JPS6141703A - Composite sintered material - Google Patents

Composite sintered material

Info

Publication number
JPS6141703A
JPS6141703A JP16309584A JP16309584A JPS6141703A JP S6141703 A JPS6141703 A JP S6141703A JP 16309584 A JP16309584 A JP 16309584A JP 16309584 A JP16309584 A JP 16309584A JP S6141703 A JPS6141703 A JP S6141703A
Authority
JP
Japan
Prior art keywords
sintered
hard
composite
cemented carbide
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16309584A
Other languages
Japanese (ja)
Other versions
JPH0742489B2 (en
Inventor
Akio Hara
昭夫 原
Yuichiro Kono
鴻野 雄一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59163095A priority Critical patent/JPH0742489B2/en
Priority to DE8585304135T priority patent/DE3575092D1/en
Priority to EP85304135A priority patent/EP0168953B2/en
Priority to AT85304135T priority patent/ATE49147T1/en
Priority to KR1019850004091A priority patent/KR920001585B1/en
Priority to CA000483612A priority patent/CA1286510C/en
Publication of JPS6141703A publication Critical patent/JPS6141703A/en
Priority to US07/231,644 priority patent/US4880707A/en
Publication of JPH0742489B2 publication Critical patent/JPH0742489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a composite sintered material having a hard head part by joining a hard sintered part contg. diamond powder at a specific ratio and a supporting part consisting of a sintered hard alloy made by binding carbide consisting essentially of WC by a ferrous metal under specific conditions. CONSTITUTION:The supporting member 22 is joined to one end of the hard sintered part 21 contg. >=50% either or both of the diamond powder or high- pressure phase boron nitride powder (<=30mu average grain size) in the sintering stage of said part 21, by which the composite hard material 23 is obtd. The diameter or corresponding diameter of such material 23 is made <=3mm. and the axial length of the part 21 is made 0.3-2mm.. The axial length of the part 22 is made >=5 times the axial length of the part 21. The supporting part 22 consists of the sintered hard alloy made by binding the carbide consisting essentially of WC with the ferrous metal (more preferably Co). The average grain size of the carbide is made <=3mu and the binder metal is used at >=7wt%. The small- diameter sintered material 23 having the hard head part and the supporting part possessing the high strength and deflective strength is thus obtd.

Description

【発明の詳細な説明】 11孟9愚J公互 本発明は硬質な頭部を有する複合焼結材料に関する。[Detailed description of the invention] 11 Meng 9 Gu J Gong Mutual The present invention relates to a composite sintered material with a hard head.

更に詳細には本発明は、ダイヤモンド焼結体或いは高圧
相窒化硼素焼結体の如き硬質な頭部と、該頭部と一体に
構成される超硬合金からなる支持部とを具備する小断面
の複合焼結材料に関する。
More specifically, the present invention provides a small cross-sectional structure comprising a hard head such as a diamond sintered body or a high-pressure phase boron nitride sintered body, and a support part made of a cemented carbide integrally formed with the head. The present invention relates to composite sintered materials.

このような本発明の対象となる小断面の複合焼結材料は
、高性能な小径ドリルの素材或いはドツトプリンタのヘ
ッド部として用いることができる。
Such a composite sintered material with a small cross section, which is the object of the present invention, can be used as a material for a high-performance small-diameter drill or as a head portion of a dot printer.

従来の技術 超硬合金よりなるドリルが金属、非金属材料の穴あけ用
に多用されている。特に近年急激に需要が伸びているプ
リント基板の穴あけには直径1mm前後或いはこれより
細い超硬合金製ドリルが使われている。プリント基板の
集積度は今後も上昇すると予想され、それに伴ないより
細径のドリルの使用割合が増えてい(と考えられる。
BACKGROUND OF THE INVENTION Drills made of cemented carbide are widely used for drilling holes in metal and non-metal materials. In particular, cemented carbide drills with a diameter of about 1 mm or thinner are used for drilling holes in printed circuit boards, the demand of which has been increasing rapidly in recent years. The degree of integration of printed circuit boards is expected to continue to increase, and it is thought that the proportion of smaller diameter drills used will increase accordingly.

一方、プリント基板には各種の材料が使われているが、
主として用いられているのはガラス繊維にエポキシ樹脂
を含浸させた強化樹脂で、一般にガラエボ基板と称され
ている。
On the other hand, various materials are used for printed circuit boards,
What is mainly used is a reinforced resin made by impregnating glass fiber with epoxy resin, and is generally referred to as a glass-evo substrate.

このようなプリント基板の穴あけは剛性の高いドリルで
通常回転数5〜6万rpmの条件で行われているが、基
板に含まれるガラス繊維は超硬工具を非常に早く摩耗さ
せ、一般的に3000〜5000ヒツト(ヒツトとは穴
あけ回数のこと)で超硬ドリルは寿命となる。こうした
ドリル盤には自動工具交換装置がついており、寿命とな
ったドリルは自動的に交換される。しかしながら、上述
のようにプリント基板の集積度が高まるにつれ、生産効
率向上のためにはこの自動工具交換のための時間も問題
であり、ドリル寿命をのばして工具交換回数すなわち交
換時間を減少させるという要求が強い。
Drilling of such printed circuit boards is usually done using a highly rigid drill at a rotation speed of 50,000 to 60,000 rpm, but the glass fibers contained in the board wear out the carbide tool very quickly, and generally A carbide drill reaches the end of its lifespan after 3,000 to 5,000 hits (hits refers to the number of holes drilled). These drill machines have an automatic tool changer that automatically replaces the drill when it reaches the end of its useful life. However, as the degree of integration of printed circuit boards increases as mentioned above, the time required for automatic tool changes becomes an issue in order to improve production efficiency. Strong demands.

プリント基板の特性からみると、更に耐熱性等を向上さ
せて高機能化を計りたいという要求も強く、このような
基板材料は実際に製造可能であるが、一般にこのような
高機能材料は難削で、従来の超硬質ドリルでは非常に短
寿命となってしまい、このためこの種の基板材料の実用
化が出来ないのが実情である。
Looking at the characteristics of printed circuit boards, there is a strong demand for higher functionality by further improving heat resistance, etc., and although it is actually possible to manufacture such board materials, it is generally difficult to produce such high-performance materials. Due to cutting, conventional ultra-hard drills have a very short lifespan, and the reality is that this type of substrate material cannot be put to practical use.

更に、通常のガラエポ基板に対しても更に高能率の穴あ
けを行うため穴あけドリルの回転数の上昇が望まれてい
るが、これも従来の超硬合金製ドIJ )−では切削速
度の上昇と共に急激に寿命が低下してしまうのでドリル
回転数上昇による高能率化を達成できない。
Furthermore, it is desired to increase the rotational speed of the drilling drill in order to drill holes even in ordinary glass epoxy substrates with higher efficiency, but this also increases the cutting speed of conventional cemented carbide IJs. Since the life of the drill decreases rapidly, it is not possible to achieve high efficiency by increasing the rotational speed of the drill.

一方、近年使用量が急激に増加しつつある焼結ダイヤモ
ンド工具は超硬工具に対して飛躍的に硬度が高く、耐摩
耗性がすぐれており、上記強化樹脂などの切削に於いて
は非常な高性能を発揮する。
On the other hand, sintered diamond tools, whose usage has been rapidly increasing in recent years, have significantly higher hardness and wear resistance than carbide tools, and are extremely useful when cutting the above-mentioned reinforced resins. Demonstrates high performance.

ところが第1図に示すように、現在市販されている焼結
ダイヤモンド素材は焼結ダイヤモンド層11が超硬合金
の支持B12に14の部分で貼り合わされた形状のもの
である。
However, as shown in FIG. 1, the sintered diamond material currently on the market has a shape in which a sintered diamond layer 11 is bonded to a cemented carbide support B 12 at a portion 14.

この複合焼結体13を使用してドリルを作製する場合に
は第2図に示すようにシャンク15の先端部に複合焼結
体13を何らかの方法により固着させて作らざるを得な
い。
When manufacturing a drill using this composite sintered body 13, the composite sintered body 13 must be fixed to the tip of the shank 15 by some method as shown in FIG.

ところが例えばプリント基板用に使われるドリルの径は
一般に1mm程度より細く、場合によっては0.1mm
位であり、このような小径のものではシャンク15と余
程強力な接合強度をもたせないと接合後の刃先研削加工
で接合部16からはずれてしまい、良好なドリルが製造
できない。特に焼結ダイヤモンドは難研削であり、研削
抵抗が高く、通常の銀ロウ付は程度の強度では強度不足
である。接合強度の高い接合方法として例えば電子ビー
ム溶接が考えられるが、電子ビーム溶接を実施するとな
ると、ドリルの製造工程が複雑且つ原価が高くなり、高
性能ドリルの需要の近年の急激な増加に対応できなかっ
た。
However, for example, the diameter of drills used for printed circuit boards is generally smaller than 1 mm, and in some cases is 0.1 mm.
If such a small diameter drill is not provided with a very strong joint strength with the shank 15, it will come off from the joint 16 during grinding of the cutting edge after joining, making it impossible to manufacture a good drill. In particular, sintered diamond is difficult to grind and has high grinding resistance, and the strength of ordinary silver brazing is insufficient. For example, electron beam welding can be considered as a bonding method with high bonding strength, but if electron beam welding were to be implemented, the drill manufacturing process would be complicated and the cost would be high, making it difficult to meet the rapid increase in demand for high-performance drills in recent years. There wasn't.

一方、支持部について説明すると特に小径の製品の場合
には支持部の強度は非常に重要である。
On the other hand, regarding the support part, the strength of the support part is very important, especially in the case of a small diameter product.

前に述べたようにプリント基板の集積度は近年上がって
来ており、将来益々この現象は加速されると考えてよい
。すなわちスルー・ホール・メッキされる孔の径はどん
どん小径へ移行する。今後プリント基板の製造に0.1
mmφとか0.3n++nφの小径のドリルの使用量は
増大する。このとき特に問題となるのはドリルの折損で
あり、刃先の摩耗で寿命となる前に折損してしまっては
高価な焼結ダイヤモンドドリルを使用する意味がなくな
る。折損をさけるために軟い材料や剛性の低い材料で支
持部を製造すると屈曲し易くなり真直な穴があかないと
いう問題がある。又切粉による支持部の摩耗の問題も生
ずる。
As mentioned earlier, the degree of integration of printed circuit boards has been increasing in recent years, and it is safe to assume that this phenomenon will accelerate further in the future. In other words, the diameter of the hole to be through-hole plated becomes smaller and smaller. 0.1 for the production of printed circuit boards in the future
The amount of small diameter drills used, such as mmφ or 0.3n++nφ, will increase. In this case, a particular problem is breakage of the drill, and if the drill breaks before the end of its life due to wear of the cutting edge, there is no point in using an expensive sintered diamond drill. If the support part is made of a soft material or a material with low rigidity in order to avoid breakage, there is a problem that the support part is easily bent and a straight hole cannot be made. There also arises the problem of wear of the support portion due to chips.

発明が解決しようとする問題点 本発明は、上記従来技術の問題を解決することを目的と
し、更に詳細には、硬質な頭部と強度および抗折力の高
い支持部とを有する小径の複合焼結材料を提供し、これ
より切削性、耐摩耗性および剛性が優れ且つ長寿命のド
リル等を容易に製造可能とすることを目的とする。
Problems to be Solved by the Invention The present invention aims to solve the above-mentioned problems of the prior art. The object of the present invention is to provide a sintered material from which it is possible to easily manufacture drills and the like that have excellent machinability, wear resistance, and rigidity, and have a long life.

更に本発明の目的は、ガラエボ基板の如き難削性の基板
の穴あけを容易且つ高性能で実現する、長寿命のドリル
を低価格で提供することにある。
A further object of the present invention is to provide, at a low price, a long-life drill that can easily and efficiently drill holes in difficult-to-cut substrates such as Gala Evo substrates.

更に、本発明の目的は、ドツトプリンタのヘッドの如き
超硬質の先端部を必要とする細長の部材を容易に製造し
得る中間製品としての小径の複合焼結材料を提供するこ
とにある。
A further object of the present invention is to provide a small diameter composite sintered material as an intermediate product that can be easily manufactured into elongated parts requiring ultra-hard tips, such as dot printer heads.

更に詳細には、本発明の目的は、本出願人による特願昭
59−120218号に開示した複合焼結材料の支持部
の耐摩耗性および剛性を改善することにある。
More specifically, an object of the present invention is to improve the wear resistance and rigidity of the support portion of the composite sintered material disclosed in Japanese Patent Application No. 59-120218 by the present applicant.

問題点を解゛する手段 上記の目的を達成するため、本発明に従い、ダイヤモン
ド粉末または高圧相窒化硼素粉末のいずれか一方または
双方を50%以上含有する硬質焼結部と、該硬質焼結部
の1端部で該硬質焼結部と接合している超硬合金からな
る支持部とを具備する複合焼結材料であって、 該硬質焼結部と該支持部との接合は、該硬質焼結部の焼
結過程で形成されたものであり;更に、該複合焼結材料
の直径あるいは相当直径は3mm以下であり; 該硬質焼結部の軸方向長さが0.3〜2mmであり;該
支持部の軸方向長さが該硬質焼結部の軸方向長さの5倍
以上であり; 該支持部はWCを主成分とした炭化物を鉄属金属で結合
した超硬合金よりなり、この超硬合金中の炭化物の平均
粒度が3μm以下であり、また結合金材量が7重量%以
上であることを特徴とする硬質な頭部を有する複合焼結
材料が提供される。
Means for Solving the Problems In order to achieve the above object, according to the present invention, a hard sintered part containing 50% or more of either diamond powder or high-pressure phase boron nitride powder, or both, and the hard sintered part are provided. a supporting part made of cemented carbide joined to the hard sintered part at one end of the composite sintered material, the joining between the hard sintered part and the supporting part The hard sintered part is formed during the sintering process; furthermore, the diameter or equivalent diameter of the composite sintered material is 3 mm or less; the axial length of the hard sintered part is 0.3 to 2 mm; Yes; the axial length of the supporting portion is at least 5 times the axial length of the hard sintered portion; Thus, there is provided a composite sintered material having a hard head, characterized in that the average grain size of carbide in the cemented carbide is 3 μm or less, and the amount of the binder material is 7% by weight or more.

ダイヤモンド粉末または高圧相窒化硼素粉末の平均粒度
は好ましくは30μm以下であり、この範囲の粒度のダ
イヤモンドまたは高圧相窒化硼素焼結体で耐摩耗性およ
び剛性に優れた複合焼結材料が得られる。
The average particle size of the diamond powder or high-pressure phase boron nitride powder is preferably 30 μm or less, and a composite sintered material with excellent wear resistance and rigidity can be obtained with a diamond or high-pressure phase boron nitride sintered body having a particle size in this range.

ただし、ダイヤモンド粉末を使用して切削工具のチップ
を作製するときは、平均粒度が10μmを越えるダイヤ
モンド粉末を原料として使用すると、この複合焼結材料
を加工して得た切削工具の切刃が鋭利に成形できず、こ
のため高性能とならないので、硬質焼結部は10μm以
下のダイヤモンドまたは高圧相窒化硼素からなるのが好
ましい。
However, when making cutting tool tips using diamond powder, if diamond powder with an average particle size exceeding 10 μm is used as a raw material, the cutting edge of the cutting tool obtained by processing this composite sintered material will be sharp. The hard sintered part is preferably made of diamond or high-pressure phase boron nitride with a diameter of 10 μm or less, since the hard sintered part cannot be molded into a material with a diameter of 10 μm or less, resulting in poor performance.

硬質焼結部がダイヤモンド粉末を主成分として焼結され
たものであるときは、ダイヤモンド粉末単独、或いは7
0%以上のダイヤモンドを含み、残部がFe、 Coま
たはN1を主成分とする結合材により焼結したものであ
る。このような硬質焼結部の好ましい例としては、70
%以上のダイヤモンドと)質−5〜15%Coとの焼結
体がある。
When the hard sintered part is sintered with diamond powder as the main component, diamond powder alone or 7
It is sintered with a binder containing 0% or more of diamond, with the remainder mainly composed of Fe, Co, or N1. A preferable example of such a hard sintered part is 70
There is a sintered body of 5% to 15% Co and 5% to 15% Co.

尚、硬質焼結部の材料としてダイヤモンド単独の粉末を
使用する場合は、硬質焼結部の焼結時に支持部材料中の
結合材成分もしくはダイヤモンド粉末に隣接しておいた
溶浸材が硬質焼結部材料粉束中に溶浸することによって
硬質焼結部の焼結が達成される。
In addition, when using diamond powder alone as the material for the hard sintered part, the binder component in the support part material or the infiltration material placed adjacent to the diamond powder will be mixed with the hard sintered part when the hard sintered part is sintered. Sintering of the hard sintered part is achieved by infiltration into the binder material powder bundle.

硬質焼結部が高圧相窒化硼素粉末を主成分とする場合は
、高圧相窒化硼素粉末単独、或いは50%以上の高圧相
窒化硼素に4a、 5a、 6a族元素の炭化物、窒化
物、炭窒化物及びアルミニウムおよび/またはシリコン
を結合材として添加して焼結したものがある。なお、高
圧相窒化硼素単独の粉末はそれに隣接して置いた溶浸材
から溶浸されて焼結が達成される。ここで、高圧相窒化
硼素とは、立方晶型窒化1j素およびウルツ鉱型窒化硼
素を意味する。
When the hard sintered part is mainly composed of high-pressure phase boron nitride powder, the high-pressure phase boron nitride powder alone or 50% or more of high-pressure phase boron nitride and carbides, nitrides, or carbonitrides of group 4a, 5a, and 6a elements are added. There are also sintered materials with aluminum and/or silicon added as binders. Incidentally, the powder of high-pressure phase boron nitride alone is infiltrated from an infiltrant placed adjacent to it to achieve sintering. Here, high-pressure phase boron nitride means cubic crystal type boron nitride and wurtzite type boron nitride.

次に支持部について説明すると、WCを主成分とする超
硬合金は高い剛性のみならず高い耐摩耗性を有し、また
高い耐摩耗性を示す割りに強度の高い優れた工業材料で
あるため本発明に於いても支持部には−Cを主成分とす
る超硬合金を採用した。
Next, to explain the support part, cemented carbide whose main component is WC has not only high rigidity but also high wear resistance, and it is an excellent industrial material with high strength despite its high wear resistance. Also in the present invention, a cemented carbide whose main component is -C is used for the support portion.

鋼切削用の超硬合金に含まれているTiCやTaCは本
発明の支持部の場合には耐摩耗性の向上には役立たずむ
しろ強度を低下するので有効でない。
TiC and TaC contained in cemented carbide for steel cutting are not effective in the case of the support part of the present invention because they do not help improve wear resistance but rather reduce strength.

しかし焼結時にWCの粒成長を抑制するに有効な数%以
下程度の少量のTa C、Crs C2やVCは特に微
細なWCを主成分とする超硬合金を得るのに有効である
°。また結合金属としてCoが最も好ましく、N1がそ
れに次いで好ましい。
However, a small amount of Ta C, Crs C2 or VC of several percent or less, which is effective in suppressing the grain growth of WC during sintering, is particularly effective in obtaining a cemented carbide mainly composed of fine WC. Further, Co is the most preferred bonding metal, and N1 is the second most preferred.

本発明の好ましい1態様に従うと、支持部を構成する超
硬合金中の炭化物の粒度が2μm以下であり、結合金属
量が12重量%以上である。
According to a preferred embodiment of the present invention, the particle size of carbide in the cemented carbide constituting the support portion is 2 μm or less, and the amount of bonded metal is 12% by weight or more.

更に、本発明の1つの態様に従うと、硬質焼結部と支持
部とは、厚さ0.5mm以下の中間接合層を介して接合
されている。
Furthermore, according to one aspect of the present invention, the hard sintered part and the support part are joined via an intermediate joining layer having a thickness of 0.5 mm or less.

中間接合層としては、70%未満の高圧相窒化硼素と残
部が周期律表第4a族のTi5ZrSHfの炭化物、窒
化物、炭窒化物あるいはホウ化物の1種もしくはこれら
の混合物または相互固溶体化合物を主体としたものと、
これにAIおよび/またはSlを0.1重世%以上含有
するものが好ましい。
The intermediate bonding layer is mainly composed of less than 70% high-pressure phase boron nitride and the remainder is one of carbides, nitrides, carbonitrides, or borides of Ti5ZrSHf in group 4a of the periodic table, or a mixture thereof or a mutual solid solution compound. and
It is preferable that this contains 0.1 weight percent or more of AI and/or Sl.

上記した如く、本発明に於いては硬質焼結部と支持部の
接合が硬質焼結部の焼結時に形成されることが肝要であ
る。このために、硬質焼結部のホットプレス(焼結処理
)時に硬質焼結部の材料粉末を支持部材料の上に配置し
てホットプレスを行うことが必要である。このとき、支
持部となる材料は、既に焼結済みの固形超硬合金であっ
てもよ(、或いは超硬合金材料の粉末であってもよい。
As described above, in the present invention, it is important that the bond between the hard sintered part and the support part be formed during sintering of the hard sintered part. For this reason, during hot pressing (sintering treatment) of the hard sintered part, it is necessary to place the material powder of the hard sintered part on the support part material and perform hot pressing. At this time, the material serving as the support portion may be a solid cemented carbide that has already been sintered (or may be a powder of a cemented carbide material).

次ぎに、本発明の複合焼結材料円柱体の寸法上の特徴を
説明する。
Next, the dimensional characteristics of the composite sintered material cylinder of the present invention will be explained.

本発明の複合焼結材料の断面は3mm以下の直径あるい
は相当直径であることが必要である。3mlTlを越え
る直径の複合焼結材料はプリント基板の穴あけドリル用
素材としては不適格である。また研削して使用するにし
ても研削代が大きくなり不経済である。ここで、相当直
径とは断面積の等しい円の直径に換算した値を意味する
The cross section of the composite sintered material of the present invention needs to have a diameter of 3 mm or less or an equivalent diameter. Composite sintered materials with diameters exceeding 3 ml Tl are unsuitable as materials for drilling holes in printed circuit boards. Moreover, even if it is used after grinding, the grinding allowance becomes large and it is uneconomical. Here, the equivalent diameter means a value converted to the diameter of a circle with the same cross-sectional area.

また、硬質焼結部の軸方向の長さは0.3〜2 mmの
は囲である。0.3mm未満では、ドリル先端部として
使用した場合には必要な切刃を形成できず、2m+1を
越える長さでは高価!よダイヤモンド粉末等を多量に使
用することになり不経済であり、また折損の危険が増加
する。
Further, the length of the hard sintered portion in the axial direction is approximately 0.3 to 2 mm. If it is less than 0.3 mm, it will not be possible to form the necessary cutting edge when used as the tip of a drill, and if the length exceeds 2 m + 1, it will be expensive! This method requires a large amount of diamond powder, etc., which is uneconomical, and increases the risk of breakage.

更に、本発明の複合焼結材料の支持部の長さは硬質焼結
部の長さの5倍以上であることが必要である。ドリルを
作製する場合に、ドリルの刃先長さを確保し、末端をシ
ャンクに埋込む必要があるので、上記の通り、硬質焼結
部の長さの5倍以上の長さの支持部が必要となる。複合
焼結材料の断面形状としては円形が一般に望ましいが、
ドリルにしても平切りドリルもあり、必ずしも円形にこ
九月 本発明は上述した如く特願昭59−120218号およ
び特願昭59−12D219号に開示した複合焼結材料
の支持部を改良したものである。すなわち、上記した如
く本発明の複合焼結材料に於いては支持部の軸方向長さ
は硬質焼結部の長さの5倍以上ある。
Furthermore, the length of the support part of the composite sintered material of the present invention needs to be at least five times the length of the hard sintered part. When making a drill, it is necessary to ensure the length of the drill's cutting edge and embed the end in the shank, so as mentioned above, a support part that is at least 5 times the length of the hard sintered part is required. becomes. Generally, a circular cross-sectional shape is desirable for composite sintered materials;
There are also flat-cutting drills, and the present invention does not necessarily have a circular shape.As mentioned above, the present invention improves the supporting part of the composite sintered material disclosed in Japanese Patent Application No. 59-120218 and Japanese Patent Application No. 59-12D219. It is something. That is, as described above, in the composite sintered material of the present invention, the axial length of the support portion is five times or more the length of the hard sintered portion.

従って、ドリルとして用いられる際には支持部の折損ま
たは屈曲の恐れがあり、更に高速回転による摩耗を考慮
する必要があり、上記の如く支持部の成分を限定して苛
酷な使用条件でも折損または屈曲の恐ぢがなく、長寿命
のドリルを提供することに成功したものである。従って
、本発明による支持部の改良点およびその作用を以下に
詳細に説明する。
Therefore, when used as a drill, there is a risk of the support part breaking or bending, and it is also necessary to take into account wear caused by high-speed rotation. This has succeeded in providing a drill with a long life and no fear of bending. Therefore, the improvements in the support according to the invention and their operation will be explained in detail below.

まず、本発明の複合焼結材料の一つの特徴は硬質焼結部
と支持部との接合を硬質焼結部の焼結過程で形成するこ
とにある。このため支持部が製造中にダイヤモンド又は
高圧相型窒化硼素が安定な高温でしかも超高圧下にさら
される。WC−Coの焼結は通常真空下1300〜15
00℃の温度で行われ、一方ダイヤモンド又は高圧相型
窒化硼素の焼結は温度は同程度であるが、4万〜5万気
圧の超高圧下でなされる。従ってWC−Coは予め焼結
されたものが用いられるにせよ、硬質部と同時に焼結さ
れるにせよこの超高圧の影響を受ける。
First, one feature of the composite sintered material of the present invention is that the bond between the hard sintered part and the support part is formed during the sintering process of the hard sintered part. For this reason, during manufacture of the support part, diamond or high-pressure phase boron nitride is exposed to stable high temperatures and extremely high pressures. Sintering of WC-Co is usually performed under vacuum at a temperature of 1300 to 15
Sintering of diamond or high-pressure phase boron nitride is carried out at a temperature of 0.000C, while the temperature is similar, but under ultra-high pressure of 40,000 to 50,000 atmospheres. Therefore, WC-Co is affected by this ultra-high pressure regardless of whether it is pre-sintered or sintered at the same time as the hard part.

本発明の複合焼結材料を製造するには予め焼結した支持
部を用いる場合の方が容易である。従って本発明者は色
々な種類の焼結済みのWe−Co合金を上記条件にさら
してみたところ、以下の現象を見い出した。
It is easier to manufacture the composite sintered material of the present invention when a pre-sintered support part is used. Therefore, the inventor of the present invention exposed various types of sintered We-Co alloys to the above conditions and found the following phenomenon.

一般にWC−C0合金の機械的特性はCo%とWC結晶
粒度で決まる。ところで、肛結晶の粒度が3μm以上の
場合には、このWC結晶は超高圧加圧により破壊され、
その機械的特性が大幅に変わってしまい一定の機械的特
性を有する支持部の製造が困難となる。従って、支持部
の超硬合金のWC結晶の平均粒度を3μm以下とした。
Generally, the mechanical properties of a WC-C0 alloy are determined by Co% and WC grain size. By the way, when the grain size of the annular crystals is 3 μm or more, the WC crystals are destroyed by ultra-high pressure.
Its mechanical properties vary significantly, making it difficult to manufacture a support with constant mechanical properties. Therefore, the average grain size of the WC crystals of the cemented carbide in the support portion was set to 3 μm or less.

しかしながら、ダイヤモンド又は高圧相型窒化硼素の焼
結条件に於いて、WC結晶は液相Coとの濡れ性が極め
て良いので、破壊したVIC結晶中に液相Coが侵入し
破壊されたWCをCoが結合した形となるので、その機
械的特性はかならずしも低下すると限らないことが本発
明者等の実験で確認された。
However, under the sintering conditions of diamond or high-pressure phase type boron nitride, WC crystals have extremely good wettability with liquid phase Co, so liquid phase Co enters into the destroyed VIC crystals and destroys the destroyed WC. It has been confirmed through experiments by the present inventors that the mechanical properties do not necessarily deteriorate because of the bonded form.

例えば、従来の技術知識に従うと、平均粒度1μm以下
のWC−Co合金の場合、少量の大きな肛結晶が存在す
るとこの大きな札結晶が破壊の起点になり強度が低下す
ると考えられた。しかしながら、本発明者等の実験によ
ると、逆に超高圧加圧により処理後の強度が上昇する場
合がある。こうした強度上昇の現象は超硬合金中の結合
金属の含有量によって左右される。本発明者等の実験に
よると、この強度上昇は、ダイヤモンド又は高圧相型窒
化硼素の焼結中の超高圧加圧により大きなWC結晶が破
壊され、破壊されたWC結晶間に結合金属が侵入してこ
れらを結合するためと考えられる。
For example, according to conventional technical knowledge, in the case of a WC-Co alloy with an average grain size of 1 μm or less, it was thought that if a small amount of large annular crystals were present, the large tag crystals would become a starting point for fracture and the strength would decrease. However, according to experiments conducted by the present inventors, the strength after treatment may increase due to ultra-high pressure. This phenomenon of increased strength is influenced by the content of bonding metal in the cemented carbide. According to experiments conducted by the present inventors, this increase in strength is due to large WC crystals being destroyed by ultra-high pressure during sintering of diamond or high-pressure phase type boron nitride, and bonding metal entering between the destroyed WC crystals. It is thought that this is to combine these.

一方、超高圧加圧が完全に静水圧的になされるならば問
題ないが、実際にはその加圧を静水圧に近づける工夫を
加えているというのが工業生産における実状である。従
って、超高圧加圧下の超硬合金には無理な変形が加わる
と考えてよい。例えばWC−Co合金を例に考察すると
、その含有Cofiが多ければ、その変形に合金が追随
可能であるが、少なければ、最も変形の著しかった部分
に微細亀裂ないしは孔などの欠陥を生ずる可能性がある
On the other hand, there would be no problem if ultra-high pressure was applied completely hydrostatically, but the reality in industrial production is that measures are taken to bring the pressure closer to hydrostatic pressure. Therefore, it can be considered that unreasonable deformation is applied to the cemented carbide under ultra-high pressure. For example, if we consider the WC-Co alloy as an example, if the Cofi content is large, the alloy can follow the deformation, but if it is small, defects such as microcracks or holes may occur in the most severely deformed parts. There is.

を貰圧高温加熱を色々なCo量の合金に加えた後その抗
折力を測定してみたところCo11が重量で7%以下の
場合には、超高圧高温処理前に比べ抗折力値は低下する
こと、12%以上の場合にはむしろ向上することを見い
出した。
After applying pressure and high temperature heating to alloys with various amounts of Co, we measured their transverse rupture strength. When Co11 was less than 7% by weight, the transverse rupture strength value was lower than that before the ultra-high pressure and high temperature treatment. It was found that in the case of 12% or more, it actually improved.

7%以下の場合は超高圧によりWC結晶が破壊され、こ
れにCoが追随できず欠陥を生じたためと考えられる。
If it is less than 7%, it is considered that the WC crystal is destroyed by the ultra-high pressure, and the Co cannot follow this, resulting in defects.

12%以上の場合に、むしろ抗折力が向上した理由は次
のごとくと考えられる。
The reason why the transverse rupture strength was rather improved in the case of 12% or more is considered to be as follows.

WC−Co合金の破壊の起点は前述のごとく粗大なWC
結晶、空孔、異相といわれる。いま、異相は存在しない
ことを処理前後に顕微鏡で観察しているので問題外とす
る。粗大なり4C結晶については前に述べた如くである
。空孔というのは数μmから数百μmの孔を指すがこれ
が外圧によってつぶれ或いはCoにより充填されること
が旧Pの例から容易に推測出来る。HIPの場合と本発
明の複合焼結材料の製造工程では処理温度は同一であり
、本発明の場合の方が圧力が一桁以上高いのでこの傾向
がより助長されると考えられる。
As mentioned above, the starting point of fracture in WC-Co alloy is coarse WC.
They are called crystals, vacancies, and different phases. At present, we are observing with a microscope before and after treatment that there are no foreign phases, so this is not a problem. The coarse 4C crystals are as described above. The pores refer to pores ranging in size from several μm to several hundred μm, and it can be easily inferred from the example of old P that these are crushed by external pressure or filled with Co. Since the processing temperature is the same in the HIP case and the manufacturing process of the composite sintered material of the present invention, and the pressure is more than an order of magnitude higher in the case of the present invention, it is thought that this tendency is further promoted.

Co%が12%より更に高い、例えば20%のWC−C
WC-C with Co% higher than 12%, e.g. 20%
.

合金ではその抗折力の増加率が30%以上と大きかった
。その抗折力の増加率の高い原因を検討した結果数のこ
とが分った。
For alloys, the increase rate in transverse rupture strength was as large as 30% or more. As a result of examining the causes of the high rate of increase in transverse rupture strength, several things were found.

すなわち、WC−CoのCo相は通常FCC構造をなし
、合金の含有炭s量が低い場合には10%近くのWを固
溶しているが一般には純Coに近い組成である。
That is, the Co phase of WC-Co usually has an FCC structure, and when the amount of carbon contained in the alloy is low, it contains nearly 10% W as a solid solution, but generally the composition is close to that of pure Co.

従って、一般にCo量の高い−C−Co超硬合金は容易
に変形し、このため歪をかけていくと塑性変形し、いわ
ゆる歪一応力曲線はなだらかに水平に寝た形となる。こ
の曲線が寝た形とならず直線的に上昇推移すれば強度は
高くなることになる。この観点から高温且つ超高圧の条
件下での処理後のCo相を調べたところWが15%前後
固溶していることが判明し、これによりCo相が変形し
難くなっていることが分った。この理由は次の如く考え
られる。
Therefore, in general, a -C-Co cemented carbide with a high Co content is easily deformed, and therefore, when strain is applied, it undergoes plastic deformation, and the so-called strain-stress curve has a gently horizontal shape. If this curve does not take a flat shape but moves upward in a straight line, the strength will increase. From this point of view, we investigated the Co phase after treatment under high temperature and ultra-high pressure conditions and found that around 15% W was dissolved in solid solution, which made it difficult for the Co phase to deform. It was. The reason for this is thought to be as follows.

すなわち、Co−W−C3元共晶からその共晶温度で析
出するCo相は約20%のWを含有する。通常の焼結後
の冷却ではWはこの3元共晶からWC相上へ析出する。
That is, the Co phase precipitated from the Co-W-C ternary eutectic at its eutectic temperature contains about 20% W. During normal cooling after sintering, W is precipitated from this ternary eutectic onto the WC phase.

しかし本発明の複合焼結材料の製造工程では硬質部の焼
結終了後まず加熱電源を切って冷却したのち除圧する。
However, in the manufacturing process of the composite sintered material of the present invention, after the hard part is sintered, the heating power is first turned off, the hard part is cooled, and then the pressure is removed.

すなわちWがCo相から析出しようとする時には、まだ
超高圧下にあり、このような超高圧下では固体中の拡散
速度は著しく低下し、WC相上への析出が阻止される。
That is, when W is about to precipitate from the Co phase, it is still under ultra-high pressure, and under such ultra-high pressure, the diffusion rate in the solid is significantly reduced, and precipitation onto the WC phase is prevented.

このことは本発明の複合焼結材料の支持部のWC−Co
超硬合金中のCo相が多くのWを固溶していることから
も納得できる。従って、本発明に於いては、通常ではそ
の変形により使えない範囲の高含有・量の結合金属を含
むWC超硬合金が支持部として用いられる。
This indicates that the WC-Co of the support part of the composite sintered material of the present invention
This is understandable because the Co phase in the cemented carbide contains a large amount of W as a solid solution. Therefore, in the present invention, a WC cemented carbide containing a high content and amount of bonding metal which would normally be unusable due to its deformation is used as the support part.

すなわち、本発明に従うと、支持部を構成する超硬合金
中の炭化物の平均粒度が3μm以下であり、また結合金
属量が7重量%以上である。
That is, according to the present invention, the average particle size of carbides in the cemented carbide constituting the support portion is 3 μm or less, and the amount of bonded metal is 7% by weight or more.

更に、本発明の好ましい態様に従うと、支持部を構成す
る超硬合金中の炭化物の粒度が2μm以下であり、結合
金属量が12重量%以上である。
Furthermore, according to a preferred embodiment of the present invention, the particle size of carbides in the cemented carbide constituting the support portion is 2 μm or less, and the amount of bonded metal is 12% by weight or more.

以下、本発明を実施例により説明する。The present invention will be explained below using examples.

ス1勇 添付図面の第3図(a)及び(ハ)は、それぞれ本発明
の複合焼結材料の外観を示す。
Figures 3(a) and 3(c) of the accompanying drawings show the appearance of the composite sintered material of the present invention, respectively.

第3図(a)に示す複合焼結材料円柱体23は硬質焼結
部21と支持部22とからなり、硬質焼結部21と支持
部22とは硬質焼結部21の焼結過程で一体に接合され
ている。
The composite sintered material cylindrical body 23 shown in FIG. 3(a) consists of a hard sintered part 21 and a support part 22. are joined together.

他方、第3図(b)に示す複合焼結材料円柱体23では
、硬質焼結部21と支持部22とは、それらの間に中間
接合層24を介在させて接合している。
On the other hand, in the composite sintered material cylindrical body 23 shown in FIG. 3(b), the hard sintered part 21 and the support part 22 are joined with an intermediate joining layer 24 interposed therebetween.

次に本発明の複合焼結材料円柱体の製造方法を説明する
Next, a method for manufacturing a cylindrical composite sintered material according to the present invention will be explained.

本出願人による特願昭59−120219号に詳細に記
載の如く、本発明者らは、まず断面積の大きな複合材料
ブロックのホットプレスを行って複合焼結体ブロックを
製造し、これを放電ワイヤカッティングで小断面の棒状
体に切断することにより小径で細長の、硬質な頭部を有
する複合焼結材料を与えることに成功したものである。
As described in detail in Japanese Patent Application No. 59-120219 filed by the present applicant, the present inventors first manufactured a composite sintered body block by hot pressing a composite material block having a large cross-sectional area, and then discharged the composite material block. By cutting into rod-shaped bodies with small cross-sections using wire cutting, we succeeded in producing a composite sintered material having a small diameter, elongated, and hard head.

すなわち、上記特願昭59−120219号に記載の方
法では、ダイヤモンド粉末または高圧相窒化硼素粉でを
50%以上含有する硬質焼結体用の第1の材料層と、該
第1の材料層の焼結過程で該第1の材料の硬質焼結体と
接合する第2の材料層とを同一のホットプレスコンテナ
内に加圧方向に重ねて装入し、高温高圧下でホットプレ
スして該第1の材料層を焼結すると同時に、得られた硬
質焼結体を該第2の材料層側と接合せしめて、所定厚さ
の硬質焼結体の層を有する複合材料ブロックを形成し、
該複合材料ブロックを放電ワイヤカッティング方法によ
り材料層厚方向に切断して、頭部に硬質焼結体を備える
細長の複合材料棒状体を2本以上切り取る。
That is, in the method described in Japanese Patent Application No. 59-120219, a first material layer for a hard sintered body containing 50% or more of diamond powder or high-pressure phase boron nitride powder; In the sintering process, the hard sintered body of the first material and the second material layer to be bonded are stacked in the pressing direction in the same hot press container, and hot pressed under high temperature and high pressure. At the same time as the first material layer is sintered, the obtained hard sintered body is joined to the second material layer to form a composite material block having a hard sintered body layer of a predetermined thickness. ,
The composite material block is cut in the material layer thickness direction using a discharge wire cutting method to cut out two or more elongated composite material rods each having a hard sintered body at the head.

この複合材料をホットプレスして焼結するに際し、本発
明に従うと、複合材料ブロックの軸方向長さはその相当
直径の3倍、好ましくは2倍以下の必要がある。3倍を
越える軸方向長さの複合材料ブロックのホットプレスを
行うと複合材料ブロック内の圧力分布が変則的となり、
曲がりなどを生ずるからである。
When hot-pressing and sintering this composite material, according to the invention, the axial length of the composite material block must be no more than three times, preferably twice, its equivalent diameter. When hot pressing a composite material block with an axial length exceeding 3 times, the pressure distribution within the composite material block becomes irregular.
This is because it causes bending, etc.

第3図に示す複合材料円柱体の切り出し方法を説明する
。上述の如くホットプレスして得られた複合焼結体ブロ
ック33は、第4図(a)に示す如く、厚さ1mmのダ
イヤモンド焼結体層31と、これに接合した超硬合金層
32とからなり、中間接合層を含む場合では第4図(b
)示す如くダイヤモンド焼結体層31と超硬合金層32
とが中間接合層34を介して接合されている。図示の例
では円柱状の複合焼結体ブロックを示しているが、複合
焼結体ブロックは円柱体でも角柱体でもよいことは勿論
である。
A method of cutting out the composite material cylinder shown in FIG. 3 will be explained. As shown in FIG. 4(a), the composite sintered body block 33 obtained by hot pressing as described above has a diamond sintered body layer 31 with a thickness of 1 mm, and a cemented carbide layer 32 bonded thereto. 4 (b) in the case where an intermediate bonding layer is included.
) As shown, a diamond sintered body layer 31 and a cemented carbide layer 32
are bonded to each other via an intermediate bonding layer 34. Although the illustrated example shows a cylindrical composite sintered body block, it goes without saying that the composite sintered body block may be a cylindrical body or a prismatic body.

これらの複合焼結体ブロックを第5図に示す如く、複合
焼結体ブロックと同軸方向の相当直径3mm以下の断面
の棒状体に放電ワイヤカッティング法により切断して第
3図(a)および(b)に示す如き硬質の頭部を有する
複合材料棒状体に切断する。
As shown in Fig. 5, these composite sintered blocks were cut into rod-shaped bodies with an equivalent diameter of 3 mm or less in the coaxial direction of the composite sintered blocks using the electric discharge wire cutting method. Cut into composite rods with hard heads as shown in b).

この放電ワイヤカッティング法では、ワイヤと複合焼結
体ブロックとの間に高電圧をかけ、ワイヤを緊張した状
態で走行させてブロックを切断するものであり、その方
法の詳細は例えば米国特許第4.103.137号を参
照されたい。
In this electric discharge wire cutting method, a high voltage is applied between a wire and a composite sintered block, and the wire is run under tension to cut the block. See No. .103.137.

以下、本発明の頭部に硬質な焼結体を有する複合焼結材
料の具体的な製造例を説明する。
Hereinafter, a specific manufacturing example of the composite sintered material having a hard sintered body in the head of the present invention will be described.

製造例1 外径13mm 、内径14m1′111高さ15mmの
WC=12%Co超硬合金製リング、外径14n+m 
、高さ12mmのWC−12%Co超硬合金製円柱ブロ
ック、外径14mm、厚さ0.5鵠のWC−12%Co
超硬合金製円板と粒径0.5μIのダイヤモンド粉末8
5%と残余が粒径領5μm以下のWC−15%Co超硬
合金粉末よりなる。混合粉末を用意した。
Manufacturing example 1 WC = 12% Co cemented carbide ring with outer diameter 13mm, inner diameter 14m1'111, height 15mm, outer diameter 14n+m
, WC-12%Co cemented carbide cylindrical block with a height of 12 mm, an outer diameter of 14 mm, and a thickness of 0.5 mm.
Cemented carbide disc and diamond powder with particle size of 0.5 μI 8
5% and the remainder consists of WC-15% Co cemented carbide powder with a particle size range of 5 μm or less. A mixed powder was prepared.

超硬合金リングの内径に超硬合金円柱ブロックを挿入し
、超硬合金リング内面と超硬合金円柱ブロックの上面と
で形成される直径14mm 、深さ3mmの凹所に前記
混合ダイヤモンド粉末を充填後加圧して、混合粉末の高
さを1.5mmとし、超硬合金円板で蓋をした後、超高
圧焼結装置中に配置し、圧力55kb、温度1370℃
の条件で15分間焼結を行った。
A cemented carbide cylindrical block is inserted into the inner diameter of the cemented carbide ring, and the mixed diamond powder is filled into a recess with a diameter of 14 mm and a depth of 3 mm formed by the inner surface of the cemented carbide ring and the top surface of the cemented carbide cylindrical block. The mixed powder was then pressurized to a height of 1.5 mm, covered with a cemented carbide disk, and placed in an ultra-high pressure sintering device at a pressure of 55 kb and a temperature of 1370°C.
Sintering was performed for 15 minutes under these conditions.

冷却後、減圧して取り出した封入容器の上部超硬合金円
板を研削により除去すると高さ12mmの超硬合金支持
部の上面に厚さ1mmの焼結ダイヤモンド層が接合して
形成され周囲に超硬合金製リングがやはり支持部及び焼
結ダイヤモンド層に結合した複合体ブロックが得られた
After cooling, the upper cemented carbide disk of the enclosure was removed by depressurization and removed by grinding, and a 1 mm thick sintered diamond layer was bonded to the top surface of the 12 mm high cemented carbide support, forming a layer around it. A composite block was obtained in which the cemented carbide ring was also bonded to the support and to the sintered diamond layer.

この複合体ブロックを第5図に示すように、放電ワイヤ
カット加工機に装着し、放電ワイヤカッティングして、
複合体ブロックの軸方向より直径1mm、長さ13mm
の丸棒で支持部は平均粒度2μmのWC−12%Co超
硬合金よりなり、その一端に長さ1mmの焼結ダイヤモ
ンド層が固着形成された円柱体を得た。
As shown in Figure 5, this composite block is mounted on an electric discharge wire cutting machine, and the electric discharge wire is cut.
1mm in diameter and 13mm in length from the axial direction of the composite block
A cylindrical body was obtained using a round rod, the supporting portion of which was made of WC-12% Co cemented carbide with an average grain size of 2 μm, and a sintered diamond layer of 1 mm length was fixedly formed on one end of the supporting portion.

製造例2 それぞれWC−12%Co超硬合金よりなる■外径18
mm、内径14mm 、高さ20mmのリング、■外径
14mm 。
Manufacturing example 2 Each made of WC-12%Co cemented carbide ■Outer diameter 18
mm, inner diameter 14mm, height 20mm ring, outer diameter 14mm.

高さ18mmのWC−1%CrzC2−20%Co円柱
ブ07り、■外径14mm、厚さ1mmの円板と、粒径
3μmのダイヤモンド粉末90%と残余がCo粉末より
なる混合粉末、粒径3μmの高圧相窒化硼素(以下、立
方晶型窒化硼素をCBNと略記する)粉末60%と残余
が(TiN−10重量%Al)の組成の粉末よりなる混
合粉法を用意した。
A WC-1%CrzC2-20%Co cylindrical block 07 with a height of 18 mm, ■ A disk with an outer diameter of 14 mm and a thickness of 1 mm, and a mixed powder consisting of 90% diamond powder with a particle size of 3 μm and the balance being Co powder, grains. A mixed powder method was prepared in which 60% of high-pressure phase boron nitride (hereinafter cubic boron nitride is abbreviated as CBN) powder with a diameter of 3 μm and the remainder had a composition of (TiN-10% by weight Al).

超硬合金製円柱ブロックの上面に前記CBN混合粉末を
溶媒に溶かしたものを厚さ50μmに塗付した後、溶媒
を加熱除去し、この処理を行った超硬合金円柱ブロック
を超硬リング内径に挿入した。
After applying a solution of the CBN mixed powder in a solvent to a thickness of 50 μm on the top surface of a cemented carbide cylindrical block, the solvent was removed by heating, and the cemented carbide cylindrical block subjected to this treatment was adjusted to the inside diameter of the cemented carbide ring. inserted into.

次に、超硬合金リング内面とCBN混合粉末を塗付した
超硬合金円柱ブロックの上面とで形成される凹所に前記
ダイヤモンド混合粉末を充填した後、加圧成型して厚さ
1mmのダイヤモンド混合粉末層を形成した後、超硬合
金円板で蓋をした。
Next, the recess formed by the inner surface of the cemented carbide ring and the upper surface of the cemented carbide cylindrical block coated with the CBN mixed powder is filled with the diamond mixed powder, and then pressure molded to form a 1 mm thick diamond. After forming the mixed powder layer, it was covered with a cemented carbide disk.

次にこの容器を超高圧焼結装置中に配置し、圧力55k
b、温度1400℃で10分間焼結を行った後、冷却、
減圧して容器を取り出した。容器の上部超硬合金円板を
研削除去すると高さ18mmの超硬合金支持体の上面に
厚さ0.5m+nの焼結ダイヤモンド層が厚さ25μm
の焼結CBN層を介して接合され、周囲に超硬合金リン
グが支持体及び焼結ダイヤモンド層に結合した複合体ブ
ロックが得られた。
Next, this container was placed in an ultra-high pressure sintering device, and the pressure was 55k.
b. After sintering at a temperature of 1400°C for 10 minutes, cooling;
The pressure was reduced and the container was taken out. When the upper cemented carbide disk of the container is removed by grinding, a sintered diamond layer with a thickness of 0.5 m + n is formed on the top surface of the cemented carbide support with a height of 18 mm and a thickness of 25 μm.
A composite block was obtained, which was bonded via a sintered CBN layer of 300 mL of carbon dioxide, with a cemented carbide ring around its periphery bonded to the support and the sintered diamond layer.

この複合体ブロックを放電ワイヤカット、加工機に装着
し、放電ワイヤカッティングにより複合体の軸方向より
直径0.3mm、長さ18.5mmの丸棒で支持部は平
均粒度0.7μmの微細なWC−1%Cr*C2−20
%Co超硬合金よりなり、その一端に長さ0.5mmの
焼結ダイヤモンド層が厚さ25μmの焼結CBN界面層
を介して接合形成された円柱体を得た。
This composite block was mounted on an electric discharge wire cutting and processing machine, and the supporting part was cut into fine particles with an average particle size of 0.7 μm using a round bar with a diameter of 0.3 mm and a length of 18.5 mm from the axial direction of the composite. WC-1%Cr*C2-20
A cylindrical body was obtained, which was made of %Co cemented carbide and had a sintered diamond layer with a length of 0.5 mm bonded to one end thereof via a sintered CBN interface layer with a thickness of 25 μm.

製造例3 WC−0,5%VC−13%Co超硬合金よりなり、上
面に直径20mm、深さ3mmの円形凹所を存する外径
24mrn、高さ25mmの円柱ブロック、外径20m
m、厚さ0.5mmのWC−12%Co超硬合金製円板
と粒径0.5μmのダイヤモンド粉末80%と残余が粒
径0.5μm以。
Production Example 3 A cylindrical block made of WC-0.5% VC-13% Co cemented carbide, with an outer diameter of 24 mrn and a height of 25 mm, with a circular recess of 20 mm in diameter and 3 mm in depth on the top surface, and an outer diameter of 20 m.
m, a WC-12% Co cemented carbide disk with a thickness of 0.5 mm, 80% diamond powder with a particle size of 0.5 μm, and the remainder with a particle size of 0.5 μm or more.

下のWC−15%Co超硬合金粉末よりなるダイヤモン
ド混合粉末を用意した。
A diamond mixed powder consisting of the WC-15% Co cemented carbide powder shown below was prepared.

このダイヤモンド混合粉末を前記超硬合金円柱ブロック
の上面凹所に充填後加圧して高さ2.3mmのダイヤモ
ンド混合粉末層を形成した。次にこの上に超硬合金円板
で蓋をした後、超高圧焼結装置内に配置し、圧力55k
b、温度1400℃で15分間焼結した。
This diamond mixed powder was filled into the recess on the upper surface of the cemented carbide cylindrical block and then pressed to form a diamond mixed powder layer with a height of 2.3 mm. Next, after covering this with a cemented carbide disk, it was placed in an ultra-high pressure sintering device, and the pressure was 55k.
b. Sintered at a temperature of 1400°C for 15 minutes.

焼結後、封入容器を取り出し、上面の超硬合金蓋を研削
除去すると上面円形凹所に厚さ1.5mmの焼結ダイヤ
モンド層を有し、これが周囲の合金容器に強固に接合し
た複合体ブロックが得られた。
After sintering, the sealed container is taken out and the cemented carbide lid on the top surface is polished off to reveal a composite body with a 1.5 mm thick sintered diamond layer in the circular recess on the top surface, which is firmly bonded to the surrounding alloy container. I got a block.

この複合体ブロックを放電ワイヤカット加工機に装着し
、放電ワイヤカッティングにより複合体ブロックの軸方
向より直径2mm、長さ23.5mmの丸棒で支持部は
平均粒度0.7 μmのWC−0,5%VC−13%C
o超硬合金よりなり、その一端に長さ1.5mmの焼結
ダイヤモンド層が固着形成された円柱体が得られた。
This composite block was mounted on an electrical discharge wire cutting machine, and by electrical discharge wire cutting, a round bar with a diameter of 2 mm and a length of 23.5 mm was cut from the axial direction of the composite block, and the support part was made of WC-0 with an average particle size of 0.7 μm. ,5%VC-13%C
A cylindrical body made of cemented carbide and having a 1.5 mm long sintered diamond layer fixedly formed at one end was obtained.

製造例4 外径18mm、内径14mm、高さ15mmのWC−1
2%C。
Manufacturing example 4 WC-1 with an outer diameter of 18 mm, an inner diameter of 14 mm, and a height of 15 mm.
2%C.

超硬合金リング、外径14mm、高さ12nooのWC
−2%TaC−16%Co合金よりなる円柱ブロック、
外径14mm、厚さ0.5mmのWC−12%Co超硬
合金円板と粒径3μmのCBN85%と残余がTI N
o、 ax粉末とAI鉛粉末重量比で80:20として
混合した後、1000℃で30分真空炉内で加熱処理を
行った後、0.3μmに粉砕した粉末とよりなるCBN
混合粉末を用意した。
Cemented carbide ring, outer diameter 14mm, height 12noo WC
- A cylindrical block made of 2% TaC-16% Co alloy,
A WC-12% Co cemented carbide disk with an outer diameter of 14 mm and a thickness of 0.5 mm, and 85% CBN with a grain size of 3 μm and the remainder being TIN.
o, CBN made of ax powder and AI lead powder mixed at a weight ratio of 80:20, heat treated in a vacuum furnace at 1000°C for 30 minutes, and then ground to 0.3 μm.
A mixed powder was prepared.

超硬合金リングの内径に円柱ブロックを挿入して、超硬
合金リング内面と円柱ブロック上面とで形成される直径
14mm 、深さ3mmの凹所に前記CBN混合粉末を
充填し、加圧して高さl、 7+nmのCBN混合粉末
層を形成した。次いで、超硬合金円板をかぶせて蓋をし
、超硬合金容器全体を超高圧焼結装置中に配置し、しか
る後圧力50kb、温度1250℃で20分間焼結を行
った。
A cylindrical block is inserted into the inner diameter of the cemented carbide ring, and the CBN mixed powder is filled into a recess with a diameter of 14 mm and a depth of 3 mm formed by the inner surface of the cemented carbide ring and the top surface of the cylindrical block. Then, a 7+nm CBN mixed powder layer was formed. Next, a cemented carbide disk was placed on the container and the lid was closed, and the entire cemented carbide container was placed in an ultra-high pressure sintering device, and then sintered at a pressure of 50 kb and a temperature of 1250° C. for 20 minutes.

焼結後、超硬合金容器を取り出し、上面のWC−12%
Co超硬合金蓋を研削除去すると高さ12mmの支持部
の上面に厚さ1mmの焼結CBN層が接合して形成され
周囲に超硬合金製リングが支持体および焼結CBN層に
接合した複合体ブロックが得られた。
After sintering, take out the cemented carbide container and remove the WC-12% on the top surface.
When the Co cemented carbide lid was ground and removed, a 1 mm thick sintered CBN layer was bonded to the top surface of the 12 mm high support, and a cemented carbide ring was bonded to the support and the sintered CBN layer around the periphery. A composite block was obtained.

この複合体ブロックを放電ワイヤカット加工機に装着し
、放電ワイヤカッティングにより複合体ブロックの軸方
向より一辺が1mlT11長さ13mmの角棒で支持部
は平均粒度1μmのllIC−2%TaC−16%Co
合ダよりなり、その一端に長さl+r+mの焼結CBN
が固着形成された細長角棒が得られた。
This composite block was mounted on an electrical discharge wire cutting machine, and by electrical discharge wire cutting, one side of the composite block was 1 ml T11, a square bar with a length of 13 mm, and the supporting part was made of llIC-2% TaC-16% with an average particle size of 1 μm. Co
sintered CBN with length l+r+m at one end.
A slender rectangular rod was obtained, in which was fixedly formed.

製造例5 外径40闘、内径36mm、高さ40mmのWC−12
%Co超硬合金リング、外径36mm、高さ34mmの
WC−12%Co超硬合金円柱ブロック、外径36mm
、厚さ0.5mmのWC−12%Co超硬合金円板と粒
径3μmのCBN粉末粉末6櫃 組成の粉末よりなるCBN混合粉末を用意した。
Manufacturing example 5 WC-12 with an outer diameter of 40 mm, an inner diameter of 36 mm, and a height of 40 mm.
%Co cemented carbide ring, outer diameter 36mm, height 34mm WC-12%Co cemented carbide cylindrical block, outer diameter 36mm
A CBN mixed powder consisting of a WC-12% Co cemented carbide disk with a thickness of 0.5 mm and 6 jars of CBN powder with a particle size of 3 μm was prepared.

まずCBN混合粉末を直径36mm,厚さ2.5mmの
円板に加圧成型し、前記超硬合金リングの内径に下部よ
り超硬合金円板、CBN成型体、超硬合金円柱ブロック
、CBN成型体、超硬合金円板の順に積層配置し、セッ
トした容器全体を超高圧焼結装置中に配置して圧力40
kb,温度1200℃で20分間焼結した。
First, the CBN mixed powder was pressure molded into a disc with a diameter of 36 mm and a thickness of 2.5 mm, and the cemented carbide disc, CBN molded body, cemented carbide cylindrical block, and CBN molded were formed on the inner diameter of the cemented carbide ring from the bottom. The body and the cemented carbide disks are stacked in this order, and the entire set container is placed in an ultra-high pressure sintering device and heated to a pressure of 40
kb, and sintered at a temperature of 1200°C for 20 minutes.

焼結後取り出し、上下の超硬合金蓋を研削除去すると高
さ34mmの超硬合金円柱ブロックの上下面に直径36
mm、厚さ1. 5mmの焼結CBN層が固着形成され
、更に周囲が超硬合金リングでおおわれた複合体ブロッ
クが得られた。
When taken out after sintering and the upper and lower cemented carbide lids were ground and removed, a diameter of 36 mm was formed on the upper and lower surfaces of the 34 mm high cemented carbide cylindrical block.
mm, thickness 1. A composite block was obtained in which a 5 mm thick sintered CBN layer was firmly formed and the periphery was further covered with a cemented carbide ring.

次に、この複合体ブロックを放電ワイヤカット加工機に
装着し、放電ワイヤカッティングにより複合ブロック軸
方向より、直径2.5mm,長さ37mmの丸棒でその
両端に長さ1. 5mn+の焼結CBN層が固着形成さ
れものが得られた。
Next, this composite block was mounted on an electrical discharge wire cutting machine, and by electrical discharge wire cutting, a round bar with a diameter of 2.5 mm and a length of 37 mm was attached to each end of the composite block from the axial direction with a length of 1.5 mm. A product was obtained in which a sintered CBN layer of 5 mm+ was firmly formed.

この丸棒を更に長さ方向中央部で切断2分することによ
り直径2.5o+m、長さ18mmの丸棒で支持部はW
C−12%Co超硬合金よりなり一端に長さ1.5mn
+の焼結CBN層が固着形成された棒状体が1尋られた
By further cutting this round bar into two parts at the center in the length direction, it becomes a round bar with a diameter of 2.5o+m and a length of 18 mm, and the supporting part is W.
Made of C-12%Co cemented carbide, length 1.5mm at one end
One rod-shaped body on which a positive sintered CBN layer was firmly formed was tested.

尚、本明細書中では%の表示は、特別に示さない限り体
積パーセントで示す。
In this specification, % is expressed in volume percent unless otherwise specified.

jA1 本発明の複合焼結材料をドリルに適用した例を第6図に
示す。
jA1 FIG. 6 shows an example in which the composite sintered material of the present invention is applied to a drill.

第6E(a)に示す如く、ドリルのシャンク25の先端
に、断面円形の複合焼結材料とはX゛同一径の孔26を
穿設する。この孔26に本発明の複合焼結材料23の支
持部の一端部を押し込み、固定する。このとき、孔26
内にロウ材を滴下しておき、ロウ付けしてもよい。
As shown in No. 6E(a), a hole 26 having the same diameter as that of the composite sintered material having a circular cross section is bored at the tip of the shank 25 of the drill. One end of the supporting portion of the composite sintered material 23 of the present invention is pushed into this hole 26 and fixed. At this time, hole 26
It is also possible to drip brazing material inside and braze it.

この第6図(a)に示す如く、シャンクに固定された複
合焼結材料23を刃付は加工し、第6図ら)に示す如き
ドリルを得た。この本発明の複合焼結材料を用いて製造
したドリルは複雑な電子ビーム溶接による接合部分を含
まず、しかも全体として強固且つ堅牢な構造である。従
って、ガラエボ基板の如き高性能のプリント基板に対し
ても高能率の穴あ番すを行うことが可能である。
As shown in FIG. 6(a), the composite sintered material 23 fixed to the shank was processed to have a cutting edge, thereby obtaining a drill as shown in FIG. 6(a). A drill manufactured using the composite sintered material of the present invention does not include joints made by complicated electron beam welding, and has a strong and robust structure as a whole. Therefore, it is possible to perform hole counting with high efficiency even in a high-performance printed circuit board such as a Gala Evo board.

更に、本発明の複合焼結材料は断面が任意の形状にカッ
トされているので、断面が円形の場合は第6図(a)に
示す如くドリルのシャンクの先端に穿孔された穴に押し
込む際にも特別な加工を必要とせずに取り付けることが
でき、更に刃先加工の削り代も少量であり経済的である
Furthermore, since the cross section of the composite sintered material of the present invention is cut into an arbitrary shape, if the cross section is circular, it will be difficult to insert it into a hole drilled at the tip of the shank of a drill, as shown in Figure 6(a). It can be installed without any special machining, and it is economical as the amount of cutting required for machining the cutting edge is small.

発明の効果 以上に説明の如く本発明は、特願昭59−120218
号及び特願昭59−120219号に記載の複合焼結材
料に於いてその支持部の組成を改善して強度および抗折
力の高い支持部を提供することに成功したものである。
As explained above and beyond the effects of the invention, the present invention is disclosed in Japanese Patent Application No. 59-120218.
In the composite sintered material described in No. 1 and Japanese Patent Application No. 59-120219, the composition of the supporting portion was improved and a supporting portion with high strength and transverse rupture strength was successfully provided.

すなわち、本出願人は特願昭59−12021.9号で
ガラエボ基板の如き難削性の基板の穴あけを容易且つ高
性能で実現する長寿命のドリル用の複合焼結材料を開示
したが、これに更に支持部の改善を行い耐摩耗性および
剛性を高め高速回転等の苛酷な使用条件でも長寿命のド
リル等を容易に製造可能としたものである。
That is, the present applicant disclosed in Japanese Patent Application No. 12021.9/1987 a composite sintered material for a long-life drill that can easily and efficiently drill holes in difficult-to-cut substrates such as Gala Evo substrates. In addition, the support part has been improved to increase wear resistance and rigidity, making it possible to easily manufacture drills and the like that have a long life even under severe operating conditions such as high-speed rotation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の複合ダイヤモンド焼結体の構造を示
す。 第2図は従来技術の複合焼結体を刃先に固着したドリル
を示す。 第3図(a)及び(ハ)はそれぞれ本発明の実施例の複
合焼結材料円柱体を示す。 第4図(a)およびら)はそれぞれ本発明の複合焼結材
ρ円柱体を切り出す前の状態の複合焼結材料ブロックの
斜視図である。 第5図は、複合材料ブロックから小断面の円柱体を切り
出す位置を示す。 第6図(a)は本発明の複合焼結材料円柱体をドリルの
シャンクに固着した状態を示し、第6図ら)はこのよう
にして得られたドリルを示す。 (主な参照番号) 11・・・従来のダイヤモンド工具の焼結ダイヤモンド
層、12・・・超硬合金製の支持部、13・・・従来の
複合焼結ダイヤモンドのチップ、15・・・シャンク、 21・・・本発明の複合焼結材料の硬質焼結部、22・
・・支持部、23・・・本発明の複合焼結材料、24・
・・中間接合部、 31・・・複合材料ブロックの硬質焼結部、32・・・
支持部、33・・・複合材料ブロック、34・・・中間
接合部、 特許出願人 住友電気工業株式会社 代 理 人 弁理士 新居 正彦 第1図    第2図 第3図 (’a)      (b) 第4図 第5凶
FIG. 1 shows the structure of a conventional composite diamond sintered body. FIG. 2 shows a drill in which a conventional composite sintered body is fixed to the cutting edge. FIGS. 3(a) and 3(c) each show a cylindrical body of a composite sintered material according to an embodiment of the present invention. FIGS. 4(a) and 4(a) are perspective views of a composite sintered material block before cutting out the composite sintered material ρ cylindrical body of the present invention, respectively. FIG. 5 shows the position where a cylindrical body with a small cross section is cut out from a composite material block. FIG. 6(a) shows the cylindrical body of the composite sintered material of the present invention fixed to the shank of a drill, and FIG. 6(a) shows the drill thus obtained. (Main reference numbers) 11...Sintered diamond layer of conventional diamond tool, 12...Cemented carbide support part, 13...Conventional composite sintered diamond tip, 15...Shank , 21... Hard sintered part of the composite sintered material of the present invention, 22.
...Supporting part, 23...Composite sintered material of the present invention, 24.
... intermediate joint, 31... hard sintered part of composite material block, 32...
Support part, 33... Composite material block, 34... Intermediate joint part, Patent applicant Sumitomo Electric Industries Co., Ltd. Representative Patent attorney Masahiko Arai Figure 1 Figure 2 Figure 3 ('a) (b) Figure 4 5th evil

Claims (6)

【特許請求の範囲】[Claims] (1)ダイヤモンド粉末または高圧相窒化硼素粉末のい
ずれか一方または双方を50%以上含有する硬質焼結部
と、その1端部で該硬質焼結部と接合している支持部と
を具備する複合焼結材料であって、該硬質焼結部と該支
持部との接合は該硬質焼結部の焼結過程で形成されたも
のであり; 更に、該複合焼結材料の直径あるいは相当直径は3mm
以下であり; 該硬質焼結部の軸方向長さが0.3〜2mmであり;該
支持部の軸方向長さが該硬質焼結部の軸方向長さの5倍
以上であり; 該支持部はWCを主成分とした炭化物を鉄族金属で結合
した超硬合金からなり、この超硬合金中の炭化物の平均
粒度が3μm以下であり、また結合金属量が7重量%以
上であることを特徴とする硬質な頭部を有する複合焼結
材料。
(1) A hard sintered part containing 50% or more of either diamond powder or high-pressure phase boron nitride powder, or both, and a support part joined to the hard sintered part at one end thereof. A composite sintered material, in which the bond between the hard sintered part and the support part is formed during the sintering process of the hard sintered part; and the diameter or equivalent diameter of the composite sintered material. is 3mm
or less; the axial length of the hard sintered part is 0.3 to 2 mm; the axial length of the support part is 5 times or more the axial length of the hard sintered part; The support part is made of a cemented carbide in which carbide mainly composed of WC is bonded with an iron group metal, and the average particle size of the carbide in this cemented carbide is 3 μm or less, and the amount of bonded metal is 7% by weight or more. A composite sintered material with a hard head characterized by:
(2)上記硬質焼結部のダイヤモンド粉末または高圧相
窒化硼素粉末は平均粒度30μm以下であることを特徴
とする特許請求の範囲第1項記載の硬質な頭部を有する
複合焼結材料。
(2) The composite sintered material having a hard head according to claim 1, wherein the diamond powder or high-pressure phase boron nitride powder in the hard sintered part has an average particle size of 30 μm or less.
(3)上記硬質焼結部のダイヤモンド粉末または高圧相
窒化硼素粉末は平均粒度10μm以下であることを特徴
とする特許請求の範囲第1項記載の硬質な頭部を有する
複合焼結材料。
(3) The composite sintered material having a hard head according to claim 1, wherein the diamond powder or high-pressure phase boron nitride powder in the hard sintered part has an average particle size of 10 μm or less.
(4)上記超硬合金中の結合金属がCoであることを特
徴とする特許請求の範囲第1項乃至第3項のいずれかに
記載の硬質な頭部を有する複合焼結材料。
(4) The composite sintered material having a hard head according to any one of claims 1 to 3, wherein the bonding metal in the cemented carbide is Co.
(5)上記超硬合金中の炭化物の粒度が2μm以下であ
り、結合金属量が12重量%以上であることを特徴とす
る特許請求の範囲第1項乃至第4項のいずれかに記載の
硬質な頭部を有する複合焼結材料。
(5) The particle size of the carbide in the cemented carbide is 2 μm or less, and the amount of bonded metal is 12% by weight or more. Composite sintered material with hard head.
(6)上記硬質焼結部と支持部との接合は厚さが0.5
mm以下の中間接合層を介してなされていることを特徴
とする特許請求の範囲第1項乃至第5項のいずれかに記
載の硬質な頭部を有する複合焼結材料。
(6) The thickness of the bond between the hard sintered part and the support part is 0.5
The composite sintered material having a hard head according to any one of claims 1 to 5, characterized in that the composite sintered material is formed through an intermediate bonding layer having a diameter of 1 mm or less.
JP59163095A 1984-06-12 1984-08-02 Abrasion resistant parts with tool or hard head made of composite sintered material Expired - Fee Related JPH0742489B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59163095A JPH0742489B2 (en) 1984-08-02 1984-08-02 Abrasion resistant parts with tool or hard head made of composite sintered material
DE8585304135T DE3575092D1 (en) 1984-06-12 1985-06-11 ROD FROM COMPOSITE MATERIALS AND METHOD FOR THEIR PRODUCTION.
EP85304135A EP0168953B2 (en) 1984-06-12 1985-06-11 Stick of composite materials and process for preparation thereof
AT85304135T ATE49147T1 (en) 1984-06-12 1985-06-11 ROD MADE OF COMPOSITE MATERIALS AND METHOD FOR ITS MANUFACTURE.
KR1019850004091A KR920001585B1 (en) 1984-06-12 1985-06-11 Stick compositie materials and process for preparation thereof
CA000483612A CA1286510C (en) 1984-06-12 1985-06-11 Stick of composite materials and process for preparation thereof
US07/231,644 US4880707A (en) 1984-06-12 1988-08-10 Stick of composite materials and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59163095A JPH0742489B2 (en) 1984-08-02 1984-08-02 Abrasion resistant parts with tool or hard head made of composite sintered material

Publications (2)

Publication Number Publication Date
JPS6141703A true JPS6141703A (en) 1986-02-28
JPH0742489B2 JPH0742489B2 (en) 1995-05-10

Family

ID=15767084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59163095A Expired - Fee Related JPH0742489B2 (en) 1984-06-12 1984-08-02 Abrasion resistant parts with tool or hard head made of composite sintered material

Country Status (1)

Country Link
JP (1) JPH0742489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9393629B2 (en) 2010-06-16 2016-07-19 Element Six Abrasives S.A. Cutter elements, rotary machine tools comprising same and method for making same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567603U (en) * 1979-06-25 1981-01-23
JPS5672105A (en) * 1979-11-13 1981-06-16 Toshiba Tungaloy Co Ltd Composite cutting body
JPS5681605A (en) * 1979-12-06 1981-07-03 Toshiba Tungaloy Co Ltd Production of composite cutting body
JPS5681606A (en) * 1979-12-06 1981-07-03 Toshiba Tungaloy Co Ltd Production of composite cutting body
JPS58120406A (en) * 1982-01-14 1983-07-18 Nippon Oil & Fats Co Ltd High hardness sintered tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567603U (en) * 1979-06-25 1981-01-23
JPS5672105A (en) * 1979-11-13 1981-06-16 Toshiba Tungaloy Co Ltd Composite cutting body
JPS5681605A (en) * 1979-12-06 1981-07-03 Toshiba Tungaloy Co Ltd Production of composite cutting body
JPS5681606A (en) * 1979-12-06 1981-07-03 Toshiba Tungaloy Co Ltd Production of composite cutting body
JPS58120406A (en) * 1982-01-14 1983-07-18 Nippon Oil & Fats Co Ltd High hardness sintered tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9393629B2 (en) 2010-06-16 2016-07-19 Element Six Abrasives S.A. Cutter elements, rotary machine tools comprising same and method for making same

Also Published As

Publication number Publication date
JPH0742489B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
US4437800A (en) Cutting tool
JP5105466B2 (en) Cubic nitride cutting tool insert with excellent resistance to notches and blade breakage
US4880707A (en) Stick of composite materials and process for preparation thereof
US6511265B1 (en) Composite rotary tool and tool fabrication method
JP4045014B2 (en) Polycrystalline diamond tools
US4890782A (en) Process for the production of a composite tool
EP0272913B1 (en) Tool insert
RU2303688C2 (en) Composite material with thick abrasive layer
EP0272081B1 (en) High hardness composite sintered compact
KR20000012087A (en) Diamond Sinters and Process for Preparing the Same
EP3532440B1 (en) Core drill bits
CN111057925B (en) Polycrystalline diamond cubic boron nitride composite sheet and preparation method thereof
KR20080094664A (en) Pcbn cutting tool components
JP4297987B2 (en) High-strength fine-grain diamond sintered body and tool using the same
JPH06297206A (en) Hard sintered tool and its manufacture
JPS62142704A (en) Composite sintered material
JPS6141703A (en) Composite sintered material
JPH0742488B2 (en) Method for manufacturing rod-shaped body of composite sintered material
JP2004510884A (en) Abrasive and wear-resistant materials
JPH0525617B2 (en)
JPH049754B2 (en)
JPS61152308A (en) Small-sized twist drill made of hard sintered material
JPH08336705A (en) Cutting tool made of cubic boron nitride sintered body with cutting face of cutter showing excellent wearing resistance
WO2003083148A1 (en) Polycrystalline material element with improved wear resistance and methods of manufacture thereof
JP2013521134A6 (en) Thick thermal barrier coating for superabrasive tools

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees