JPS6142130Y2 - - Google Patents

Info

Publication number
JPS6142130Y2
JPS6142130Y2 JP1980189618U JP18961880U JPS6142130Y2 JP S6142130 Y2 JPS6142130 Y2 JP S6142130Y2 JP 1980189618 U JP1980189618 U JP 1980189618U JP 18961880 U JP18961880 U JP 18961880U JP S6142130 Y2 JPS6142130 Y2 JP S6142130Y2
Authority
JP
Japan
Prior art keywords
flow
pitot tube
view
pipes
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980189618U
Other languages
Japanese (ja)
Other versions
JPS57112250U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980189618U priority Critical patent/JPS6142130Y2/ja
Publication of JPS57112250U publication Critical patent/JPS57112250U/ja
Application granted granted Critical
Publication of JPS6142130Y2 publication Critical patent/JPS6142130Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 本考案は多孔ピトー管に関するものである。[Detailed explanation of the idea] The present invention relates to a multi-hole pitot tube.

従来から多孔ピトー管には、その用途により多
種類であり、例えば2本の中空管を並設して流れ
に対してその軸線を直角に配して総圧と静圧を計
測して流速(量)を測定するもの、或は多数本の
中空管の先端を半球面上の全方位に向く如く配置
し、流れの方向とその流速の双方の変化を測定す
るもの等がある。
Conventionally, there are many types of porous pitot tubes depending on their purpose.For example, two hollow tubes are installed side by side and their axes are arranged perpendicular to the flow, and the total pressure and static pressure are measured to determine the flow velocity. There are methods that measure (quantity), and methods that measure changes in both the flow direction and flow velocity by arranging the tips of multiple hollow tubes so as to point in all directions on a hemispherical surface.

本考案の多孔ピトー管は後者に属するものをそ
の対象とするものである。
The porous pitot tube of the present invention is intended for those belonging to the latter category.

水槽試験において、模型船の船体まわり流れ
や、船尾後方流れを3次元的に計測するため、従
来は第1図及び第2図に示す多孔ピトー管1やよ
く使用されており、この多孔ピトー管1の先端の
形状には球型が一般に使用され、先端の各測圧孔
2,2a〜2dは球面に対して垂直に穿設されて
いる。従つて測圧孔2,2a〜2dの先端部が互
に離反する方向に傾斜する為、多数の測圧孔を設
けると球が大きくなり、測圧孔の穿設工作上、7
mmφ〜10mmφ程度の球が限度である。
In water tank tests, in order to three-dimensionally measure the flow around the hull of a model ship and the flow behind the stern, the porous pitot tube 1 shown in Figs. 1 and 2 is commonly used. Generally, a spherical shape is used for the tip of the tip, and each pressure measuring hole 2, 2a to 2d at the tip is bored perpendicular to the spherical surface. Therefore, since the tips of the pressure measurement holes 2, 2a to 2d are inclined in directions away from each other, if a large number of pressure measurement holes are provided, the ball will become larger, and it will be difficult to drill the pressure measurement holes.
The limit is a ball of about mmφ to 10mmφ.

一方船体表面の極く近傍やプロペラ作動中のプ
ロペラの近傍の流れを計測する場合、ピトー管の
大きさの影響で流場を乱したり、或は必要な計測
点に設置出来なかつたりして精度良く計測できな
いので、小型のピトー管が要求される。
On the other hand, when measuring the flow very close to the hull surface or near the propeller when the propeller is operating, the size of the pitot tube may disturb the flow field or it may not be able to be installed at the required measurement point. Since accurate measurements cannot be made, a small pitot tube is required.

その1つの方法として、第3図に示すように
0.7mmφ(内径0.5mmφ)程度のパイプ3を十文字
型に5本並べ、まわりの4本の先端を斜めに切断
し、5本を互に固着して形成したピトー管1が利
用されている。なお、図中4は支柱である。この
方法によると、5本のパイプの外接円の直径が2
mmφ〜3mmφ程度の小さいものであり、球型に比
べるとかなり小さいものとなる。しかしながら、
5本のパイプ(導圧管)相互の干渉で、ピトー管
の特性が悪く、乱れた船体のまわりの流れを精度
良く計測することができない欠点があつた。
One method is as shown in Figure 3.
A pitot tube 1 is used, which is formed by arranging five pipes 3 of about 0.7 mmφ (inner diameter 0.5 mmφ) in a cross shape, cutting the tips of the surrounding four at an angle, and fixing the five pipes to each other. Note that 4 in the figure is a support. According to this method, the diameter of the circumscribed circle of the five pipes is 2
It is small, about mmφ to 3mmφ, and is considerably smaller than a spherical shape. however,
Due to mutual interference between the five pipes (impulsion tubes), the characteristics of the pitot tube were poor, and the turbulent flow around the hull could not be accurately measured.

第4図は第3図のピトー管先端の正面図であ
り、パイプ3は3a,3b,3c,3d,3eの
5本の中空パイプよりなる。第5図は第4図のA
〜A断面図である。また中空パイプ3aの先端は
長さ方向に対し直角に切断されており、中空パイ
プ3b,3cは、中空パイプ3aと中心が一直線
上に並ぶようにして互に固着し、さらに中空パイ
プ3aと接するところの先端を揃えて、外側が短
くなるように長さに対して斜めに切断されてい
る。
FIG. 4 is a front view of the pitot tube tip of FIG. 3, and the pipe 3 consists of five hollow pipes 3a, 3b, 3c, 3d, and 3e. Figure 5 is A of Figure 4.
~A sectional view. Further, the tip of the hollow pipe 3a is cut at right angles to the length direction, and the hollow pipes 3b and 3c are fixed to each other so that their centers are aligned with the hollow pipe 3a, and are in contact with the hollow pipe 3a. However, it is cut diagonally to the length so that the ends are aligned and the outside is shorter.

同様の方法で、中空パイプ3d,3eも、中空
パイプ3d,3a,3eの並びが中空パイプ3
b,3a,3eの並びに対して直角になるように
固着し、5本の中空パイプ3a,3b,3c,3
d,3eは支柱4に挿入されて固定される。そし
て図示しない導圧管を介して圧力計測器に導かれ
る。
In the same way, the hollow pipes 3d, 3e are arranged in the same way as the hollow pipes 3d, 3e.
Five hollow pipes 3a, 3b, 3c, 3 are fixed at right angles to the arrangement of pipes b, 3a, 3e.
d and 3e are inserted into the support column 4 and fixed. The pressure is then guided to a pressure measuring device via a pressure guiding pipe (not shown).

第6図は一様な流れの中におけるピトー管の
(中空パイプ3aの軸)に対して水平方向(パイ
プ3b,3c方向)角α、又は垂直方向(パイプ
3d,3e方向)角βの流れ角の変化に対する中
空パイプ3aの圧力変化を表わしたものである。
Figure 6 shows the flow at an angle α in the horizontal direction (in the direction of pipes 3b, 3c) or at an angle β in the vertical direction (in the direction of pipes 3d, 3e) with respect to the pitot tube (axis of the hollow pipe 3a) in a uniform flow. It shows the pressure change in the hollow pipe 3a with respect to the change in angle.

第7図は、一様な流れの中において、ピトー管
の軸に対して水平方向α、垂直方向βの流れ角が
変化するときの流速の関数である流向関数K,L
を表わしたものである。ただし、流向関数K,L
は次式で表わされる。
Figure 7 shows flow direction functions K and L, which are functions of flow velocity when the flow angles in the horizontal direction α and vertical direction β change with respect to the axis of the pitot tube in a uniform flow.
It represents. However, the flow direction functions K, L
is expressed by the following equation.

M=(P0−P1)+(P0−P2)+(P0−P3)+(P0
P4) K=(P−P)−(P−P)/M L=(P−P)−(P−P)/M このとき、P0,P1,P2,P3,P4は中空パイプ3
a,3b,3c,3d,3eで計測された圧力を
表わす。
M = (P 0 - P 1 ) + (P 0 - P 2 ) + (P 0 - P 3 ) + (P 0 -
P4 ) K=( P0 - P1 )-( P0 - P2 )/M L=( P0 - P3 )-( P0 - P4 )/M At this time, P0 , P1 , P 2 , P 3 , P 4 are hollow pipes 3
It represents the pressure measured at a, 3b, 3c, 3d, and 3e.

ピトー管の軸に対して流れが水平角α、垂直角
βの角度であると、中空パイプ3a,3b,3
c,3d,3eの相互干渉で、それぞれのパイプ
で計測される圧力は、流れ角の変化に対して、第
8図〜第9図に示す球型ピトー管の場合のような
ゆるやかな変化でなく、急変している。これは計
測部における複数本の中空パイプが相互に干渉す
る結果であることが本考案により確認された。第
6図、第7図に示すとおり、流れ角の変化に対す
る圧力の変化、流向関数の変化が著しい。
If the flow is at a horizontal angle α and a vertical angle β with respect to the axis of the pitot tube, the hollow pipes 3a, 3b, 3
Due to the mutual interference of C, 3d, and 3e, the pressure measured in each pipe changes gradually as the flow angle changes, as in the case of the spherical pitot tube shown in Figures 8 and 9. It is changing rapidly. The present invention has confirmed that this is a result of mutual interference between the plurality of hollow pipes in the measuring section. As shown in FIGS. 6 and 7, changes in pressure and flow direction function with changes in flow angle are significant.

このように、中空パイプ3a,3b,3c,3
d,3eが相互に干渉して不安定な圧力が計測さ
れることは、検定時における一様な流れの中で計
測される圧力と、船体まわりや、船体後方におけ
るように乱れた不均一な流れの中で計測される圧
力とは異なつたものとなり、そのため精度良く計
測することができない欠点があつた。
In this way, hollow pipes 3a, 3b, 3c, 3
The fact that d and 3e interfere with each other and result in unstable pressure measurements is due to the difference between the pressure measured in a uniform flow at the time of verification and the turbulent and uneven pressure around the hull or at the rear of the hull. This has the disadvantage that the pressure is different from the pressure measured in the flow, and therefore cannot be measured accurately.

本考案は前記従来の欠点を解消るために提案さ
れたもので、複数の直管が互に接触しないように
整流材を充填すると共に、リードより突出した先
端部分を同整流材で被覆し、前記直管の端面のみ
を露出するようにするることにより、精度よく計
測できる多孔ピトー管を提供せんとするものであ
る。
The present invention was proposed to solve the above-mentioned conventional drawbacks, and includes filling a plurality of straight pipes with a flow straightening material so that they do not come into contact with each other, and covering the tip portions protruding from the leads with the flow straightening material. By exposing only the end face of the straight tube, it is intended to provide a porous pitot tube that allows accurate measurements.

以下図面の実施例について本考案を説明する
と、第10図は本考案の多孔ピトー管の第1実施
例を示し、11は支柱、12は複数の直管状の中
空パイプ、13は複数の中空パイプ12が互に接
触しないように、同中空パイプ12の先端部分を
被覆する整流材である。
The present invention will be explained below with reference to the embodiments shown in the drawings. Fig. 10 shows a first embodiment of the porous pitot tube of the present invention, 11 is a column, 12 is a plurality of straight hollow pipes, and 13 is a plurality of hollow pipes. This is a flow regulating material that covers the tip portions of the hollow pipes 12 so that the hollow pipes 12 do not come into contact with each other.

即ち、この整流材13には、中空パイプ12が
貫通する孔が5個穿設してあり、また整流材13
は先端の形状が半球型になつており、後端は支柱
11に固着されている。第11図は第10図のピ
トー管先端部のB〜B断面図で、中空パイプ12
は、12a,12b,12c,12d,12eの
5個よりなる。第12図は第11図のC〜C断面
図、第13図は第11図のD〜D断面図である。
That is, this straightening material 13 has five holes through which the hollow pipes 12 pass, and the straightening material 13
The tip has a hemispherical shape, and the rear end is fixed to the support column 11. FIG. 11 is a sectional view taken from B to B of the tip of the pitot tube in FIG.
consists of five pieces: 12a, 12b, 12c, 12d, and 12e. FIG. 12 is a cross-sectional view taken from C to C in FIG. 11, and FIG. 13 is a cross-sectional view taken from D to D in FIG.

第11図〜第13図において、支柱11に固着
された5本の中空パイプ12a,12b,12
c,12d,12eの中心線は、直交する平面上
に並ぶ様に配置されている。また先端が半球形を
した整流材13は、中空パイプ12a,12b,
12c,12d,12eを貫通させ、それぞれの
中空パイプ及び支柱11と固着されている。
In FIGS. 11 to 13, five hollow pipes 12a, 12b, 12 fixed to the support column 11 are shown.
The center lines of c, 12d, and 12e are arranged on orthogonal planes. Further, the rectifying material 13 having a hemispherical tip includes hollow pipes 12a, 12b,
12c, 12d, and 12e, and are fixed to the respective hollow pipes and struts 11.

さらに、中空パイプ12a,12b,12c,
12d,12eの先端は、整流材13の先端の形
状に合せて切断されている。またそれぞれの中空
パイプの他端は、支柱11内に設置された導圧管
に連結され、圧力計測器に導かれている。
Furthermore, hollow pipes 12a, 12b, 12c,
The tips of 12d and 12e are cut to match the shape of the tip of the flow straightening material 13. Further, the other end of each hollow pipe is connected to a pressure guiding pipe installed in the support column 11, and led to a pressure measuring device.

第14図は第2実施例を示し、11は支柱、1
2は中空パイプ、13は整流材であり、これらは
第10図の実施例と変りないが、ピトー管の先端
部を傾斜させた、所謂円錐台形状としたもので、
5本の中空パイプ(第15図〜第17図)12
a,12b,12c,12d,12eの先端は、
整流材13の先端形状に合せて切断してある。第
15図は第14図のピトー管先端部のE〜E断面
図、第16図は第15図のF〜F断面図、第17
図は第15図のG〜G断面図である。
FIG. 14 shows a second embodiment, in which 11 is a column;
2 is a hollow pipe, and 13 is a rectifying material, which are the same as the embodiment shown in FIG.
5 hollow pipes (Figures 15 to 17) 12
The tips of a, 12b, 12c, 12d, and 12e are
It is cut to match the shape of the tip of the flow straightening material 13. Fig. 15 is a sectional view from E to E of the pitot tube tip in Fig. 14, Fig. 16 is a sectional view from F to F in Fig. 15, and Fig. 17 is a sectional view from F to F in Fig. 15.
The figure is a sectional view taken from GG in FIG. 15.

第18図は第3実施例を示し、11は支柱、1
2は中空パイプ、13は整流材であり、これらは
第10図の実施例と変りないが、ピトー管の先端
部は扇形の面が4面出来るように円柱を斜に切断
した形状のもので、所謂円柱を四角錐形にした先
端形状で、中空パイプ(第19図〜第21図)1
2a,12b,12c,12d,12eの先端
は、整流材13の先端形状に合せて切断してあ
る。また第19図は第18図のピトー管の先端部
の正面図、第20図は第19図のH〜H断面図、
第21図は第19図のI〜I断面図である。
FIG. 18 shows a third embodiment, in which 11 is a column;
2 is a hollow pipe, and 13 is a flow regulating material, which are the same as the embodiment shown in Fig. 10, but the tip of the pitot tube is shaped like a cylinder cut diagonally so that four fan-shaped surfaces are formed. , the tip shape of a so-called cylinder is shaped like a square pyramid, and it is a hollow pipe (Figs. 19 to 21) 1
The tips of 2a, 12b, 12c, 12d, and 12e are cut to match the shape of the tip of the flow straightening material 13. In addition, FIG. 19 is a front view of the tip of the pitot tube in FIG. 18, and FIG. 20 is a sectional view from H to H in FIG. 19.
FIG. 21 is a sectional view taken along line II in FIG. 19.

以上詳細に説明した如く本考案は構成されてい
るので、中空パイプ相互間のすき間に設けられた
整流材の効果で、中空パイプ相互の干渉がなくな
り、球型ピトー管のグラフの流れ角α,βの変化
に対して、本考案による中空パイプを使用した多
孔ピトー管においても計測される圧力Pはゆるや
かな変化を示し、同様に流向関数K,Lの変化も
ゆるやかであり、球型ピトー管の特性とほぼ同等
なものとなる。
Since the present invention is configured as explained in detail above, the effect of the rectifying material provided in the gap between the hollow pipes eliminates interference between the hollow pipes, and the flow angle α in the graph of the spherical pitot tube, With respect to the change in β, the pressure P measured in the porous pitot tube using the hollow pipe according to the present invention also shows a gradual change, and the flow direction functions K and L also change gradually, and the spherical pitot tube The characteristics are almost the same as those of .

さて中空パイプで計測される圧力は、整流材の
効果で流れ角の変化に対してゆるやかな変化であ
るため、一様流中の検定時に計測される圧力と、
船体のまわりや、船体後方における不均一流中で
計測される圧力とは殆ど変らないものとなる。こ
のように本考案の多孔ピトー管は複数の中空パイ
プを使用するにも拘らず、従来の球型ピトー管で
は測定不可能であつた壁面近くや、狭い箇所の流
速とその方向を従来のピトー管より正確に計測出
来るようになつた。
Now, the pressure measured in a hollow pipe changes gradually with respect to changes in flow angle due to the effect of the rectifying material, so the pressure measured during verification during uniform flow and
This is almost the same as the pressure measured in the non-uniform flow around the hull or behind the hull. In this way, although the porous pitot tube of the present invention uses multiple hollow pipes, it is not possible to measure the flow velocity and direction near walls or in narrow areas, which was impossible with conventional spherical pitot tubes. It has become possible to measure more accurately than with a tube.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の多孔ピトー管の1例を示す縦断
面図、第2図は同先端部の正面図、第3図は従来
の他のピート管の斜視図、第4図は第3図の先端
部の拡大正面図、第5図は第4図のA〜A断面
図、第6図及び第8図はピトー管の軸に対して水
平方向及び垂直方向の流れ角と圧力との関係を示
す線図、第7図及び第9図は前記流れ角の変化に
対する流速の関数である流向関数K,Lを表わし
た線図、第10図は本考案の第1実施例を示す多
孔ピトー管の斜視図、第11図は第10図のB〜
B拡大断面図、第12図は第11図のC〜C断面
図、第13図は第11図のD〜D断面図、第14
図は第2実施例を示す多孔ピトー管の斜視図、第
15図は第14図のE〜E拡大断面図、第16図
は第15図にF〜F断面図、第17図は第15図
のG〜G断面図、第18図は第3実施例を示す斜
視図、第19図は第18図のピトー管先端の正面
図、第20図は第19図のH〜H断面図、第21
図は第19図のI〜I断面図である。 図の主要部分の説明、11…支柱(リード)、
12,12a〜12e…中空パイプ(直管)、1
3…整流材。
Fig. 1 is a vertical cross-sectional view showing an example of a conventional porous pitot tube, Fig. 2 is a front view of the tip thereof, Fig. 3 is a perspective view of another conventional peat tube, and Fig. 4 is a Figure 5 is an enlarged front view of the tip of the pitot tube, Figure 5 is a sectional view from A to A in Figure 4, Figures 6 and 8 are the relationship between flow angle and pressure in the horizontal and vertical directions with respect to the axis of the pitot tube. FIGS. 7 and 9 are diagrams showing the flow direction functions K and L, which are functions of flow velocity with respect to changes in the flow angle, and FIG. A perspective view of the tube, Figure 11 is from B in Figure 10.
B is an enlarged sectional view, FIG. 12 is a sectional view from C to C in FIG. 11, FIG. 13 is a sectional view from D to D in FIG. 11, and FIG.
The figure is a perspective view of a porous pitot tube showing the second embodiment, FIG. 15 is an enlarged sectional view from E to E in FIG. 14, FIG. 16 is a sectional view from F to F in FIG. 18 is a perspective view showing the third embodiment, FIG. 19 is a front view of the pitot tube tip in FIG. 18, FIG. 20 is a sectional view from H to H in FIG. 19, 21st
The figure is a sectional view taken along line II in FIG. 19. Explanation of the main parts of the figure, 11... Support (lead),
12, 12a to 12e...Hollow pipe (straight pipe), 1
3... Rectifying material.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 筒状のリードと、同リード内に配設される複数
の直管とからなり、同直管の軸心を互に平行にす
ると共に、その先端を前記リードより突出させ、
その先端形状を半球状又は錐状とするようにした
多孔ピトー管において、前記複数の直管が互に接
触しないように整流材を充填すると共に、リード
より突出した先端部分を前記整流材で被覆し、前
記直管の端面のみを露出させるようにしたことを
特徴とする多孔ピトー管。
Consisting of a cylindrical lead and a plurality of straight pipes arranged within the lead, the axes of the straight pipes are parallel to each other, and their tips protrude from the lead,
In a porous pitot tube whose tip shape is hemispherical or conical, the plurality of straight tubes are filled with a flow regulating material so that they do not come into contact with each other, and the tip portion protruding from the lead is covered with the flow regulating material. A porous pitot tube, characterized in that only the end face of the straight tube is exposed.
JP1980189618U 1980-12-27 1980-12-27 Expired JPS6142130Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980189618U JPS6142130Y2 (en) 1980-12-27 1980-12-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980189618U JPS6142130Y2 (en) 1980-12-27 1980-12-27

Publications (2)

Publication Number Publication Date
JPS57112250U JPS57112250U (en) 1982-07-12
JPS6142130Y2 true JPS6142130Y2 (en) 1986-11-29

Family

ID=29993768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980189618U Expired JPS6142130Y2 (en) 1980-12-27 1980-12-27

Country Status (1)

Country Link
JP (1) JPS6142130Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497971B2 (en) * 2004-03-23 2010-07-07 ユニバーサル造船株式会社 Ship speed measuring method and apparatus
CN103711981B (en) * 2012-10-01 2018-07-24 艾默生过程管理调节技术公司 The dynamic pressure recording device and over-pressure safety device of actuator for internal record

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548961U (en) * 1977-06-22 1979-01-20

Also Published As

Publication number Publication date
JPS57112250U (en) 1982-07-12

Similar Documents

Publication Publication Date Title
JP2913005B2 (en) Flight velocity vector detection system using a truncated polygonal pitot tube probe and a truncated polygonal pitot tube probe
JPS62159023A (en) Probe for detecting air-current data
JPS6142130Y2 (en)
JPS5888631A (en) Detecting element for thrust and torque
US2928279A (en) Stagnation air temperature measuring device
CN207096175U (en) A kind of array-type ultrasonic probe combined system for pipeline
JP3612075B2 (en) Aviation sensors for listening to acoustic signals
JPS634666B2 (en)
US2669864A (en) Pneumatic bore gauge
KR20050026307A (en) Five-sensor conductivity probe
RU2121667C1 (en) Pitot-static tube
JPS58171618A (en) Measuring device of gradient
Barberis et al. Experimental study of three-dimensional separation on a large-scale model
SU1125538A1 (en) Acoustic probe for two-phase media diagnostics
KR200176511Y1 (en) A standard measuring instrument for measure a rotating error of a pylon's pillar
GB2142439A (en) Vorticity measuring apparatus
JPS6190053A (en) Ultrasonic inspecting device
JPS5854671Y2 (en) Karman vortex flowmeter
JPH0334674Y2 (en)
DREON Controlled diffusion compressor blade wake measurements(M. S. Thesis)
SADEH et al. A dry-surface coating method for visualization of separation(bluff bodies)
JPS6393507A (en) Hand drill capable of holding its perpendicularity and/or a fixed angle
JPS6245134Y2 (en)
JPS6076264U (en) Ultrasonic flaw detection equipment for ultra-small diameter pipes
SU661937A1 (en) Method for determining point of destruction of free vortex on the wing