 106826/1983. This method stores correction data in non-volatile memory so that fuel supply amount control is always performed optimally, self-determines the control results, and self-corrects the above data so that optimal control is always performed. It is something. However, storing correction data in non-volatile memory has the following problems.

補正データを非揮発性メモリに書き込むには特
別な電圧が必要である。このため自動車のバツテ
リ電源では電源電圧が低く書き込みが不可能であ
る。それにくわえ特に自動車のバツテリの負荷は
大きく変動し、バツテリ電圧はその負荷に応じて
大きく変動する。このため大きく低下することが
頻繁に起こる。バツテリ電圧が低下しても正確に
書き込み読み出しが行なえるにはメモリの動作電
圧が低く、低い電圧で書き込みや読み出しが行な
えるものでなければならない。
Special voltages are required to write correction data to non-volatile memory. For this reason, the power supply voltage of an automobile's battery power supply is low and writing is impossible. In addition, the load on the battery of an automobile varies greatly, and the battery voltage varies greatly depending on the load. For this reason, large drops often occur. In order to be able to write and read accurately even when the battery voltage drops, the operating voltage of the memory must be low, and writing and reading must be possible at low voltages.

エンジン制御装置においては上記バツテリ電圧
の低下の他に点火ノイズや、例えば車が無線送信
装置を備えている場合は無線ノイズの混入などの
ノイズが大きな問題となる。電源電圧の上記変動
のみならずこのノイズによつても変動することに
なる。上記ノイズが電源電圧と逆極性の状態では
電源電圧がノイズ電圧だけ低下したのと同じこと
になる。動作電圧が高い場合にはノイズによる変
動が大きな問題となり、結果的には電源電圧に混
入するノイズの影響を除去することが困難とな
る。非揮発性メモリは補正データを書き込む場合
等の動作電圧が非常に高く仮りに電圧昇圧回路等
でバツテリ電圧を昇圧して供給したとしてもノイ
ズの影響が極めて大きく、信頼性に問題がある。
さらにまたエンジン制御の場合補正データの書き
替え回数が非常に多いと思われる。例えば精度の
高い制御をしようとすると10年間で10万回以上の
書き替えの必要が生じうる。非常に多い書き替え
回数のためノイズの影響の大きいメモリを使用す
ることはエンジンの制御精度を低下させるのみな
らず、誤動作による事故にもつながる。
In addition to the drop in battery voltage mentioned above, noise such as ignition noise and, for example, mixing of radio noise if the car is equipped with a radio transmitting device, poses a major problem in engine control devices. Fluctuations occur not only due to the above-mentioned fluctuations in the power supply voltage but also due to this noise. When the above-mentioned noise has the opposite polarity to the power supply voltage, it is equivalent to the power supply voltage being lowered by the noise voltage. When the operating voltage is high, fluctuations due to noise become a major problem, and as a result, it becomes difficult to remove the influence of noise mixed into the power supply voltage. Non-volatile memory requires a very high operating voltage when writing correction data, and even if the battery voltage is boosted and supplied using a voltage booster circuit, the influence of noise is extremely large and there is a problem with reliability.
Furthermore, in the case of engine control, correction data is likely to be rewritten many times. For example, if you try to control with high precision, it may be necessary to rewrite more than 100,000 times in 10 years. Using a memory that is highly affected by noise due to its extremely large number of rewrites not only reduces engine control accuracy but also leads to accidents due to malfunction.

さらに非揮発性メモリは書き替え回数が多くな
ると信頼性が低下する問題がある。この点からも
エンジン制御用の補正データを非揮発性メモリに
記憶することは大きな問題を生じる。
Furthermore, non-volatile memory has a problem in that its reliability decreases as the number of rewrites increases. From this point of view as well, storing correction data for engine control in a non-volatile memory poses a major problem.

以上の問題点を解決するには動作電圧の低いメ
モリである揮発性メモリに修正値を保持すること
がエンジン制御においては絶対に必要となる。こ
こで揮発性メモリはその性質上供給電圧が遮断さ
れるとメモリ機能を失う。このためエンジンの停
止後も電圧を供給し続けることが必要である。
To solve the above problems, it is absolutely necessary for engine control to store correction values in a volatile memory, which is a memory with a low operating voltage. Due to its nature, volatile memory loses its memory function when the supply voltage is cut off. Therefore, it is necessary to continue supplying voltage even after the engine has stopped.

以上のように揮発性メモリを使用し、エンジン
の停止後も電圧を供給し続けた場合にはメモリは
ほぼ正しく動作し、高精度の制御を期待できる。
しかし上記の通りエンジン制御においてはバツテ
リ電圧が負荷変動により大きく変化する。さらに
多くのノイズが電源に混入する。このため揮発性
メモリの保持機能を維持できないことが起こりう
る。半導体の揮発性メモリはノイズにより極めて
短時間の供給電圧の異常低下でも保持機能を失
う。このことからメモリの記憶内容が仮に失なわ
れた場合でもある程度の制御が可能となることが
必要である。またエンジン制御においてはバツテ
リの寿命のためにバツテリを交換することが必要
であつたり、さらにまたスタータモータを長く回
し続けたためにバツテリの充電電荷が放出し、供
給電圧が異常に低下したりする。このためメモリ
の記憶内容が失なわれることが生じ、その対策が
必要である。
As described above, when volatile memory is used and voltage is continued to be supplied even after the engine has stopped, the memory operates almost correctly and highly accurate control can be expected.
However, as mentioned above, in engine control, battery voltage changes significantly due to load fluctuations. More noise gets mixed into the power supply. For this reason, the retention function of the volatile memory may not be maintained. Semiconductor volatile memory loses its retention function even if the supply voltage drops abnormally for an extremely short period of time due to noise. For this reason, it is necessary to be able to maintain some degree of control even if the contents of the memory are lost. Furthermore, in engine control, it is necessary to replace the battery due to its lifespan, and furthermore, as the starter motor continues to run for a long time, the charge stored in the battery is discharged, resulting in an abnormal drop in the supply voltage. As a result, the contents of the memory may be lost, and countermeasures are required.

〔発明の目的〕[Purpose of the invention]

本発明の目的は低い電圧でも十分に動作しうる
ように揮発性メモリに電圧を供給しつづけること
で修正値をエンジン停止後も保持し、仮に上記供
給電圧が遮断または異常に低下してもある程度そ
れに対応できるエンジン制御装置を提供すること
にある。
The purpose of the present invention is to maintain the corrected value even after the engine is stopped by continuing to supply voltage to the volatile memory so that it can operate satisfactorily even at a low voltage, and even if the supply voltage is cut off or abnormally drops, the correction value The object of the present invention is to provide an engine control device that can handle this.

〔発明の概要〕[Summary of the invention]

本発明の特徴は上述した学習制御方式におい
て、上述のプログラム制御方式を用いることによ
り制御精度を向上させると共に、上記エンジンの
経時変化あるいは燃料性状の変化に見合つた修正
道を書き換え可能な揮発性メモリに記憶し、エン
ジンの停止後も上記書き換え可能な揮発性メモリ
に記憶された上記修正値が消去されないように上
記書き換え可能な揮発性メモリに常に電圧を供給
し続けるようにし、さらに上記プログラムと上記
修正値のうち上記修正値のみを上記書き換え可能
な揮発性メモリに記憶し、残りの上記プログラム
を書き換え不可能な書き換え不可能な不揮発性メ
モリに記憶したことである。
The features of the present invention are that, in the learning control method described above, control accuracy is improved by using the program control method described above, and a volatile memory that can rewrite a correction path that corresponds to changes in the engine over time or changes in fuel properties is provided. The modified values stored in the rewritable volatile memory are stored in the rewritable volatile memory so that the corrected values stored in the rewritable volatile memory are not erased even after the engine is stopped, and voltage is constantly supplied to the rewritable volatile memory. Of the modified values, only the modified values are stored in the rewritable volatile memory, and the rest of the program is stored in the non-rewritable non-volatile memory.

上記修正値を揮発性メモリに記憶したことによ
り、メモリへの修正値の書き込み等の動作電圧が
低く、上述の通りバツテリ電圧の変動の影響やノ
イズの影響が非常に少なくなる。さらに修正値の
書き換え回数が多くても高い信頼性がえられる。
By storing the correction value in the volatile memory, the operating voltage for writing the correction value into the memory is low, and as described above, the influence of fluctuations in battery voltage and the influence of noise are greatly reduced. Furthermore, high reliability can be obtained even if the correction value is rewritten many times.

一方バツテリの取り外しやノイズまたはバツテ
リの異常放電により供給電圧が低下し、揮発性メ
モリの保持機能が失なわれた場合でも本発明では
制御プログラムを書き換え不可能な不揮発性メモ
リに記憶しているのでプログラムが失なわれるこ
とがない。このためエンジン制御はある程度の制
度が可能となり、このプログラムが正常であれば
再び学習して上記修正値を求めることが可能であ
る。従つて上記問題は解決できる。
On the other hand, even if the supply voltage drops due to removal of the battery, noise, or abnormal discharge of the battery, and the retention function of the volatile memory is lost, the present invention stores the control program in a non-volatile memory that cannot be rewritten. Programs are never lost. Therefore, engine control can be controlled to a certain degree, and if this program is normal, it is possible to learn again and obtain the above correction value. Therefore, the above problem can be solved.

書き換え不可能な不揮発性メモリは書き換えが
不可能な反面ノイズ等によつて記憶内容が変化す
ることがない。従つて制御のベースとなるプログ
ラムを上記ノイズに強い書き換え不可能な不揮発
性メモリに記憶し、修正値を電圧が供給しつづけ
される揮発性メモリに保持することでエンジンの
ノイズの問題を解決できることとなつた。
Non-volatile memory, which cannot be rewritten, cannot be rewritten, but its stored contents are not changed by noise or the like. Therefore, the problem of engine noise can be solved by storing the program that is the basis of control in the noise-resistant non-volatile memory that cannot be rewritten, and by retaining the correction values in a volatile memory that continues to be supplied with voltage. It became.

〔発明の実施例〕[Embodiments of the invention]

本発明の理解を助けるために、予めプログラム
できない不確定要因の例を第1図と第2図の特性
図を用いて説明する。
To help understand the present invention, examples of uncertain factors that cannot be programmed in advance will be explained using the characteristic diagrams of FIGS. 1 and 2.

加速時のノツクの発生状態は第1図に示すごと
く、燃料のオクタン価が一定であつても、エンジ
ンやエンジンが搭載される車の種類等によつて微
妙に変化する。このため、最適点火時期は上記要
因を定慮して決定することが必要である。しかし
これらの要因は不確定であり、これらの不確定要
因まで予めプログラムして記憶装置に記憶してお
くことは不可能である。
As shown in Figure 1, the occurrence of knock during acceleration varies slightly depending on the engine and the type of car in which the engine is installed, even if the octane number of the fuel is constant. Therefore, it is necessary to determine the optimal ignition timing by taking the above factors into consideration. However, these factors are uncertain, and it is impossible to program these uncertain factors in advance and store them in a storage device.

一方同一のエンジンであつても、燃料性状が異
なると第2図に示すごとく、ノツクを発生する点
火時期が異なる。従つてプログラム制御方式では
上記要因を考慮した制御は不可能である。このた
めプログラム中の1部例えば修正値を必要に応じ
て自己修正していくことが必要である。
On the other hand, even if the engine is the same, if the fuel properties differ, the ignition timing at which the knock occurs will differ, as shown in FIG. Therefore, in the program control method, control that takes the above factors into consideration is not possible. For this reason, it is necessary to self-modify a part of the program, such as a correction value, as necessary.

第3図は本発明の一実施例を示すもので、エン
ジン6に吸入される空気は空気流量計2で計量さ
れ、絞り弁3を通り、吸気マニホールド4内で燃
料噴射弁5からの燃料と混合され混合気を形成
し、エンジンの各燃焼室内に吸入される。燃焼後
は排気マニホールド7を経て、触媒コンバータ8
で未浄化ガスが浄化され、大気に放出される。こ
こで窒素酸化物(NOx)の浄化のため排気ガス
の1部を吸気マニホールド内に還流させる排気還
流弁9が設けられている。排気還流弁9はマイク
ロコンピユータ1で作られる制御信号に基づいて
駆動される。
FIG. 3 shows an embodiment of the present invention, in which the air taken into the engine 6 is measured by an air flow meter 2, passes through a throttle valve 3, and is mixed with fuel from a fuel injection valve 5 in an intake manifold 4. They are mixed to form an air-fuel mixture, which is then sucked into each combustion chamber of the engine. After combustion, it passes through the exhaust manifold 7 and then to the catalytic converter 8.
The unpurified gas is purified and released into the atmosphere. Here, an exhaust gas recirculation valve 9 is provided to recirculate a portion of the exhaust gas into the intake manifold in order to purify nitrogen oxides (NOx). The exhaust gas recirculation valve 9 is driven based on a control signal generated by the microcomputer 1.

大気圧センサ10や吸気温度センサ11、負圧
センサ13、冷却水温センサ14、エンジンの回
転速度センサ15等は空燃比や排気還流率の制御
値の補正に用いられる。ノツクセンサ19はエン
ジン6の各気筒もしくは代表的な気筒に装着さ
れ、エンジンの発生するノツク信号を検知する。
エンジン6の経時変化による圧縮圧力の変化ある
いはエンジン各部の摩耗による劣化により最適点
火時期が移行する。この移行はノツクセンサの出
力に基づき検出され、これに伴う修正データが記
憶装置18に記憶される。
The atmospheric pressure sensor 10, the intake air temperature sensor 11, the negative pressure sensor 13, the cooling water temperature sensor 14, the engine rotational speed sensor 15, and the like are used to correct control values for the air-fuel ratio and the exhaust gas recirculation rate. The knock sensor 19 is attached to each cylinder or a representative cylinder of the engine 6, and detects a knock signal generated by the engine.
The optimum ignition timing shifts due to changes in the compression pressure of the engine 6 over time or deterioration due to wear of various parts of the engine. This transition is detected based on the output of the knock sensor, and the corresponding correction data is stored in the storage device 18.

ノツクセンサ19は燃焼圧力を電気的、機械的
なものに置換して取り出す方法、エンジン気筒内
のノツク音で検出する方法などが考えられ、一般
にエンジンの最適燃焼はノツク(燃焼異常)が起
こる寸前を言い、空燃比、貯火時期および排気還
流率がノツク発生の大きな要因となる。同一空燃
比では点火時期を進めるほどノツクは起きやすく
なる。上記ノツク信号は増幅器20で増幅され、
バンドパスフイルタ21でノツク信号を取り出
し、ゲート22でノイズを除去し、マイクロコン
ピユータ1に出力信号を入力せしめ、エンジン6
がノツクを起こすぎりぎりの点火時期に設定すべ
く、マイクロコンピユータ1の演算部1bで記憶
装置18内の点火時期パターンに基づき点火時期
を演算し、出力部1cを経て点火時期16を制御
して、最適点火時期を定める。ここでノツクセン
サ19の出力に基づいて得られた最適点火時期は
マイクロコロン1の入、出力部を経て、記憶装置
18の点火時期パターンを修正、書き換えて新た
に得られた点火時期特性を記憶する。点火時期同
様、空燃比、排気還流率についても同様にノツク
判別器から得られた出力信号により、マイクロコ
ンピユータ1で修正、書き換えて新しい特性を記
憶し、この結果をもとにエンジンの燃焼は実行さ
れる。本実施例ではエンジンの燃焼状態を検出す
るセンサとしてノツクセンサを使用し、マイクロ
コンピユータはこのセンサの出力から、最適な空
燃比や点火時期および排気還流率を得るための演
算を常に行い、その結果により記憶内容の一部も
しくは全体を修正すべく再記憶する。このため、
フイードバツク制御にみられる制御系の遅れによ
る諸制御値の設定値からのずれ等は吸収できる。
また第5図に示すごとくある決まつた加速パター
ン、運転条件等についても、燃費、排気レベルの
低減を指向した空燃比、点火時期および排気還流
率のパターンをあらかじめ記憶しておけば、制御
系のおくれを吸収して応答性の高い燃焼制御が期
待できる。
The knock sensor 19 can be obtained by replacing the combustion pressure with electrical or mechanical pressure, or by detecting the knock sound in the engine cylinder.Generally speaking, optimum combustion in an engine is achieved by detecting the moment when a knock (combustion abnormality) is about to occur. In other words, the air-fuel ratio, storage timing, and exhaust recirculation rate are major factors in the occurrence of knocks. At the same air-fuel ratio, knocking becomes more likely to occur as the ignition timing is advanced. The knock signal is amplified by an amplifier 20,
The knock signal is taken out by the band pass filter 21, the noise is removed by the gate 22, the output signal is inputted to the microcomputer 1, and the output signal is inputted to the engine 6.
In order to set the ignition timing to just the point at which the engine knocks, the calculation unit 1b of the microcomputer 1 calculates the ignition timing based on the ignition timing pattern in the storage device 18, and controls the ignition timing 16 via the output unit 1c. Determine the optimal ignition timing. Here, the optimum ignition timing obtained based on the output of the knock sensor 19 passes through the input and output parts of the microcolon 1, and the ignition timing pattern in the storage device 18 is corrected and rewritten to store the newly obtained ignition timing characteristics. . Similar to the ignition timing, the air-fuel ratio and exhaust recirculation rate are also corrected and rewritten by the microcomputer 1 based on the output signal obtained from the knock discriminator, and the new characteristics are memorized, and engine combustion is executed based on these results. be done. In this embodiment, a knock sensor is used as a sensor to detect the combustion state of the engine, and the microcomputer constantly performs calculations to obtain the optimal air-fuel ratio, ignition timing, and exhaust recirculation rate from the output of this sensor, and uses the results to calculate the optimal air-fuel ratio, ignition timing, and exhaust recirculation rate. To re-memorize part or all of the memory contents in order to correct them. For this reason,
Deviations of various control values from set values due to delays in the control system that occur in feedback control can be absorbed.
Furthermore, as shown in Figure 5, for certain fixed acceleration patterns, operating conditions, etc., if patterns of air-fuel ratio, ignition timing, and exhaust recirculation rate aimed at reducing fuel consumption and exhaust levels are memorized in advance, the control system can Highly responsive combustion control can be expected by absorbing the lag.

第4図は実施例の一例で、マイクロコンピユー
タ1は記憶装置18を持つ。空気流量計2で計量
された空気は絞り弁3を通過し、エンジン6に吸
入される。燃料は空気流量計2または吸入負圧セ
ンサ13または絞り弁開度センサ12および回転
センサ15の出力信号によつて決定され、吸気温
度センサ11、冷却水温度センサ14、排気温度
センサ17の出力により補正され、噴射弁5から
噴出される。また排気還流ガスは各センサで検出
した運転条件に見合つて、マイクロコンピユータ
1により排気還流弁9の開弁量を決定し、吸気マ
ニホルド4に還流される。またエンジンの経時変
化、エンジンの周囲条件変化などの条件を収集し
たマイクロコンピユータ1の演算部と記憶装置部
により、当該運転状態に応じ最適な点火時期を選
定するわけだが、前述の燃料流量、排気還流率の
値をも考慮して点火時期を決定し、点火装置16
に出力信号を送る。エンジンのノツク度で点火時
期をフイードバツク制御するわけだが、ノツクの
判別の際に点火時期のみを微小範囲で変化させ空
燃比、排気還流率は変化させない方式と、点火時
期、排気還流率を変化させず、空燃比を微小範囲
で変化させる方式、および個々の制御値を各各微
小変化させて、最適燃料を得る方式が考えられ
る。エンジンの燃焼に際し、ノツク発生を検知す
ることによるフイードバツク制御ではノツク発生
要因とは点火時期の影響が最も大きいので、点火
時期をある微小範囲で振動させる方式が良い。
FIG. 4 shows an example of an embodiment, in which a microcomputer 1 has a storage device 18. The air measured by the air flow meter 2 passes through the throttle valve 3 and is taken into the engine 6. The fuel is determined by the output signals of the air flow meter 2, the suction negative pressure sensor 13, the throttle valve opening sensor 12, and the rotation sensor 15, and the output of the intake air temperature sensor 11, cooling water temperature sensor 14, and exhaust temperature sensor 17. It is corrected and injected from the injection valve 5. Further, the exhaust gas recirculation gas is recirculated to the intake manifold 4 by determining the opening amount of the exhaust gas recirculation valve 9 by the microcomputer 1 in accordance with the operating conditions detected by each sensor. In addition, the optimum ignition timing is selected according to the operating condition by the calculation section and storage section of the microcomputer 1, which collects conditions such as changes in the engine over time and changes in the surrounding conditions of the engine. The ignition timing is determined by also considering the value of the reflux rate, and the ignition device 16
send an output signal to. The ignition timing is controlled by feedback based on the degree of engine knock, but when detecting knock, only the ignition timing is changed within a minute range, but the air-fuel ratio and exhaust recirculation rate are not changed. First, a method of changing the air-fuel ratio in a minute range, and a method of obtaining the optimum fuel by making small changes in each individual control value are conceivable. In feedback control by detecting the occurrence of knocks during engine combustion, the ignition timing has the greatest influence on the cause of knocks, so a method that vibrates the ignition timing within a certain minute range is preferable.

ここで前記のように制御三成分を各々変動させ
る方式は、制御対象が多いことによる制御系の安
定度の低下が生じあまり得策ではなく、以下の方
式が良い。すなわち、燃料経済性、排気レベルの
低減のための最適な空燃比(例えば/F15)の設
定をあらかじめマイクロコンピユータ1内の記憶
回路18内に運転パターンに沿つて記憶せしめ、
種々の燃焼変動に対して補正すればよい。すなわ
ちエンジンが吸入した混合気の空燃比を排気管内
の余剰酸素濃度、排気管内の残留イオン濃度もし
くは燃焼室内の火炎のイオン濃度で検出し、これ
らの信号をマイクロコンピユータ1に入力せしめ
て演算し、燃料噴射量をコントロールして空燃比
を選定する。このようにすれば混合気の空燃比
(A/F)は15付近に一定保持され、点火時期、
排気還流率を最適値にするための時間遅れは短縮
する。
Here, the method of varying each of the three control components as described above is not a good idea because the stability of the control system decreases due to the large number of objects to be controlled, so the following method is preferable. That is, the optimum air-fuel ratio (for example /F15) setting for fuel economy and reduction of exhaust level is stored in advance in the memory circuit 18 in the microcomputer 1 according to the driving pattern,
It is sufficient to correct for various combustion fluctuations. That is, the air-fuel ratio of the air-fuel mixture taken in by the engine is detected by the excess oxygen concentration in the exhaust pipe, the residual ion concentration in the exhaust pipe, or the ion concentration of the flame in the combustion chamber, and these signals are input to the microcomputer 1 and calculated. The air-fuel ratio is selected by controlling the fuel injection amount. In this way, the air-fuel ratio (A/F) of the mixture will be maintained constant around 15, and the ignition timing,
The time delay for setting the exhaust gas recirculation rate to the optimum value is shortened.

ここでマイクロコンピユータ1内の記憶装置1
8内の記憶内容の修正、書き替え手段について説
明する。記憶装置は書き換え不可能な不揮発性メ
モリと書き換え可能な揮発性メモリから成り、こ
の揮発性メモリにはエンジンの燃焼を最適に修正
する修正値が記憶されていて、エンジンの始動後
においてこの記憶内容はマイクロコンピユータ1
により自己修正される。これにより最新の燃焼制
御を行なうに必要な修正値が得られ、常にそのエ
ンジンの状態、例えば劣化度や燃料性状(本明細
書では代表して劣化と記す。)に見合つた燃焼制
御が実現できる。
Here, storage device 1 in microcomputer 1
The means for modifying and rewriting the stored contents in 8 will be explained. The storage device consists of a non-volatile memory that cannot be rewritten and a volatile memory that can be rewritten. This volatile memory stores correction values for optimally modifying engine combustion, and the stored contents are stored after the engine is started. is microcomputer 1
is self-corrected by As a result, the corrected values necessary for performing the latest combustion control can be obtained, and combustion control that is always appropriate for the state of the engine, such as the degree of deterioration and fuel properties (herein referred to as "deterioration"), can be realized. .

上記書き換え不可能な不揮発性メモリにはエン
ジンの劣化の修正に関係しない内容を記憶せし
め、エンジンの劣化に直接関係あるデータのみを
すなわちエンジンの劣化の修正に関する修正値の
みを揮発性メモリに記憶する。
The non-rewritable non-volatile memory stores contents unrelated to the correction of engine deterioration, and only data directly related to engine deterioration, that is, only correction values related to engine deterioration correction, is stored in the volatile memory. .

上記書き換え可能な揮発性メモリの記憶内容の
消却を防止するため上記メモリに補助電源を設け
たりあるいはエンジンの停止後も上記メモリのみ
を電源に接続しつづけ、電圧の供給をつづける。
In order to prevent the memory contents of the rewritable volatile memory from being erased, the memory is provided with an auxiliary power source, or even after the engine is stopped, only the memory is connected to the power source to continue supplying voltage.

以上の構成ではエンジンのプログラム制御にお
いてエンジンの劣化の修正値以外の制御のための
プログラムは書き換え不可能な不揮発性メモリに
固定されることとなり、仮に修正値が失なわれて
もプログラムは正常であり、再び学習して修正値
を求めることができる。
In the above configuration, the program for engine program control other than engine deterioration correction values is fixed in non-volatile memory that cannot be rewritten, and even if the correction values are lost, the program will remain normal. Yes, it is possible to learn again and find the corrected value.

〔発明の効果〕〔Effect of the invention〕

本発明によればエンジン制御のための記憶内容
のうち、すなわち、燃料供給量の制御や点火時期
等の制御のうち、エンジンの劣化または燃料性状
を修正する修正値は揮発性メモリに記憶し、プロ
グラムは書き換え不可能な不揮発性メモリに固定
しているので仮に修正値が失なわれてもプログラ
ムが正常であるため再び学習して修正値を求める
ことができる。さらに修正値を動作電圧の低い揮
発性メモリに記憶しているのでバツテリ電圧の変
動やノイズの影響を受けにくい。さらに書き込み
スピードが早くエンジン制御の如く運転状態が短
時間に色々と変化する場合にでも十分に修正値の
学習が可能である。
According to the present invention, among the stored contents for engine control, that is, among the control of fuel supply amount and control of ignition timing, correction values for correcting engine deterioration or fuel properties are stored in a volatile memory, Since the program is fixed in a non-volatile memory that cannot be rewritten, even if the corrected value is lost, the program is normal and can be learned again to obtain the corrected value. Furthermore, since the correction value is stored in a volatile memory with a low operating voltage, it is less susceptible to battery voltage fluctuations and noise. Furthermore, the writing speed is fast, and correction values can be learned sufficiently even when operating conditions change variously in a short period of time, such as during engine control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガソリンのオクタン価、車種に対する
ノツク域の違いを示したもの、第2図はガソリン
の性状をパラメタとした点火時期と車トルクの関
係を示したものである。第3図は本発明による燃
焼制御装置のブロツクダイヤグラム、第4図は具
体的実施例、第5図は本発明の経過時間に対する
空燃比変化を示す特性図である。 1…マイクロコン、6…エンジン、9…排気還
流弁、16…点火装置、19…ノツクセンサ。
Figure 1 shows the difference in the knock range depending on the octane number of gasoline and the vehicle type, and Figure 2 shows the relationship between ignition timing and vehicle torque using the properties of gasoline as parameters. FIG. 3 is a block diagram of a combustion control device according to the present invention, FIG. 4 is a concrete example, and FIG. 5 is a characteristic diagram showing changes in air-fuel ratio with respect to elapsed time according to the present invention. DESCRIPTION OF SYMBOLS 1...Microcontroller, 6...Engine, 9...Exhaust recirculation valve, 16...Ignition device, 19...Knok sensor.

Claims (1)

【特許請求の範囲】 1 エンジンの運転状態を検出するセンサと、上
記セサの出力とエンジンの経時変化あるいは燃料
性状の変化に見合つた修正値とから記憶装置に記
憶されたプログラムに沿つて制御値を演算する演
算部と、上記演算部の演算値に基づきエンジンを
制御する制御手段とを有すると共に、上記エンジ
ンの経時変化あるいは燃料性状の変化に見合つた
修正道を上記演算部はエンジンの制御結果に基づ
き自己修正するものにおいて、上記記憶装置とし
て書き換え不可能な不揮発性メモリと書き換え可
能な揮発性メモリとを有し、上記プログラムと上
記エンジンの経時変化あるいは燃料性状の変化に
見合つた修正値のうち上記修正値のみを上記書き
換え可能な揮発性メモリに記憶し、のこりを上記
書き換え不可能な不揮発性メモリに記憶し、エン
ジンの停止後も上記書き換え可能な揮発性メモリ
に記憶された上記修正値が消去されないように上
記書き換え可能な揮発性メモリに常に電圧を供給
し続けるようにしたことを特徴とするエンジン制
御装置。 2 エンジンの運転状態を検出するセンサと、エ
ンジンの経時変化あるいは燃料性状の変化に見合
つた修正値とプログラムを保持する記憶装置と、
上記センサの出力と上記記憶装置に保持された修
正値とを用い上記プログラムに従つて燃料供給量
と点火時期を演算する演算部と、上記演算部の演
算結果に基づいてエンジンへの燃料供給量と点火
時期を制御する制御手段とを有すると共に、上記
修正値を上記演算部はエンジンの制御結果に基づ
き自己修正するものにおいて、上記記憶装置とし
た書き換え不可能な不揮発性メモリと書き換え可
能な揮発性メモリとを有し、上記プログラムと上
記エンジンの経時変化あるいは燃料性状の変化に
見合つた修正道のうち上記修正値を上記書き換え
可能な揮発性メモリに記憶し、のこりを上記書き
換え不可能な不揮発性メモリに記憶し、エンジン
の停止後も上記書き換え可能な揮発性メモリに記
憶された上記修正値が消去されないように上記書
き換え可能な揮発性メモリに常に電圧を供給し続
けるようにし、さらにエンジンの制御結果を検知
するセンサとしてノツクセンサを設け、燃料供給
量制御において空燃比を一定に制御しこの空燃比
一定制御のもとで点火時期の修正値を上記ノツク
センサ出力に基づき自己修正するようにしたこと
を特徴とするエンジン制御装置。
[Claims] 1. A control value is determined according to a program stored in a storage device based on a sensor that detects the operating state of the engine, the output of the sensor, and a correction value commensurate with changes in the engine over time or changes in fuel properties. and a control means for controlling the engine based on the computed value of the computing section, and the computing section calculates the engine control result to determine a corrective path that is commensurate with changes in the engine over time or changes in fuel properties. The self-correcting device has a non-volatile memory that cannot be rewritten and a volatile memory that can be rewritten as the storage device, and is capable of modifying correction values commensurate with changes in the program and the engine over time or changes in fuel properties. Of these, only the modified value is stored in the rewritable volatile memory, the rest is stored in the non-rewritable non-volatile memory, and the modified value is stored in the rewritable volatile memory even after the engine is stopped. An engine control device characterized in that voltage is constantly supplied to the rewritable volatile memory so that the rewritable volatile memory is not erased. 2. A sensor that detects the operating state of the engine, and a storage device that holds correction values and programs that are appropriate for changes in the engine over time or changes in fuel properties;
a calculation unit that calculates the fuel supply amount and ignition timing according to the program using the output of the sensor and the correction value stored in the storage device; and a calculation unit that calculates the fuel supply amount and ignition timing to the engine based on the calculation results of the calculation unit. and a control means for controlling ignition timing, and the arithmetic unit self-corrects the correction value based on the engine control result, wherein the storage device is a non-rewritable nonvolatile memory and a rewritable volatile memory. It has a rewritable volatile memory that stores the program and the correction values that correspond to changes in the engine over time or changes in fuel properties, and stores the rest in the rewritable volatile memory. The modification value stored in the rewritable volatile memory is stored in the rewritable volatile memory, and voltage is constantly supplied to the rewritable volatile memory so that the modified value stored in the rewritable volatile memory is not erased even after the engine is stopped. A knock sensor is provided as a sensor for detecting the control result, the air-fuel ratio is controlled to be constant during fuel supply amount control, and the ignition timing correction value is self-corrected based on the knock sensor output under this constant air-fuel ratio control. An engine control device featuring:
JP6471277A 1977-06-03 1977-06-03 Combustion control system Granted JPS54112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6471277A JPS54112A (en) 1977-06-03 1977-06-03 Combustion control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6471277A JPS54112A (en) 1977-06-03 1977-06-03 Combustion control system

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP18429485A Division JPS61171863A (en) 1985-08-23 1985-08-23 Engine control device
JP60184295A Division JPS61171864A (en) 1985-08-23 1985-08-23 Engine control device

Publications (2)

Publication Number Publication Date
JPS54112A JPS54112A (en) 1979-01-05
JPS6143536B2 true JPS6143536B2 (en) 1986-09-27

Family

ID=13266029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6471277A Granted JPS54112A (en) 1977-06-03 1977-06-03 Combustion control system

Country Status (1)

Country Link
JP (1) JPS54112A (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112A (en) * 1977-06-03 1979-01-05 Hitachi Ltd Combustion control system
JPS5535136A (en) * 1978-09-01 1980-03-12 Nippon Soken Inc Ignition timing control system for internal combustion engine
JPS5578168A (en) * 1978-12-07 1980-06-12 Nippon Soken Inc Feedback type ignition time control device for internal combustion engine
JPS55134728A (en) * 1979-04-04 1980-10-20 Nippon Denso Co Ltd Method for protecting exhaust-gas purifying apparatus from overheat
JPS55138104A (en) * 1979-04-13 1980-10-28 Hitachi Ltd Engine controller
DE2929907C2 (en) * 1979-07-24 1987-05-14 Robert Bosch Gmbh, 7000 Stuttgart Control device for mixture-intake spark-ignition internal combustion engines
JPS5623566A (en) * 1979-08-01 1981-03-05 Nippon Denso Co Ltd Method of controlling ignition time
JPS56138438A (en) * 1980-03-28 1981-10-29 Nippon Denso Co Ltd Control method of air-fuel ratio
JPS56138435A (en) * 1980-03-31 1981-10-29 Nissan Motor Co Ltd Knocking action controller for engine mounted with turbosupercharger
JPS6143961Y2 (en) * 1980-05-30 1986-12-11
JPS57143386U (en) * 1981-03-04 1982-09-08
JPS57157039A (en) * 1981-03-20 1982-09-28 Daihatsu Motor Co Ltd System for restraining knocking in internal-cmbustion engine
JPS57169610A (en) * 1981-04-13 1982-10-19 Hitachi Ltd Fault detector for crank angle sensor
JPS57193740A (en) * 1981-05-22 1982-11-29 Nissan Motor Co Ltd Combustion controller of internal combustion engine
JPS57206231A (en) * 1981-06-12 1982-12-17 Hitachi Ltd Power source for automotive electronic device
JPS5828559A (en) * 1981-07-23 1983-02-19 Toyota Motor Corp Method of controlling air fuel ratio of spark-ignited engine
JPS5835269A (en) * 1981-08-25 1983-03-01 Mazda Motor Corp Knocking control device of engine
JPS58170856A (en) * 1982-03-31 1983-10-07 Mitsubishi Electric Corp Knocking control device for internal-combustion engine
JPS5939971A (en) * 1982-08-27 1984-03-05 Mazda Motor Corp Knocking controller for engine
JPS59120734A (en) * 1982-12-27 1984-07-12 Mikuni Kogyo Co Ltd Electronically controlled fuel injection device
JPS59194049A (en) * 1983-04-20 1984-11-02 Mazda Motor Corp Fuel control device for engine
JPS6062644A (en) * 1983-09-16 1985-04-10 Mazda Motor Corp Knocking control device for engine
JPS60147552A (en) * 1984-01-11 1985-08-03 Nippon Denso Co Ltd Vehicle control apparatus having self-diagnosing function
JPS60195360A (en) * 1984-03-15 1985-10-03 Mitsubishi Electric Corp Knocking restraining device in internal-combustion engine
JP2544334B2 (en) * 1985-07-10 1996-10-16 株式会社日立製作所 Idling speed control method
JP2556778B2 (en) * 1991-07-18 1996-11-20 三菱自動車工業株式会社 Engine with fuel usage discriminator
US8409246B2 (en) 2010-06-02 2013-04-02 Covidien Lp Apparatus for performing an electrosurgical procedure
US8585736B2 (en) 2010-06-02 2013-11-19 Covidien Lp Apparatus for performing an electrosurgical procedure
US9265569B2 (en) 2012-03-29 2016-02-23 Covidien Lp Method of manufacturing an electrosurgical forceps
US10610289B2 (en) 2013-09-25 2020-04-07 Covidien Lp Devices, systems, and methods for grasping, treating, and dividing tissue

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944957A (en) * 1972-09-06 1974-04-27
JPS5013732A (en) * 1973-04-25 1975-02-13
JPS50100432A (en) * 1974-01-10 1975-08-09
JPS516441A (en) * 1974-07-04 1976-01-20 Nippon Denso Co
JPS5177365A (en) * 1974-12-27 1976-07-05 Suwa Seikosha Kk
JPS51106826A (en) * 1975-03-17 1976-09-22 Nissan Motor Enjinno nenryoseigyosochi
US4009699A (en) * 1976-01-19 1977-03-01 General Motors Corporation Digital ignition spark timing angle control with read only memory
JPS54112A (en) * 1977-06-03 1979-01-05 Hitachi Ltd Combustion control system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944957A (en) * 1972-09-06 1974-04-27
JPS5013732A (en) * 1973-04-25 1975-02-13
JPS50100432A (en) * 1974-01-10 1975-08-09
JPS516441A (en) * 1974-07-04 1976-01-20 Nippon Denso Co
JPS5177365A (en) * 1974-12-27 1976-07-05 Suwa Seikosha Kk
JPS51106826A (en) * 1975-03-17 1976-09-22 Nissan Motor Enjinno nenryoseigyosochi
US4009699A (en) * 1976-01-19 1977-03-01 General Motors Corporation Digital ignition spark timing angle control with read only memory
JPS54112A (en) * 1977-06-03 1979-01-05 Hitachi Ltd Combustion control system

Also Published As

Publication number Publication date
JPS54112A (en) 1979-01-05

Similar Documents

Publication Publication Date Title
JPS6143536B2 (en)
US4348727A (en) Air-fuel ratio control apparatus
US4440131A (en) Regulating device for a fuel metering system
US4166437A (en) Method and apparatus for controlling the operating parameters of an internal combustion engine
US4430976A (en) Method for controlling air/fuel ratio in internal combustion engines
JP2006118505A (en) Method for operating internal combustion engine and device for performing the method
US4625699A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
JPS627374B2 (en)
US4911129A (en) Air/fuel mixture ratio control system in internal combustion engine with _engine operation range dependent _optimum correction coefficient learning feature
US4889099A (en) Air/fuel mixture ratio control system for internal combustion engine with feature of learning correction coefficient including altitude dependent factor
US4452211A (en) Air-fuel ratio control apparatus
US5043901A (en) Air-fuel ratio controller
US10612484B2 (en) Control apparatus for engine
JPS6232338B2 (en)
JPS61171864A (en) Engine control device
JPH0437260B2 (en)
JPS61171863A (en) Engine control device
JPH0327745B2 (en)
JPS6233092Y2 (en)
JPS6255440A (en) Engine control device
JPS63105264A (en) Ignition timing control device for electronic controlled fuel injection type internal combustion engine
JP2005105978A (en) Controller for internal combustion engine
JPS60119344A (en) Control device of internal-combustion engine
JPH041182B2 (en)
JP2008261254A (en) Control device of internal combustion engine