JPS6142190B2 - - Google Patents

Info

Publication number
JPS6142190B2
JPS6142190B2 JP54136183A JP13618379A JPS6142190B2 JP S6142190 B2 JPS6142190 B2 JP S6142190B2 JP 54136183 A JP54136183 A JP 54136183A JP 13618379 A JP13618379 A JP 13618379A JP S6142190 B2 JPS6142190 B2 JP S6142190B2
Authority
JP
Japan
Prior art keywords
water
tank
cold water
cooling water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54136183A
Other languages
Japanese (ja)
Other versions
JPS5661588A (en
Inventor
Motoaki Hirao
Yoshiharu Shida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP13618379A priority Critical patent/JPS5661588A/en
Publication of JPS5661588A publication Critical patent/JPS5661588A/en
Publication of JPS6142190B2 publication Critical patent/JPS6142190B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、冶金炉から間歇的に発生する排ガス
の熱を熱エネルギ利用設備に連続的に利用するよ
うにしたもので、特に熱エネルギー利用設備が必
要とする高温水量だけを取り出すようにした方法
及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is designed to continuously utilize the heat of exhaust gas generated intermittently from a metallurgical furnace for thermal energy utilization equipment. This invention relates to a method and apparatus for extracting only.

冶金炉の操業は、冶金炉内に酸素を吹き込んで
精錬するいわゆる吹錬工程と、精錬完了時酸素の
吹き込みを中止するいわゆる非吹錬工程とがあ
る。即ち、吹錬中は冶金炉内から高温のガスが発
生し、非吹錬にはこのガスが発生しない。
The operation of a metallurgical furnace includes a so-called blowing process in which oxygen is blown into the metallurgical furnace for refining, and a so-called non-blowing process in which the blowing of oxygen is stopped upon completion of refining. That is, during blowing, high-temperature gas is generated from within the metallurgical furnace, and this gas is not generated during non-blowing.

又、吹錬中に発生する高温のガスは、冶金炉の
上方に設けた冷却器によつて冷却された後、除塵
し回収または大気に放出される。
Further, the high temperature gas generated during blowing is cooled by a cooler installed above the metallurgical furnace, and then dusted and collected or released into the atmosphere.

この吹錬中に発生する高温のガスの熱エネルギ
ーは、ガス冷却器内を循環している冷却水によつ
て回収される。
Thermal energy of the high temperature gas generated during this blowing is recovered by cooling water circulating within the gas cooler.

従つて、吹錬と非吹錬に応じて冷却水の温度
は、間歇的に変動する。
Therefore, the temperature of the cooling water fluctuates intermittently depending on blowing and non-blowing.

このように、冷却水を介して間歇的に発生する
ガスの保有熱を、連続的に一定した熱エネルギー
として取り出すための従来の技術を図1によつて
説明する。
A conventional technique for extracting the retained heat of gas, which is generated intermittently through cooling water, as continuous and constant thermal energy will be explained with reference to FIG.

図において、従来の冷却水循環は、その系内に
高温タンク2と低温タンク2′を設け、吹錬中の
高温の冷却水全量を高温タンク2に、非吹錬中の
温度の低い冷却水全量を低温タンク2′に導くよ
うにしていた。
In the figure, the conventional cooling water circulation system includes a high-temperature tank 2 and a low-temperature tank 2', and the entire amount of high-temperature cooling water during blowing is transferred to high-temperature tank 2, and the entire amount of low-temperature cooling water during non-blowing is transferred to high-temperature tank 2. was led to the low temperature tank 2'.

即ち、冷却器1から出た冷却水は、吹錬、非吹
錬に応じて切換弁V1,V2を切換え、冷却水の全
量が高温タンク2、又は低温タンク2′に導かれ
る。吹錬中に高温タンク2に導かれた高温の冷却
水は、熱交換器Hで降温して低温タンク2′に導
くようにしている。低温タンク2′に貯留された
冷却水は、低温タンク2′内でガス冷却器1が過
熱しない温度まで降温され、ポンプP2によつてガ
ス冷却器1に導かれる。又、熱エネルギー利用設
備3は、高温タンク2から適量の高温水を取り出
し、熱エネルギーを回収利用した後、低温タンク
2′に導くようにしていた。
That is, the switching valves V 1 and V 2 are switched depending on whether the cooling water coming out of the cooler 1 is blown or not, and the entire amount of the cooling water is guided to the high temperature tank 2 or the low temperature tank 2'. The high-temperature cooling water introduced into the high-temperature tank 2 during blowing is cooled by a heat exchanger H and then introduced into the low-temperature tank 2'. The cooling water stored in the low-temperature tank 2' is cooled down to a temperature at which the gas cooler 1 does not overheat within the low-temperature tank 2', and is led to the gas cooler 1 by a pump P2 . Further, the thermal energy utilization equipment 3 takes out an appropriate amount of high-temperature water from the high-temperature tank 2, recovers and utilizes the thermal energy, and then guides it to the low-temperature tank 2'.

このように、冷却水循環系の途中に、冷却水の
全量を貯留する高温タンクと低温タンクを設け、
高温タンク内の高温水を熱エネルギー利用設備に
利用するようにしていたので、熱エネルギー利用
設備が必要とする水量がたとえ小量であつても、
冷却水の全量を貯留するための大容量のタンクを
必要としていた。
In this way, a high-temperature tank and a low-temperature tank are installed in the cooling water circulation system to store the entire amount of cooling water.
Since the high-temperature water in the high-temperature tank was used for thermal energy utilization equipment, even if the amount of water required by thermal energy utilization equipment was small,
A large capacity tank was required to store the entire amount of cooling water.

その結果、耐震強度などの点から、これらのタ
ンクを高所に設置するのは危険であるので低い所
に設置されることが多く、設置場所に制約をもた
らし、又これらの点から高所に設けた場合、強固
な架台を必要とし、不経済であつた。又、タンク
を低い所に設置した場合、高所にある冷却器との
間に大きな水頭圧が作用し、循環ポンプの水頭圧
がその分だけ大きくなるのでポンプ自体が大きく
なり、その駆動消費電力は多大であつた。
As a result, it is dangerous to install these tanks at high places in terms of seismic strength, so they are often installed at low places, which creates restrictions on the installation location, and from these points of view, it is dangerous to install these tanks at high places. If installed, a strong frame would be required, which would be uneconomical. Additionally, if the tank is installed at a low location, a large head pressure will act between it and the cooler located at a high location, and the head pressure of the circulation pump will increase accordingly, making the pump itself larger and reducing its driving power consumption. was huge.

本発明は、これらの点を鑑みなされたもので、
熱エネルギー利用設備が必要とする水量のみを冷
却水循環系から取り出すようにして、高温タンク
と低温タンクを小さくすると共に、循環ポンプを
小型化して駆動に要する電力を極力少くしたもの
である。
The present invention has been made in view of these points,
By extracting only the amount of water required by the thermal energy utilization equipment from the cooling water circulation system, the high-temperature tank and low-temperature tank are made smaller, and the circulation pump is made smaller to minimize the power required to drive it.

即ち、本発明の方法及び装置は、冶金炉の冷却
水循環系と熱エネルギー利用設備とを温水タンク
を設けてなる温水供給系、及び冷水タンクを設け
てなる冷水供給系とにより接続し、冶金炉の吹錬
時には、冷却水循環系より熱エネルギー利用設備
に必要水量の高温水を取り出して温水タンクに貯
留し、貯留された温水を熱エネルギー利用設備へ
供給すると共に、前記熱エネルギー利用設備より
冷水を導いて冷水タンクに貯留し、貯留された冷
水を膨脹タンクを介して、冷却水循環系から高温
水として取り出した冷却水量と同じ量の冷却水を
冷却水循環系へ供給するようにし、非吹錬時に
は、冷却水循環系よりの高温水取り出しと、冷却
水循環系への冷水供給を停止し、温水タンクに貯
留された高温水を熱エネルギー利用設備に供給す
ると共に、熱エネルギー利用設備より冷水を導
き、冷水タンクに貯留するようにしたことを特徴
とする。
That is, the method and apparatus of the present invention connect the cooling water circulation system of the metallurgical furnace and the thermal energy utilization equipment through a hot water supply system provided with a hot water tank and a cold water supply system provided with a cold water tank. During blowing, the amount of high-temperature water required for the thermal energy utilization equipment is extracted from the cooling water circulation system and stored in a hot water tank, and the stored hot water is supplied to the thermal energy utilization equipment, and cold water is supplied from the thermal energy utilization equipment. The same amount of cooling water as the amount of high-temperature water taken out from the cooling water circulation system is supplied to the cooling water circulation system through the expansion tank. , the removal of high-temperature water from the cooling water circulation system and the supply of cold water to the cooling water circulation system are stopped, the high-temperature water stored in the hot water tank is supplied to the thermal energy utilization equipment, and the cold water is guided from the thermal energy utilization equipment, and the cold water is It is characterized by being stored in a tank.

以下、その詳細を実施例で説明する。第2図
は、本発明をボイラープラントに適用した場合の
例を概略系統図で示したものである。第2図にお
いて、その概略を説明すると、ボイラ8によつて
発生した蒸気は蒸気タービン9を駆動させ、復水
器10及び抽気エゼクター11を経て冷水とな
る。この冷水はボイラープラントの給水回路4を
通り、給水加熱器5において昇温されて脱気器6
に導かれ、脱気処理された後に給水ポンプ7によ
つてボイラー8に連続的に送られる。
The details will be explained below using examples. FIG. 2 shows a schematic system diagram of an example in which the present invention is applied to a boiler plant. To explain the outline in FIG. 2, steam generated by a boiler 8 drives a steam turbine 9, passes through a condenser 10 and an extraction ejector 11, and becomes cold water. This cold water passes through the water supply circuit 4 of the boiler plant, is heated in the feed water heater 5, and is heated to a deaerator 6.
After being deaerated, the water is continuously sent to the boiler 8 by the feed water pump 7.

このボイラープラントの循環系において、給水
加熱器5の加熱源として蒸気が使用される。本発
明はこの熱源としての蒸気の代りに、冶金炉で発
生する熱を利用するようにしたものである。即
ち、冶金炉の冷却水循環系Aを温水供給系Bと、
冷水供給系Cとを介して給水加熱器5の上流側の
給水回路4に接続し、冶金炉から発生する熱でボ
イラーの給水温度を昇温するようにしたものであ
る。
In the circulation system of this boiler plant, steam is used as a heating source for the feed water heater 5. The present invention utilizes heat generated in a metallurgical furnace instead of steam as a heat source. That is, the cooling water circulation system A of the metallurgical furnace is replaced with the hot water supply system B,
It is connected to the water supply circuit 4 on the upstream side of the feed water heater 5 via the cold water supply system C, and the temperature of the water supply to the boiler is raised by the heat generated from the metallurgical furnace.

第3図は本発明の実施例であつて、第2図で示
した冶金炉の冷却水循環系Aと、温水供給系B
と、冷水供給系Cの詳細を示したもので、これら
について以下説明する。まず、冶金炉の冷却水循
環系Aについて説明する。図において、冷却水循
環系Aは、ガス冷却器1を出た高温の冷却水を管
路13,14を通つて熱交換器12に導き、ここ
で冷却水の温度を所要の温度まで降温した後、循
環ポンプ17によつて管路15を通つてガス冷却
器1の冷却水入口に導き、一つの閉回路を形成し
ている。前記の熱交換器12は冷却器1で吸収し
た熱の内、高温水として冷却水循環系から取り出
した残りの熱量分だけ冷却するもので、本図では
熱交換器12のバイパス管路36と、この管路に
設けた調節弁37により冷却器1の入口温度を制
御している。第4図、第5図は他の制御法であ
る。第4図において38,39は二次冷却水の管
路で、調節弁37で二次冷却水の流量調節によ
り、冷却器1の入口温度を制御している。第5図
は空冷熱交換器の場合で、フアン40の送風量調
節による方法である。この冷却水循環系A内を循
環している冷却水量は、冶金炉から発生するガス
温度を降温させる必要から常に一定量となつてい
る。又、16は膨脹タンクで、冷却水循環系A内
の冷却水が吹錬、非吹錬時においては容積変化が
起るので、この容積変化を吸収するために設けら
れたものであり、又冷却水循環系A内の冷却水量
が減つた時に補充し、一定量にする機能も具えて
おり、冷却水循環系Aに設けた熱交換器12の入
口側管路14に接続している。なお、30は膨脹
タンク16に設けられた水位レベル発信器であ
る。
FIG. 3 shows an embodiment of the present invention, showing a cooling water circulation system A and a hot water supply system B of the metallurgical furnace shown in FIG.
and details of the cold water supply system C, which will be explained below. First, the cooling water circulation system A of the metallurgical furnace will be explained. In the figure, the cooling water circulation system A guides the high-temperature cooling water exiting the gas cooler 1 through pipes 13 and 14 to the heat exchanger 12, where the temperature of the cooling water is lowered to a required temperature. , is guided to the cooling water inlet of the gas cooler 1 through a pipe line 15 by a circulation pump 17, forming one closed circuit. The heat exchanger 12 is used to cool the heat absorbed by the cooler 1 by the remaining amount of heat extracted from the cooling water circulation system as high-temperature water, and in this figure, the bypass pipe 36 of the heat exchanger 12 and The inlet temperature of the cooler 1 is controlled by a control valve 37 provided in this conduit. FIGS. 4 and 5 show other control methods. In FIG. 4, 38 and 39 are secondary cooling water pipes, and the inlet temperature of the cooler 1 is controlled by adjusting the flow rate of the secondary cooling water with a regulating valve 37. FIG. 5 shows the case of an air-cooled heat exchanger, and shows a method in which the amount of air blown by a fan 40 is adjusted. The amount of cooling water circulating in the cooling water circulation system A is always a constant amount because it is necessary to lower the temperature of the gas generated from the metallurgical furnace. Reference numeral 16 denotes an expansion tank, which is provided to absorb the change in volume of the cooling water in the cooling water circulation system A when it is being blown or not blown. It also has the function of replenishing the amount of cooling water in the water circulation system A when it decreases to maintain a constant amount, and is connected to the inlet side pipe line 14 of the heat exchanger 12 provided in the cooling water circulation system A. Note that 30 is a water level transmitter provided in the expansion tank 16.

次に、温水供給系Bについて説明する。 Next, hot water supply system B will be explained.

図において、19は温水タンクで、高温水の入
口側は管路18aによつて冶金炉の冷却水循環系
Aに接続され、吹錬時の高温水を貯留するように
し、高温水の出口側は管路18bによつてボイラ
ープラントの給水回路4に接続し、タンク内に貯
留された高温水を給水回路4に供給するようにな
つている。
In the figure, 19 is a hot water tank, the inlet side of the high temperature water is connected to the cooling water circulation system A of the metallurgical furnace through a pipe 18a, and the high temperature water during blowing is stored, and the outlet side of the high temperature water is connected to the cooling water circulation system A of the metallurgical furnace. It is connected to the water supply circuit 4 of the boiler plant through a pipe line 18b, and the high temperature water stored in the tank is supplied to the water supply circuit 4.

即ち、温水タンク19を介して、冶金炉の冷却
水循環系Aとボイラープラントとを実質的に接続
し、冶金炉の冷却水循環系Aの高温水をボイラー
プラントに供給するようになつている。
That is, the metallurgical furnace cooling water circulation system A and the boiler plant are substantially connected through the hot water tank 19, and the high temperature water of the metallurgical furnace cooling water circulation system A is supplied to the boiler plant.

なお、20は温水回収弁で、管路18aに設け
られており、21は管路18bに設けられた高温
水供給ポンプである。
In addition, 20 is a hot water recovery valve provided in the pipe line 18a, and 21 is a high temperature water supply pump provided in the pipe line 18b.

次に、冷水供給系Cについて説明する。図にお
いて、24は冷水タンクで、冷水入口側は管路2
3aによつてボイラープラントの給水回路4に接
続され、ボイラー給水の冷水を冷水タンク24に
導き、貯留するようにし、冷水出口側は管路23
bによつて前記膨脹タンク16に接続して、冷水
タンク24に貯留した冷水を膨脹タンク16を介
して冷却水循環系Aに供給するようになつてい
る。なお26は冷水供給ポンプ、27は流量調節
弁である。
Next, the cold water supply system C will be explained. In the figure, 24 is a cold water tank, and the cold water inlet side is pipe 2.
3a to the water supply circuit 4 of the boiler plant, and the cold water of the boiler feed water is led to the cold water tank 24 and stored therein, and the cold water outlet side is connected to the water supply circuit 4 of the boiler plant.
b is connected to the expansion tank 16, and the cold water stored in the cold water tank 24 is supplied to the cooling water circulation system A via the expansion tank 16. Note that 26 is a cold water supply pump, and 27 is a flow rate control valve.

前記温水タンク19と冷水タンク24の夫々の
内容積は、冶金炉の吹錬、非吹錬の周期によつて
決定される。
The internal volumes of the hot water tank 19 and the cold water tank 24 are determined by the blowing and non-blowing cycles of the metallurgical furnace.

28,29は水位レベル発信器で、31はタン
ク19,24の貯留水量の和が一定水量になるよ
うにするための演算器、32は流量調節弁であつ
て、両タンク19,24の機能をより完全にさせ
るために付設されたもので、両タンク19,24
の水位が常時水位レベル発信器28,29で測ら
れ、水量の和が系統内のロス等によつて減少した
時には、演算器31からの信号によつて流量調節
弁32を開にして、別の系統より冷水タンク24
に給水し、両タンク19,24の水量の和を一定
にするようになつている。
28 and 29 are water level transmitters, 31 is a calculator for making sure that the sum of the amounts of water stored in tanks 19 and 24 is a constant water amount, and 32 is a flow rate control valve, which controls the functions of both tanks 19 and 24. It was added to make the tank more complete, and both tanks 19 and 24
The water level is constantly measured by the water level transmitters 28 and 29, and when the sum of the water amounts decreases due to loss in the system, the flow control valve 32 is opened by a signal from the calculator 31, and a separate Cold water tank 24 from the system
Water is supplied to the tanks 19 and 24 to keep the sum of the water amounts in both tanks 19 and 24 constant.

又、33は両タンク19,24に接続するオー
バーフロー管で、例えば冶金炉の非吹錬が長びい
て、給水が冷水タンク24よりオーバーフローし
た時には温水タンク19へ流れ込み、ここにおい
ても、両タンク19,24の水量の和を一定に保
つようになつている。
Further, 33 is an overflow pipe connected to both tanks 19 and 24. For example, when the metallurgical furnace is not blown for a long time and the feed water overflows from the cold water tank 24, it flows into the hot water tank 19. , 24 is kept constant.

又、前述の冶金炉の冷却水循環系Aと温水供給
系Bとを接続する管路18aの接続点は、ガス冷
却器1の冷却水出口側で、且つ膨脹タンク16と
の接続点の上流側に接続しており、この接続点の
近傍、冷却水出口側には温度検出器35が設けて
ある。
Further, the connection point of the pipe 18a connecting the cooling water circulation system A and the hot water supply system B of the metallurgical furnace mentioned above is on the cooling water outlet side of the gas cooler 1 and upstream of the connection point with the expansion tank 16. A temperature detector 35 is provided near this connection point on the cooling water outlet side.

又、22は温水供給系Bの管路18bに、25
は冷水供給系Cの管路23aに夫々設けた切換弁
であり、この管路18bと管路23aは、給水回
路4に設けられた切換弁34を挾んで、管路18
bは給水回路4の下流側に、管路23aは給水回
路4の上流側に接続されている。
Further, 22 is connected to the pipe line 18b of the hot water supply system B, and 25
are switching valves provided in the pipes 23a of the cold water supply system C, and the pipes 18b and 23a sandwich the switching valves 34 provided in the water supply circuit 4, and the pipes 18
b is connected to the downstream side of the water supply circuit 4, and the pipe line 23a is connected to the upstream side of the water supply circuit 4.

以上の如く構成された本発明の実施例の作用を
次に説明する。
The operation of the embodiment of the present invention constructed as described above will now be described.

まず、吹錬時において、冶金炉の冷却水循環系
Aに設けた冷却器1内で冷却水は昇温し、冷却器
1出口を出て管路13を通つて管路14へと流れ
る。更に、冷却器1内の温度が昇温し、冷却水が
高温水となり、ある規定の温度に達すると、温度
検出器35の信号によつて管路18aに設けた流
量調節弁20が開となり、管路13を通過する高
温水は取り出され、温水供給系Bの管路18aへ
と導かれる。取り出された高温水は温水タンク1
9に一旦貯留される。このように温水タンク19
に貯留された高温水は、高温水供給ポンプ21に
よつて、切換弁22が開となつている管路18b
を通つてボイラープラントの給水回路4へ連続的
に供給される。
First, during blowing, the temperature of the cooling water rises in the cooler 1 provided in the cooling water circulation system A of the metallurgical furnace, and flows out of the outlet of the cooler 1, through the pipe 13, and into the pipe 14. Furthermore, when the temperature inside the cooler 1 rises and the cooling water becomes high-temperature water and reaches a certain specified temperature, the flow rate control valve 20 provided in the pipe line 18a is opened in response to a signal from the temperature detector 35. The high temperature water passing through the pipe 13 is taken out and guided to the pipe 18a of the hot water supply system B. The high temperature water taken out is sent to hot water tank 1.
9 is temporarily stored. Like this hot water tank 19
The high-temperature water stored in
It is continuously supplied through the water supply circuit 4 of the boiler plant.

一方、これと同時に冷水供給系Cにおいては、
ボイラープラントの給水回路4よりボイラー給水
の冷水が切換弁25が開となつている管路23a
を導かれて冷水タンク24に連続的に貯留され
る。そして、前記高温水が取り出され、冷却水循
環系Aの冷却水の水量が減り始めると同時に、冷
却水循環系Aの膨脹タンク16の水位が下り、水
位レベル発信器30の発信により管路23bに設
けた流量調節弁27が開となり、冷水タンク24
に貯留されている冷水が、管路23bを通つて冷
水供給ポンプ26により膨脹タンク16へ導か
れ、膨脹タンク16を介して冶金炉の冷却水循環
系Aへ供給される。
On the other hand, at the same time, in the cold water supply system C,
Chilled water for boiler feed from the water supply circuit 4 of the boiler plant flows through a pipe 23a with the switching valve 25 open.
The water is guided and continuously stored in the cold water tank 24. Then, at the same time that the high-temperature water is taken out and the amount of cooling water in the cooling water circulation system A begins to decrease, the water level in the expansion tank 16 of the cooling water circulation system A decreases, and the water level transmitter 30 sends a signal to the expansion tank 16 installed in the pipe 23b. The flow rate control valve 27 is opened, and the cold water tank 24 is opened.
The cold water stored in is led to the expansion tank 16 by the cold water supply pump 26 through the pipe line 23b, and is supplied to the cooling water circulation system A of the metallurgical furnace via the expansion tank 16.

このようにして、冷却水循環系Aから高温水が
取り出された冷却水量分だけ冷水を供給するので
実質上、両タンク19,24に貯留されている水
量の和は常時一定となつている。即ち、常時温水
タンク19よりボイラープラントの給水回路4へ
供給される高温水の量と、給水回路4より冷水タ
ンク24へ導かれるボイラー給水の冷水量とは、
同じ給水回路4を流れる水量なので等しくなつて
いる。又、これと相俟つて吹錬時には、冷却水循
環系Aより温水タンク19に高温水が取り出され
るのと同時に、冷水タンク24より冷却水循環系
Aに冷水が供給されて冷却水循環系Aの冷却水量
を一定にしているので、高温水の取り出し量と、
冷水の供給量も等しくなつている。従つて、温水
タンク19と冷水タンク24に貯留される高温水
と冷水の夫々の量は絶えず変化しているが、その
和は常時等しくなつている。
In this way, since cold water is supplied in an amount corresponding to the amount of high-temperature water taken out from the cooling water circulation system A, the sum of the amounts of water stored in both tanks 19 and 24 is substantially constant at all times. That is, the amount of high-temperature water supplied from the constant hot water tank 19 to the water supply circuit 4 of the boiler plant and the amount of cold water of the boiler feed water guided from the water supply circuit 4 to the cold water tank 24 are as follows.
The amounts of water flowing through the same water supply circuit 4 are equal. Additionally, during blowing, high-temperature water is taken out from the cooling water circulation system A to the hot water tank 19, and at the same time, cold water is supplied from the cold water tank 24 to the cooling water circulation system A, thereby increasing the amount of cooling water in the cooling water circulation system A. is kept constant, so the amount of high-temperature water taken out and
The amount of cold water supplied is also equal. Therefore, although the respective amounts of high temperature water and cold water stored in the hot water tank 19 and the cold water tank 24 are constantly changing, the sum thereof is always equal.

又、冷却水循環系Aにおいては、膨脹タンク1
6を介して冷却水循環系Aに供給された冷水は、
管路13よりの高温水と混り合つて温水となり、
管路14を通つて熱交換器12に導かれて冷却さ
れ、冷却水として循環ポンプ17により管路15
を通つて冷却器1の入口へ導かれ、再循環する。
In addition, in the cooling water circulation system A, the expansion tank 1
The cold water supplied to the cooling water circulation system A via 6 is
It mixes with the high temperature water from pipe 13 and becomes hot water.
The water is led to the heat exchanger 12 through the pipe 14, where it is cooled, and then sent to the pipe 15 by the circulation pump 17 as cooling water.
through the inlet of the cooler 1 for recirculation.

次に、非吹錬時において、冷却水循環系Aに設
けた冷却器1内の温度が降温して、管路13を通
過する冷却水が規定温度以下になると、温度検出
器35の信号によつて管路18aの流量調節弁2
0が閉となる。従つて、温水供給系Bへの高温水
の取り出しは停止し、冷却水循環系A内の冷却水
は減少することなく、管路14を通つて熱交換器
12に導かれ、冷却され、管路15を通つて循環
ポンプ17により冷却器1の入口へと導かれ、再
循環する。又、膨脹タンク16の水位は規定位置
に安定する。
Next, during non-blowing, when the temperature inside the cooler 1 installed in the cooling water circulation system A drops and the cooling water passing through the pipe line 13 becomes lower than the specified temperature, a signal from the temperature detector 35 is detected. Flow control valve 2 of pipe line 18a
0 is closed. Therefore, the extraction of high-temperature water to the hot water supply system B is stopped, and the cooling water in the cooling water circulation system A is guided to the heat exchanger 12 through the pipe line 14 without decreasing, where it is cooled and returned to the pipe line. 15 to the inlet of the cooler 1 by a circulation pump 17 for recirculation. Further, the water level in the expansion tank 16 is stabilized at a specified position.

温水供給系Bにおいては、前記の通り、流量調
節弁20が閉となるので、高温水の取り出し、及
び温水タンク19への貯留は停止する。そして、
吹錬時に貯留しておいた高温水は、吹錬時に引続
いて連続的に管路18bを通つて、高温水供給ポ
ンプ21によりボイラープラントの給水回路4へ
供給される。
In hot water supply system B, as described above, since the flow rate control valve 20 is closed, the extraction of high temperature water and storage in the hot water tank 19 is stopped. and,
The high-temperature water stored during blowing is continuously supplied to the water supply circuit 4 of the boiler plant by the high-temperature water supply pump 21 through the pipe 18b during the blowing.

同時に冷水供給系Cにおいては、吹錬時に引続
いて連続的にボイラー給水の冷水が、給水回路4
より管路23aを導かれて冷水タンク24に貯留
される。
At the same time, in the cold water supply system C, the boiler feed water is continuously supplied to the water supply circuit 4 during blowing.
The water is then guided through a pipe 23a and stored in a cold water tank 24.

又、冷却水循環系Aより温水供給系Bへの高温
水の取り出しが停止すると、冶金炉の冷却水循環
系Aの膨脹タンク16の水位は規定位置に安定
し、レベル発信器30の信号によつて流量調節弁
27は閉となり、冷水タンク24より冷却水循環
系Aへの冷水供給は停止する。
Further, when the extraction of high-temperature water from the cooling water circulation system A to the hot water supply system B is stopped, the water level in the expansion tank 16 of the cooling water circulation system A of the metallurgical furnace is stabilized at a specified position, and the water level is stabilized at the specified position by the signal from the level transmitter 30. The flow control valve 27 is closed, and the supply of cold water from the cold water tank 24 to the cooling water circulation system A is stopped.

又、温水タンク19と冷水タンク24は、水量
の和が全系統内のロス等によつて減少するような
時は、水位レベル発信器28,29、演算器3
1、流量調節弁32によつて常時一定に保たれ、
定量の温水供給及び冷水供給が保持される。
In addition, when the sum of the water volumes of the hot water tank 19 and the cold water tank 24 decreases due to loss in the entire system, the water level transmitters 28, 29 and the calculator 3
1. The flow rate is always kept constant by the flow control valve 32,
A constant supply of hot and cold water is maintained.

以上、詳述した通り本発明によれば、冶金炉の
冷却水循環系と熱エネルギー利用設備とを温水供
給系と冷水供給系とによつて接続し、吹錬時に
は、温水供給系に設けた温水タンクに冷却水循環
系より高温水を取り出して貯留すると同時に、冷
水供給系に設けた冷水タンクに貯留された冷水
を、高温水取出量と同量だけ冷却器循環系に供給
し、吹錬時、非吹錬時に関らず、連続的に温水タ
ンクより熱エネルギー利用設備に高温水を供給
し、熱エネルギー利用設備よりは冷水タンクに冷
水を導き貯留するようにしたので、温水タンクと
冷水タンクの容量は、冶金炉の吹錬、非吹錬の周
期と合わせた熱エネルギー利用設備の必要水量に
より決定されて小型化でき、温水タンクと冷水タ
ンクの設置場所に制約がなく、これらタンクと冷
却器との水頭差を小さくして循環ポンプを小型化
し、その駆動消費電力を少くし、省エネルギーに
貢献するところ極めて大なるものである。
As detailed above, according to the present invention, the cooling water circulation system of the metallurgical furnace and the thermal energy utilization equipment are connected by the hot water supply system and the cold water supply system, and during blowing, the hot water supply system provided in the hot water supply system At the same time, high-temperature water is taken out from the cooling water circulation system and stored in the tank, and at the same time, the cold water stored in the cold water tank installed in the cold water supply system is supplied to the cooler circulation system in an amount equal to the amount of high-temperature water taken out. Regardless of the non-blowing period, high-temperature water is continuously supplied from the hot water tank to the thermal energy utilization equipment, and cold water is led and stored in the cold water tank rather than the thermal energy utilization equipment, so that the hot water tank and cold water tank are The capacity is determined by the amount of water required for the thermal energy utilization equipment, combined with the blowing and non-blowing cycles of the metallurgical furnace, and can be made smaller.There are no restrictions on the installation locations of hot water tanks and cold water tanks, and these tanks and coolers can be This is an extremely significant contribution to energy conservation by reducing the head difference between the pump and the pump, thereby reducing the size of the circulation pump and reducing its driving power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来における冶金炉冷却水利用方法の
概略説明図、第2図は本発明をボイラープラント
に適用した場合の概略系統説明図で、第3図は本
発明の要部を示した系統説明図、第4図と第5図
は熱交換器の温度制御手段を示した図である。 A……冶金炉の冷却水循環系、B……温水供給
系、C……冷水供給系、1……冷却器、4……給
水回路、10……復水器、12……熱交換器、1
3,14,15……冷却水循環管路、16……膨
脹タンク、17……循環ポンプ、18a,18b
……温水供給系管路、19……温水タンク、20
……温水回収弁、27,32……流量調節弁、2
1……高温水供給ポンプ、23a,23b……冷
水供給系管路、24……冷水タンク、26……冷
水供給ポンプ、28,29,30……水位レベル
発信器、31……演算器、33……オーバーフロ
ー管、35……温度検出器、36……バイパス管
路、37……調節弁。
Fig. 1 is a schematic explanatory diagram of a conventional metallurgical furnace cooling water usage method, Fig. 2 is a schematic explanatory diagram of a system when the present invention is applied to a boiler plant, and Fig. 3 is a system showing the main parts of the present invention. The explanatory drawings, FIGS. 4 and 5, are diagrams showing temperature control means of the heat exchanger. A...Cooling water circulation system for metallurgical furnace, B...Hot water supply system, C...Cold water supply system, 1...Cooler, 4...Water supply circuit, 10...Condenser, 12...Heat exchanger, 1
3, 14, 15... Cooling water circulation pipe, 16... Expansion tank, 17... Circulation pump, 18a, 18b
... Hot water supply system pipe line, 19 ... Hot water tank, 20
... Hot water recovery valve, 27, 32 ... Flow rate control valve, 2
1...High temperature water supply pump, 23a, 23b...Cold water supply system pipe, 24...Cold water tank, 26...Cold water supply pump, 28, 29, 30...Water level transmitter, 31...Arithmetic unit, 33...Overflow pipe, 35...Temperature detector, 36...Bypass pipe line, 37...Control valve.

Claims (1)

【特許請求の範囲】 1 冶金炉吹錬時、冷却水循環系より所要量の高
温水を取り出して温水タンクに貯留し、温水タン
クに貯留した前記高温水を熱エネルギー利用設備
に供給すると共に、熱エネルギー利用設備より冷
水を導いて冷水タンクに貯留し、冷水タンクに貯
留した前記冷水を膨脹タンクを介して冷却水循環
系に供給し、非吹錬時には、冷却水循環系よりの
高温水取り出しを停止し、温水タンクに貯留した
高温水を熱エネルギー利用設備に供給すると共
に、熱エネルギー利用設備よりは冷水を導いて冷
水タンクに貯留し、冷却水循環系への冷水供給も
停止するようにしたことを特徴とする間歇的に発
生する熱を連続的に利用する方法。 2 冶金炉の冷却水循環系と、熱エネルギー利用
設備とを夫々温水供給系と冷水供給系とで接続
し、前記冷却水循環系には管路の途中に熱交換器
を設け、該熱交換器の入口側管路に膨脹タンクを
接続し、温水供給系には温水タンクを設け、該温
水タンクの高温水入口と冷却水循環系に設けた冷
却器の冷却水出口とを管路で接続し、一方温水タ
ンクの高温水出口と熱エネルギー利用設備とを管
路で接続し、又冷水供給系には、冷水タンクを設
け、該冷水タンクの冷水入口と熱エネルギー利用
設備とを管路で接続し、一方冷水出口と前記膨脹
タンクとを管路で接続したことを特徴とする間歇
的に発生する熱を連続的に利用する装置。
[Claims] 1. During metallurgical furnace blowing, a required amount of high-temperature water is taken out from the cooling water circulation system and stored in a hot water tank, and the high-temperature water stored in the hot water tank is supplied to thermal energy utilization equipment, and Cold water is led from the energy utilization equipment and stored in a cold water tank, the cold water stored in the cold water tank is supplied to a cooling water circulation system through an expansion tank, and when non-blowing, high temperature water extraction from the cooling water circulation system is stopped. , the high-temperature water stored in the hot water tank is supplied to the thermal energy utilization equipment, cold water is led from the thermal energy utilization equipment and stored in the cold water tank, and the cold water supply to the cooling water circulation system is also stopped. A method that continuously utilizes the heat that is generated intermittently. 2 The cooling water circulation system of the metallurgical furnace and the thermal energy utilization equipment are connected by a hot water supply system and a cold water supply system, respectively, and a heat exchanger is provided in the middle of the pipe line in the cooling water circulation system, and the heat exchanger is An expansion tank is connected to the inlet side pipe, a hot water tank is provided in the hot water supply system, a high temperature water inlet of the hot water tank is connected to a cooling water outlet of a cooler provided in the cooling water circulation system, and one The hot water outlet of the hot water tank and the thermal energy utilization equipment are connected by a pipe, and the cold water supply system is provided with a cold water tank, and the cold water inlet of the cold water tank and the thermal energy utilization equipment are connected by a pipe, On the other hand, a device for continuously utilizing intermittently generated heat, characterized in that a cold water outlet and the expansion tank are connected by a pipe line.
JP13618379A 1979-10-22 1979-10-22 Method of and apparatus for continuously utilizing heat intermittently generated Granted JPS5661588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13618379A JPS5661588A (en) 1979-10-22 1979-10-22 Method of and apparatus for continuously utilizing heat intermittently generated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13618379A JPS5661588A (en) 1979-10-22 1979-10-22 Method of and apparatus for continuously utilizing heat intermittently generated

Publications (2)

Publication Number Publication Date
JPS5661588A JPS5661588A (en) 1981-05-27
JPS6142190B2 true JPS6142190B2 (en) 1986-09-19

Family

ID=15169277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13618379A Granted JPS5661588A (en) 1979-10-22 1979-10-22 Method of and apparatus for continuously utilizing heat intermittently generated

Country Status (1)

Country Link
JP (1) JPS5661588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238985A (en) * 2006-03-07 2007-09-20 Sumitomo Metal Mining Co Ltd Cooling system for exhaust gas in converter and method for driving cooling system of exhaust gas in converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175015A (en) * 2007-01-22 2008-07-31 Pal Co Ltd Daylighting door

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238985A (en) * 2006-03-07 2007-09-20 Sumitomo Metal Mining Co Ltd Cooling system for exhaust gas in converter and method for driving cooling system of exhaust gas in converter

Also Published As

Publication number Publication date
JPS5661588A (en) 1981-05-27

Similar Documents

Publication Publication Date Title
JP2011173543A (en) Battery cooling/heating device
CN212902022U (en) Heat conduction oil heat exchange system with continuously adjustable output temperature
CN208475641U (en) Cold and hot oil switching Oil-temperature control machine
CN208477398U (en) A kind of cooling height temp controller of high-precision second level
CN108736765A (en) A kind of frequency conversion all-in-one machine automatic control water-cooling heat radiating device
JPH01189436A (en) Environmental test device
JPH0629035A (en) Co-operative control device of fuel cell power-generation plant and waste heat collection system
JP2004347302A (en) Central control system for absorption cool temperature water machine
JPS6142190B2 (en)
CN209310307U (en) A kind of bathroom utilizes heat pump structure with Multi-stage heat
JPH07113110A (en) Device for recovering heat in converter and control method thereof
CN104634586A (en) Quick safety cooling device for organic heat transfer material heater of heat source simulation system
CN211060714U (en) Low-temperature cooling heat exchange system
CN108726520A (en) A kind of afterheat of reducing furnace recovery system
CN114791232A (en) Temperature control system utilizing steam for heat exchange
CN210267880U (en) Gas nitrogen circulation temperature regulating system
CN209197509U (en) A kind of residual heat reutilizing system avoiding cooling tower coil frost broken
CN106523103A (en) Medium circulation system for exhaust heat indirect type temperature-difference thermoelectric device for marine diesel engine
CN107313874A (en) FPSO generator waste heat comprehensive utilization systems
CN220270091U (en) Cooling water circulation system for casting workshop
JPH04327701A (en) Steam generator
CN115214734B (en) Battery power locomotive thermal management device and control method thereof
CN213869943U (en) Rapid cooling system for high-ground-temperature long tunnel
SU1573312A1 (en) Heat recovery system
CN107339905A (en) The devices and methods therefor of circulating cooling water management medium temperature