JPS6142234A - Solar battery shunt regulator - Google Patents

Solar battery shunt regulator

Info

Publication number
JPS6142234A
JPS6142234A JP16192584A JP16192584A JPS6142234A JP S6142234 A JPS6142234 A JP S6142234A JP 16192584 A JP16192584 A JP 16192584A JP 16192584 A JP16192584 A JP 16192584A JP S6142234 A JPS6142234 A JP S6142234A
Authority
JP
Japan
Prior art keywords
voltage
transistor
charging
storage battery
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16192584A
Other languages
Japanese (ja)
Inventor
勇自 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeni Lite Buoy Co Ltd
Original Assignee
Zeni Lite Buoy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeni Lite Buoy Co Ltd filed Critical Zeni Lite Buoy Co Ltd
Priority to JP16192584A priority Critical patent/JPS6142234A/en
Publication of JPS6142234A publication Critical patent/JPS6142234A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Photovoltaic Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 太陽電池を電源として使用する場合、例えば、灯浮標の
ように発電中の昼間は電力を必要とせず、発電しない夜
間に電力を消費するものでは、一般に逆流防止ダイオー
ドを介して蓄電池を充電し、蓄電池から昼夜を問わず、
安定した直流電力を点滅器等の負荷に供給しているつし
かしこのような構成では、蓄電池が・過充電ぎみとなり
、電解液の蒸発や破損を引き起す欠点がある。このため
、第1図のように蓄電池を充電制御器および逆流防止用
ダイオード(D)を介して充電するので、充電制御器は
低損失で作動する必要がある。
[Detailed Description of the Invention] When solar cells are used as a power source, for example, in devices such as light buoys that do not require electricity during the daytime and consume electricity at night when they are not generating electricity, a backflow prevention diode is generally installed. charge the storage battery through the
However, this configuration, which supplies stable DC power to a load such as a flasher, has the drawback that the storage battery tends to be overcharged, causing evaporation and damage of the electrolyte. For this reason, since the storage battery is charged via the charging controller and the backflow prevention diode (D) as shown in FIG. 1, the charging controller needs to operate with low loss.

充電制御器には従来、第2図のシリーズレギュレータと
、第3図に示オンヤントレギュレータとがある。第2図
のシリーズレギュレータは誤差増幅器(OP)で出力電
圧■0と基準電圧)との差を増幅方向に駆動し、トラン
ジスタ(TrX)電圧降下轟を下げ、出力電圧が高い時
は、逆に直列トランジスタσrり駆動を減らして電圧降
下Vcを大きくして出力電圧が一定となるよう作動する
。しかし、入力端子が低下して出力設定電圧に近くなる
と制御不能となり、出力電圧も低下しはじめ、り降電読
電圧からほぼ一定の数ボルトの電圧降下→を差し引いた
値が出力電力電圧となる。第2図のシリーズレギュレー
タ(こおいて、トランジスタ(Tr)での$i費電力P
cは次式で表される。
Charge controllers conventionally include a series regulator shown in FIG. 2 and an onyan regulator shown in FIG. 3. The series regulator in Figure 2 uses an error amplifier (OP) to drive the difference between the output voltage (0 and the reference voltage) in the direction of amplification, lowers the transistor (TrX) voltage drop, and vice versa when the output voltage is high. It operates so that the output voltage becomes constant by reducing the drive of the series transistor σr and increasing the voltage drop Vc. However, when the input terminal voltage drops and approaches the output setting voltage, control becomes uncontrollable and the output voltage also begins to drop, and the output power voltage is the value obtained by subtracting an almost constant voltage drop of several volts from the reading voltage. . In the series regulator (here, transistor (Tr) in Figure 2, $i cost power P
c is expressed by the following formula.

pc= (Vi−Vo) x Io=Vcx Io  
・−−−−−(1)■1   入力端子 Vo   出力電圧 Io、  出力電流 VCトランジスタ(Tr)′C−の電圧降下シリーズレ
ギュレータに於て、終段トランジスタは所要の能力を得
るためダーリノトン接続されている事が多く、電圧降下
Vcは最低でも2〜3■となる。
pc= (Vi-Vo) x Io=Vcx Io
----(1)■1 Input terminal Vo Output voltage Io, output current VC Transistor (Tr) 'C- Voltage drop In a series regulator, the final stage transistor is connected in a Darinoton to obtain the required performance. In many cases, the voltage drop Vc is at least 2 to 3 cm.

次に、蓄電池は残存容量が殆ど皆無の時、初期、こ大電
流が流れ、充電が進むと除々に充電電流は減少し、電池
電圧は上昇を続ける。充電の末期には電流はかな)少な
くなるが電池電圧は急激に上昇し、さらに充電を継続す
ると電池は過充電となりついには電池が破損する。従っ
て適当な充電時間が経過したとき充電を停止させるか、
充電電圧が所定値以上;こならないよう、入力電圧を安
定化させる必要があり、蓄電池の充電は一般に定電圧回
路を介して行なオ)れる。
Next, when the storage battery has almost no remaining capacity, a large current flows initially, and as charging progresses, the charging current gradually decreases and the battery voltage continues to rise. At the end of charging, the current decreases (kana), but the battery voltage rises rapidly, and if charging continues, the battery will become overcharged and eventually break. Therefore, either stop charging when a suitable charging time has elapsed, or
It is necessary to stabilize the input voltage so that the charging voltage does not exceed a predetermined value, and charging of the storage battery is generally performed via a constant voltage circuit.

さらに太陽電池の発電得性は第4図の如く、負荷が重い
ときは定電長持性を示し、負荷が軽くなるに従い出力電
圧も上昇し、無負荷時は入射兄事に無関係に開放電圧V
opに達する。開放?!!汁Vopは1−2 V系太陽
電池では約22Vにもなり、何らかの定電圧手段を構じ
なければ、蓄電池か破損する事になる。12V系太陽電
池では蓄電池の最適充電々圧付近で最大の出力となるよ
う構成されている。
Furthermore, as shown in Figure 4, the power generation performance of solar cells shows constant voltage longevity when the load is heavy, and as the load becomes lighter, the output voltage increases, and when there is no load, the open circuit voltage V
Reach op. Open? ! ! The voltage Vop is about 22V in a 1-2V solar cell, and unless some kind of constant voltage means is provided, the battery will be damaged. A 12V solar cell is configured to have maximum output near the optimum charging pressure of the storage battery.

太陽電池を電源としたシリーズレギュレータでは、充電
の初期において大電流が流れ、太陽2!!池の出力電圧
も低下し、(])式の電圧降下Vcも最少端迄下がるが
、それでもかなりの電力がl・う/)スタで消費される
。充電の末期には充+1[施は減るが、逆に入力電圧が
開放電圧附近迄上昇するため、やはり大きな電力がトラ
ンジスタで消費される。
In a series regulator powered by a solar cell, a large current flows during the initial stage of charging, and Taiyo 2! ! Although the output voltage of the battery also decreases and the voltage drop Vc in equation ( ) also decreases to the minimum, a considerable amount of power is still consumed in the star. At the end of charging, the charge +1 decreases, but conversely, the input voltage rises to near the open-circuit voltage, so a large amount of power is still consumed by the transistor.

これらトランジスタで消費される電力は、発電エネルギ
ーの浪費であり、これに耐えるためトランジスタも大型
のものを要し、また放熱も充分考慮しな(ブればならず
、不経済である。
The power consumed by these transistors is a waste of generated energy, and the transistors must be large in order to withstand this, and sufficient consideration must be given to heat dissipation, which is uneconomical.

次に第3図のノヤノlレギュレータは誤差増幅器(OP
)で出力電圧が基準電圧を上廻った場合、その差を増幅
してトランジスタ(Tr)を駆動して短絡するもので、
抵抗Rの電圧降Fを利用し出力電圧を安定化したもので
あるが、これも抵抗Rでかなりのエネルギーの浪費とな
る。
Next, the Noyanol regulator in Figure 3 is an error amplifier (OP
), when the output voltage exceeds the reference voltage, the difference is amplified and the transistor (Tr) is driven to short-circuit it.
Although the output voltage is stabilized by using the voltage drop F of the resistor R, the resistor R also wastes a considerable amount of energy.

これらの回路方式では、変換効率はせいぜい50%程度
しかない。
In these circuit systems, the conversion efficiency is only about 50% at most.

本願発明は太陽1を池の特性を活用し、変換効率を飛躍
的に向上した太陽電池用ツヤノドレギュレータに関する
The present invention relates to a gloss regulator for solar cells that utilizes the characteristics of solar cells and dramatically improves conversion efficiency.

ケ 第*回は本発明のツヤノドレギュレータで、誤差増幅器
(OP)の非反転入力端子と入力端子tllおよび共通
端子(2)の間iこそれぞれ直列コイル(L)およびコ
ンデンサ(C)を挿入したものである。
Part 1 is the gloss regulator of the present invention, in which a series coil (L) and a capacitor (C) are inserted between the non-inverting input terminal of the error amplifier (OP), the input terminal tll, and the common terminal (2), respectively. This is what I did.

この構成ずこよれば、電池電圧が充電不足の時はトラン
ジスタ(Tr)はOFFで、発電エネルギーは殆ど蓄電
池を充電するために使われ、直列コイル(I−)の極微
な直流抵抗による損失しかなく、まtコ蓄電池が満充電
となった時は、太陽電池の出力を短絡することになるの
で、トランジスタ(Tr)に流れる電流は太陽電池の短
絡電流が流れるが、トランジスタの両端電圧は゛極めて
小さく、従ってコレクタ損失も小さく、比較的小型のト
う/ジスタで充分に耐え、放熱も容易で極めて経済的と
なる。′&電池が満充電でない時の変換効率は90%程
度にも達し、この分jごけ太陽電池も小型で済むことと
なる。
According to this configuration, when the battery voltage is insufficiently charged, the transistor (Tr) is turned off, and most of the generated energy is used to charge the storage battery, and the only loss is due to the minute DC resistance of the series coil (I-). When the storage battery is fully charged, the output of the solar cell is short-circuited, so the current flowing through the transistor (Tr) is the short-circuit current of the solar cell, but the voltage across the transistor is extremely low. It is small, and therefore the collector loss is small, and a relatively small transistor/sistor can withstand it sufficiently, and heat dissipation is easy, making it extremely economical. When the battery is not fully charged, the conversion efficiency reaches about 90%, which means that the solar cell can also be made smaller.

この方式で、蓄電池電圧が一定値(基tP璽圧Es)に
達すると、先に述べたとおりトランジスタ(Tr)がO
Nとなり、蓄電池電圧は直らに低下し、このためトラン
ジスタは再びOFFとなり充電を開始し、再度一定値に
達すると又トランジスタTrはONとなる動作を比較的
高速で繰り返す。これをインダクタンスしと蓄電池のキ
ヤパシタンスで平滑するため、出力電圧は直流電圧とな
る。従って図のように蓄電池のかわりにコンデンサ(C
)を出力端子(3)に接続すれば、電池がなくとも出力
電圧は直流の一定値となり、製作時の電圧設定も従来型
式のノヤント式の充電制御器に比へはるかに容易となり
、蓄電池の最適充電圧に精密に出力電圧を設定できるの
で、蓄電池を傷つけることもない。
In this method, when the storage battery voltage reaches a certain value (base tP voltage Es), the transistor (Tr) turns O
N, the storage battery voltage drops immediately, so the transistor turns off again to start charging, and when it reaches a certain value again, the transistor Tr turns on again, repeating this operation at a relatively high speed. Since this is smoothed by inductance and capacitance of the storage battery, the output voltage becomes a DC voltage. Therefore, as shown in the figure, instead of a storage battery, a capacitor (C
) to the output terminal (3), the output voltage will be a constant DC value even without a battery, and the voltage setting at the time of manufacture will be much easier compared to the conventional Noyant type charge controller, and the storage battery Since the output voltage can be precisely set to the optimal charging pressure, there will be no damage to the storage battery.

4、面の簡単な説明 第1図は太Aj311E池の電源装置のブロック図、第
2図および第3図はそれぞれ従来例のツリーズレT「・
・・・トランジスタ、OP・・・・誤差増幅器、&・・
・・定電圧発生器、L・・・・コイル、C・・・・コン
デノサ、R・・・・抵抗、1・・・・入力端子、2・・
・・共通端子、3・・・・出力端子、 特許出願人  株式会社ゼニライトブイ条 20 毛3図 尺
4. Brief explanation of aspects Fig. 1 is a block diagram of the power supply device of the Tai Aj311E pond, Figs.
...Transistor, OP...Error amplifier, &...
... Constant voltage generator, L ... Coil, C ... Capacitor, R ... Resistor, 1 ... Input terminal, 2 ...
...Common terminal, 3...Output terminal, Patent applicant: Zeni Light Buoy Co., Ltd. 20 Hair 3 scale

Claims (1)

【特許請求の範囲】[Claims]  比較器の非反転入力端子を直列コイルを介して入力端
子(1)に接続するとともに出力端子(3)に接続しか
つコンデンサを介して共通端子(2)に接続し、反転入
力端子を定電圧発生器を介して共通端子に接続し、比較
器の出力端子をトランジスタのベースに接続し、コレク
タを入力端子(1)に、エミッタを共通端子(2)に接
続したことを特徴とする太陽電池用シヤントレギュレー
タ。
The non-inverting input terminal of the comparator is connected to the input terminal (1) via a series coil, the output terminal (3) and the common terminal (2) via a capacitor, and the inverting input terminal is connected to a constant voltage. A solar cell characterized in that a generator is connected to a common terminal, an output terminal of a comparator is connected to a base of a transistor, a collector is connected to an input terminal (1), and an emitter is connected to a common terminal (2). shunt regulator.
JP16192584A 1984-07-31 1984-07-31 Solar battery shunt regulator Pending JPS6142234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16192584A JPS6142234A (en) 1984-07-31 1984-07-31 Solar battery shunt regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16192584A JPS6142234A (en) 1984-07-31 1984-07-31 Solar battery shunt regulator

Publications (1)

Publication Number Publication Date
JPS6142234A true JPS6142234A (en) 1986-02-28

Family

ID=15744637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16192584A Pending JPS6142234A (en) 1984-07-31 1984-07-31 Solar battery shunt regulator

Country Status (1)

Country Link
JP (1) JPS6142234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179527U (en) * 1987-05-13 1988-11-21
JP2013198297A (en) * 2012-03-19 2013-09-30 Fujitsu Ltd Power supply circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116028A (en) * 1981-12-28 1983-07-11 松下電器産業株式会社 Charger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116028A (en) * 1981-12-28 1983-07-11 松下電器産業株式会社 Charger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179527U (en) * 1987-05-13 1988-11-21
JP2013198297A (en) * 2012-03-19 2013-09-30 Fujitsu Ltd Power supply circuit

Similar Documents

Publication Publication Date Title
US6590370B1 (en) Switching DC-DC power converter and battery charger for use with direct oxidation fuel cell power source
JP5081596B2 (en) Power supply system
US4580090A (en) Maximum power tracker
US8013583B2 (en) Dynamic switch power converter
US5572108A (en) Power system using battery-charged capacitors
US4730287A (en) Power supply for electronic timpiece
JPH05137267A (en) Power system
US20070194759A1 (en) Charging apparatus for capacitor storage type power source and discharging apparatus for capacitor storage type power source
US20050057215A1 (en) Systems and methods for charging a battery
US20050057214A1 (en) Systems and methods for generating renewable energy
JP2002199614A (en) Photovoltaic power charger
KR20070050044A (en) Power extractor circuit
US4970451A (en) Device for utilizing low voltage electric current sources
JPS6123757B2 (en)
JPH0736556A (en) Method for cooling electric equipment using solar battery as power supply
JP3293683B2 (en) DC power supply
CN112510998B (en) Solar MPPT booster unit
JP2004336974A (en) Power supply
JPS6142234A (en) Solar battery shunt regulator
JP2006014526A (en) Power supply control method and power supply
JP3140308B2 (en) Boost type chopper regulator
ChandraShekar et al. Design and Simulation of Improved Dc-Dc Converters Using Simulink For Grid Connected Pv Systems
CN218514271U (en) Output-adjustable boosting device
CN101232199B (en) Booster
CN220874419U (en) Starting circuit of high-voltage battery system isolated power supply control chip