JPS6141269B2 - - Google Patents

Info

Publication number
JPS6141269B2
JPS6141269B2 JP14923782A JP14923782A JPS6141269B2 JP S6141269 B2 JPS6141269 B2 JP S6141269B2 JP 14923782 A JP14923782 A JP 14923782A JP 14923782 A JP14923782 A JP 14923782A JP S6141269 B2 JPS6141269 B2 JP S6141269B2
Authority
JP
Japan
Prior art keywords
furnace
roll
temperature
vacuum
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14923782A
Other languages
Japanese (ja)
Other versions
JPS5939372A (en
Inventor
Hiroshi Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKEN TOSO KOGYO
Original Assignee
NIKKEN TOSO KOGYO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKEN TOSO KOGYO filed Critical NIKKEN TOSO KOGYO
Priority to JP14923782A priority Critical patent/JPS5939372A/en
Publication of JPS5939372A publication Critical patent/JPS5939372A/en
Publication of JPS6141269B2 publication Critical patent/JPS6141269B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixing For Electrophotography (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属ロール表面に合成樹脂、特に四ふ
つ化エチレン・パーフロロプロピルビニルエーテ
ル共重合体皮膜を形成する方法に係り、その目的
は複写機用ロールとして好適な非粘着面を有し、
高硬度で付着強度にすぐれ耐摩耗性および滑り性
良好な皮膜で被覆された新規な熱定着金属ロール
を提供することにある。 従来この種の熱定着金属ロール(以下熱定着ロ
ールという)は、一般にその表面に四ふつ化エチ
レン樹脂(以下PTFEという)や四ふつ化エチレ
ン・パーフロロプロピルビニルエーテル共重合体
(以下PFAという)皮膜を形成したものが多用さ
れているが、それらは実用上各種の難点が指摘さ
れ、例えばPTFEを塗布したロールは、皮膜硬度
上の問題はないが、該樹脂特有の無数のピンホー
ルが存在するため、シリコーン油併用方式により
急速加熱するような場合に、ピンホールから浸透
したシリコーン油が急激加熱によつて急膨張し、
皮膜に無数のふくれを発生するという欠点があ
る。また後者(PFA)による皮膜は、前者
(PTFE)のそれに比べてピンホールの極めて少
ない薄膜(20〜40μm)として得られることか
ら、シリコーン油による急速加熱処理によつても
皮膜にふくれの発生がなく有利(対前者)である
が、硬度(鉛筆硬度)でB〜2Bにより該当し、
前者のF〜HB(たゞし膜厚の差異により若干の
相違はあるが)に劣り、従つてその皮膜は硬度、
付着性、耐摩耗性および滑り性において欠けるの
が実状である。 このようなことから熱定着ロール表面に形成し
た皮膜が前記一連の特性を具備するか否かは、熱
定着ロール自体の耐用命数に直接関係するので、
該ロールを適用する複写機そのものゝ良否判定に
影響しかねないとされる。 このためかゝる見地から近時PTFE、PFAまた
はPTFEと六ふつ化プロピレン共重合体(以下
FEPという)等を金属面(含ロール体)に被覆
する方法が各種案出(特開昭54−127447号、同昭
54−149745号、同昭56−93517号、同昭56−
133770号各公報参照)され公知であるが、これら
の方法およびその製品は所望用途、目的に応じて
必ずしも良結果を得るとは限らず、実用上の難点
が見込まれる。 例えば金属ロールにPFA粉体を塗布して所望
する非粘着性皮膜を得たい場合に、まずロール面
を粗面化し、その上面にプライマーを塗布した後
PFA粉体を塗布して常圧または真空炉内で焼成
する場合、ロール面にプライマーのしみ、斑点等
が発現するという欠点があり、また前記プライマ
ーに代えてアミノシラシを塗布した場合は、熱定
着上長期間使用による付着力についての保証が得
られない。 こゝにおいて本発明者は、上記諸点に立脚して
前記の欠点を解消すべく種々研究の結果、金属ロ
ール表面にプライマーを塗布することなくPFA
を直接塗布し、これを一定の真空度を保持した炉
内で所定温度の下に一定時間焼成した後加熱を止
め同一炉内で引続き同一真空度を保持したまゝ炉
内温度の低下を待ち、該温度低下が特定温度以下
所定温度に至るまでの温度の範囲内で空気または
不活性ガスを炉内に導入して真空度を解放し、被
熱ロールを急冷することにより、PFA皮膜の金
属ロール面への付着を緊密強固ならしめ被膜硬度
の向上とすぐれた付着性耐摩耗性、および滑り性
良好な皮膜の得られることを実験的に見出し(第
1〜第3表参照)本発明を完成した。 第1表は上記において、アルミニウム合金製の
ロール(直径60mm×長さ320mm)表面を常法によ
り脱脂、ブラスト加工後該表面にPFA粉末を塗
布し、これを真空炉内に懸吊固定した後真空ポン
プを始動させて所要の真空度を得た時に炉内を加
熱して所望温度に到達後一定時間(45分)該温度
に保持焼成する。焼成終了時点で直ちに加熱を止
め、引続き同一真空度下に炉温の降温を待ち、該
温度が所望温度に至つた時に真空ポンプを止め、
炉内に空気を導入し被熱ロールを大気圧下に急冷
固定して得たPFT皮膜厚さ約50μmのものを供
試体とし、皮膜の付着強度を皮膜厚さ別、真空度
別、焼成温度別に示したものである。
The present invention relates to a method of forming a synthetic resin film, particularly a tetrafluoroethylene/perfluoropropyl vinyl ether copolymer film, on the surface of a metal roll, and its purpose is to have a non-adhesive surface suitable for a roll for a copying machine,
An object of the present invention is to provide a novel heat-fixing metal roll coated with a film having high hardness, excellent adhesive strength, and good abrasion resistance and sliding properties. Conventionally, this type of heat fixing metal roll (hereinafter referred to as a heat fixing roll) generally has a film of tetrafluoroethylene resin (hereinafter referred to as PTFE) or tetrafluoroethylene/perfluoropropyl vinyl ether copolymer (hereinafter referred to as PFA) on its surface. Rolls coated with PTFE are widely used, but various practical problems have been pointed out.For example, rolls coated with PTFE have no problems with film hardness, but there are numerous pinholes unique to this resin. Therefore, when rapid heating is performed using a combination method with silicone oil, the silicone oil that penetrates through the pinhole expands rapidly due to the rapid heating.
It has the disadvantage that countless blisters occur on the film. Furthermore, since the film made of the latter (PFA) is obtained as a thin film (20 to 40 μm) with extremely few pinholes compared to that of the former (PTFE), the film does not blister even when rapidly heated with silicone oil. Although it is advantageous (versus the former), it corresponds to B to 2B in hardness (pencil hardness),
It is inferior to the former F to HB (although there are some differences due to differences in film thickness), and therefore the film has a hardness,
The actual situation is that it lacks in adhesion, abrasion resistance, and slipperiness. For this reason, whether or not the film formed on the surface of the heat fixing roll has the above series of characteristics is directly related to the service life of the heat fixing roll itself.
It is said that the copying machine itself to which this roll is applied may affect the quality judgment. For this reason, from this perspective, PTFE, PFA, or PTFE and hexafluoropropylene copolymers (hereinafter referred to as
Various methods have been devised for coating metal surfaces (including roll bodies) with FEP (FEP), etc.
No. 54-149745, No. 56-93517, No. 56-
133770), but these methods and their products do not necessarily yield good results depending on the desired use and purpose, and are expected to have practical difficulties. For example, when applying PFA powder to a metal roll to obtain the desired non-stick coating, first roughen the roll surface, then apply a primer to the top surface.
When PFA powder is applied and fired in a normal pressure or vacuum furnace, there is a drawback that primer stains and spots appear on the roll surface, and when aminoshirashi is applied instead of the primer, heat fixation There is no guarantee of adhesion after long-term use. Based on the above-mentioned points, the inventor of the present invention has conducted various studies to solve the above-mentioned drawbacks, and has found that PFA can be applied without applying a primer to the surface of a metal roll.
After applying it directly and firing it at a predetermined temperature for a certain period of time in a furnace that maintains a constant degree of vacuum, stop heating and continue to maintain the same degree of vacuum in the same furnace and wait for the temperature inside the furnace to decrease. The metal of the PFA coating is released by introducing air or inert gas into the furnace to release the vacuum within the temperature range where the temperature decrease is below a certain temperature and reaches a predetermined temperature, and the heated roll is rapidly cooled. It was experimentally discovered that it was possible to obtain a film that had tight and strong adhesion to the roll surface, improved film hardness, excellent adhesion, abrasion resistance, and good slipperiness (see Tables 1 to 3). completed. Table 1 shows the above, after degreasing and blasting the surface of an aluminum alloy roll (diameter 60 mm x length 320 mm) using a conventional method, applying PFA powder to the surface, and suspending and fixing it in a vacuum furnace. When the vacuum pump is started and the required degree of vacuum is obtained, the inside of the furnace is heated, and after reaching the desired temperature, it is held at that temperature for a certain period of time (45 minutes) and fired. Immediately stop the heating at the end of firing, continue to wait for the furnace temperature to fall under the same degree of vacuum, and when the temperature reaches the desired temperature, stop the vacuum pump.
The specimen was a PFT film with a thickness of about 50 μm obtained by introducing air into the furnace and rapidly cooling and fixing the heated roll under atmospheric pressure.The adhesion strength of the film was measured by film thickness, degree of vacuum, and firing temperature. It is shown separately.

【表】【table】

【表】 第2表は第1表供試体と同様の方法(たゞし炉
内真空度を10-3トールと大気圧下の各場合につい
て焼成温度を400℃、380℃、360℃とし、対応す
る焼成時間を45分、空気導入時温度を340℃とす
る)によつて得た皮膜厚さ約50μmのものについ
て焼成温度別、炉内雰囲気別にテストした皮膜硬
度を示す。本表の結果から真空下において高温焼
成したものほど高硬度皮膜を形成することが知ら
れ、大気圧処理に比し、11.5〜12%硬度の増伸す
ることが判る。
[Table] Table 2 shows the results using the same method as for the specimens in Table 1 (with the vacuum in the furnace being 10 -3 Torr and the firing temperature being 400°C, 380°C, and 360°C under atmospheric pressure). The following shows the hardness of a film obtained by testing at different firing temperatures and furnace atmospheres for films with a thickness of approximately 50 μm obtained using a corresponding firing time of 45 minutes and a temperature of 340°C during air introduction. From the results in this table, it is known that the higher the temperature fired under vacuum, the higher the hardness of the film formed, and the hardness increases by 11.5 to 12% compared to atmospheric pressure treatment.

【表】 石製作所製)によつた。
第3表は第2表供試体と同様の方法において、
炉内真空度を10-3トール、10-1トール、30トー
ル、100トールとし、対応する焼成温度を330〜
400℃、焼成時間45分、空気導入時温度を上記焼
成温度より各20℃低い温度として実施した皮膜厚
さ50μmのものについて焼成温度別、炉内雰囲気
別に鉛筆硬度方式によりテストした皮膜硬度を示
す。本表から明らかなように、高真空度下に焼成
したものは何れもその硬度が高いことが判る。
[Table] Made by Ishi Seisakusho).
Table 3 shows that in the same manner as the specimens in Table 2,
The vacuum degree in the furnace is 10 -3 Torr, 10 -1 Torr, 30 Torr, and 100 Torr, and the corresponding firing temperature is 330 to 330 Torr.
Shows the film hardness tested using the pencil hardness method by firing temperature and furnace atmosphere for films with a film thickness of 50 μm conducted at 400°C, firing time 45 minutes, and air introduced at a temperature 20°C lower than the above firing temperature. . As is clear from this table, it can be seen that all the materials fired under high vacuum have high hardness.

【表】【table】

【表】 本発明は上記結果に基いて、表面にPFA粉末
を塗布した金属ロールを減圧炉内で焼成する熱定
着ロールの製法において、前記金属ロールを10-3
〜10-1トールの真空炉内で330〜400℃で一定時間
焼成後加熱を止め、同一炉内で引続き同一真空度
の下に炉内温度の低下を待ち該温度低下が360℃
以下310℃に至るまでの温度範囲内で空気または
不活性ガスを炉内に導入し、被熱ロールを急冷す
ることからなる。以下本発明の実施の一例につい
て説明する。 こゝに使用する金属ロールは、アルミニウム、
鉄、銅等の金属単体またはそれらの合金類製のも
のを任意に選択使用することができる。このロー
ル表面にPFAを塗布するには、予め常法により
該表面を脱脂後該ロール表面をサンドブラスト、
化学的エツチング、陽極酸化、電解エツチング等
任意の処理を施すことによつてロール面を粗面化
するが、この粗面化に例えばサンドブラスト処理
を施す場合は、アルミナ砥粒で脱脂面をブラスト
処理し、該面に付着する粉塵をエアブロー等によ
り除去後該面にPFT粉体を静電塗装するように
する。 かくしてPFAを塗布した金属ロールは、これ
を真空炉内で焼成するが、その焼成に当つては先
ず前記金属ロールを適宜の方法例えば懸吊する等
して真空炉内における輻射伝熱を良好ならしめる
よう炉内に固定した後常法により炉内空気を排除
して所望真空度10-3〜10-1トールの得られた時点
で開始し、炉内温度が330〜400℃となつた時に該
温度を一定に保持して40〜60分間焼成後直ちに加
熱を止め、引続き同一真空度を保持したまゝ炉内
温度の低下を待ちその温度低下が360℃以下310℃
に至るまでの温度範囲内で真空ポンプを止め、空
気を導入して炉内を常圧ならしめると同時に被熱
ロールを大気圧下に急冷するが、適用する金属ロ
ールが導入空気によつて酸化されるような例えば
鉄または銅製である場合は、酸化防止上窒素ガス
の如き不活性ガスを導入するようにする。 しかして上記焼成において、炉内真空度を10-3
〜10-1トールに設定したことは、PFA粉末を静電
塗布した金属ロールを一定時間焼成する時に、該
樹脂がロール面に緊密に付着し、しかも所望近似
の平滑面を得る上で最適の範囲であつて、その真
空度が上記範囲(下限)以下となると、溶融樹脂
が粗面特に凹所への浸入が悪く付着強度に欠け、
また皮膜硬度が低下する(第1表、第3表参
照)。また真空度が上限以上例えば10-4、10-5
ールのような高度の真空となると、溶融粘度の高
い樹脂にあつてはこれが溶融して平滑化すること
が非常に少ないために凹凸が大きく、また加熱終
了後直ちに(樹脂が未だ溶融帯域にある間)空気
を炉内に導入して常圧とし、塗膜面を大気圧下に
急冷するようにしても前記凹凸は消失されず不適
であることによる。 従来このような点に関して全く知られていなか
つたわけではなく、例えば金属面に塗布した樹脂
粉末が熱溶融し、これが金属面で平滑な面を形成
するためには、熱溶融時の粘度のほか加熱時の圧
力特に熱風による加圧等が大きく影響することが
知られている(色材協会誌:1982年第55巻第382
頁参照)が、本発明の如く一定範囲の真空度の下
でPFA粉末を塗布した金属板(含金属ロール)
を焼成する場合に望ましい平滑面の得られること
については全く触れていなかつたし、知られても
いなかつたものである。 次に前記範囲とした真空度の下にロールの焼成
温度を330〜400℃とし一定時間加熱することは、
該温度が330℃以下であること、DFAの溶融が充
分行われないため、樹脂が粗面特に凹所への浸入
が均等に行われず、このため塗布料における樹脂
膜の付着強度を確保することができない。またそ
の温度が400℃以上となると、最終的に所望する
付着強度は得られても、皮膜硬度(鉛筆硬度)が
第3表に示す如く低下して適切でない。この硬度
低下は高温加熱による若干の樹脂分解があつたも
のと思われる。このため本工程では最適条件とし
て300〜400℃、40〜60分焼成することにより、樹
脂皮膜が樹脂本来の高硬度を有し、所望する比着
強度と所望近似の平滑度とが同時に得られるよう
配慮したものである。 また前記工程に続いて同一炉内で、(イ)同一真空
度の下に炉内温度の低下を待ち、(ロ)その温度低下
が360℃以下310℃に至るまでの温度範囲内で真空
ポンプを止め、空気または不活性ガスを炉内に導
入して常圧とするが、その前段(イ)の点は前工程で
焼成された金属ロール表面の溶融樹脂が、炉内の
真空により充分に平滑化されないまゝ凹凸状とし
て存在したものに、経時的に平滑化現象を起させ
て所望する凹凸の近等化を図るためであり、後段
(ロ)の点は、前段(イ)で平滑化された皮膜を、空気ま
たは不活性ガスの導入により炉内を常圧とするこ
とによつて、被膜面を大気圧下でその平滑化を図
ると同時に、被熱ロールを急冷して前記平滑化皮
膜の硬化と該硬化膜の金属ロールへの付着を強固
ならしめ、付着強度の増大を図つたものである
(第4表参照)。 たゞし上記の場合降温時温度が310℃以下(未
満)となると、適用樹脂の結晶を生成して所望の
平滑性が得られないので、下限温度が310℃以下
とならないよう注意することが肝要である。 第4表は第2表供試体と同様の方法において、
炉内真空度を2×10-3トール、5×10-1トール、
30トール、100トールとし、焼成温度を各真空度
とも420℃、45分焼成し、空気導入時温度を420
℃、400℃、380℃、360℃、340℃、310℃、300℃
とした各場合の皮膜厚さ50μmのものについて炉
内雰囲気別、空気導入時温度別に皮膜表面あらさ
をRSM方式によつて示した。本表から皮膜の平
滑性は、炉内への空気導入時温度が360〜310℃範
囲が最適であることが知られる。
[Table] Based on the above results, the present invention provides a method for manufacturing a heat fixing roll in which a metal roll coated with PFA powder on the surface is fired in a reduced pressure furnace .
After firing at 330 to 400℃ for a certain period of time in a ~10 -1 Torr vacuum furnace, heating was stopped, and the furnace temperature was allowed to drop to 360℃ under the same degree of vacuum.
The method consists of rapidly cooling the heated roll by introducing air or inert gas into the furnace within a temperature range of up to 310°C. An example of implementing the present invention will be described below. The metal rolls used here are aluminum,
Metals such as iron and copper or alloys thereof can be selected and used as desired. To apply PFA to the surface of this roll, first degrease the surface using a conventional method, then sandblast the surface of the roll.
The roll surface is roughened by any treatment such as chemical etching, anodic oxidation, electrolytic etching, etc., but if sandblasting is used for this roughening, the degreased surface is blasted with alumina abrasive grains. Then, after removing dust adhering to the surface by air blowing or the like, PFT powder is electrostatically applied to the surface. The metal roll coated with PFA is then fired in a vacuum furnace, but during firing, the metal roll is first placed in an appropriate manner, such as by hanging it, to improve radiation heat transfer in the vacuum furnace. After fixing it in the furnace so as to tighten it, remove the air in the furnace by the usual method and start when the desired vacuum degree of 10 -3 to 10 -1 Torr is obtained, and when the temperature in the furnace reaches 330 to 400℃. After firing for 40 to 60 minutes at a constant temperature, immediately stop heating, continue to maintain the same degree of vacuum, and wait for the temperature in the furnace to drop until the temperature drops below 360℃ or 310℃.
The vacuum pump is stopped within the temperature range up to If the material is made of iron or copper, for example, an inert gas such as nitrogen gas should be introduced to prevent oxidation. However, in the above firing, the degree of vacuum in the furnace was set to 10 -3
The setting of ~10 -1 Torr is the optimum setting for ensuring that when a metal roll electrostatically coated with PFA powder is fired for a certain period of time, the resin adheres closely to the roll surface and that a smooth surface approximately as desired is obtained. If the degree of vacuum is below the above range (lower limit), the molten resin will have difficulty penetrating into rough surfaces, especially in recesses, and will lack adhesive strength.
Furthermore, the film hardness decreases (see Tables 1 and 3). In addition, when the degree of vacuum is higher than the upper limit, such as 10 -4 or 10 -5 Torr, resins with high melt viscosity are rarely melted and smoothed, resulting in large irregularities. In addition, even if air is introduced into the furnace immediately after heating (while the resin is still in the melting zone) to bring the pressure to normal pressure, and the coating surface is rapidly cooled to atmospheric pressure, the unevenness will not disappear, which is inappropriate. Depends on something. This point has not been completely unknown in the past; for example, in order for a resin powder applied to a metal surface to melt under heat and form a smooth surface on the metal surface, in addition to the viscosity at the time of heat melting, the heating It is known that the pressure of time, especially the pressurization of hot air, etc. has a large effect (Journal of Color Materials Association: 1982, Vol. 55, No. 382)
(see page) is a metal plate (metal-containing roll) coated with PFA powder under a certain degree of vacuum as in the present invention.
There was no mention or knowledge of the fact that a desirable smooth surface can be obtained when firing. Next, heating the roll for a certain period of time at a firing temperature of 330 to 400°C under the vacuum degree set in the above range,
Since the temperature is below 330℃, and the DFA is not sufficiently melted, the resin does not penetrate evenly into rough surfaces, especially concavities, and therefore the adhesion strength of the resin film in the coating material must be ensured. I can't. Furthermore, if the temperature exceeds 400° C., even if the desired adhesive strength is finally obtained, the film hardness (pencil hardness) decreases as shown in Table 3, which is not appropriate. This decrease in hardness is thought to be due to slight resin decomposition due to high temperature heating. Therefore, in this process, by baking at 300-400℃ for 40-60 minutes as the optimum condition, the resin film has the high hardness inherent to the resin, and the desired specific adhesion strength and desired smoothness can be obtained at the same time. This was taken into consideration. Further, following the above process, in the same furnace, (a) wait for the temperature in the furnace to decrease under the same degree of vacuum, and (b) pump the vacuum pump within the temperature range until the temperature decrease reaches 360℃ or less and 310℃. The temperature is stopped and air or inert gas is introduced into the furnace to create normal pressure.The point in the first step (a) is that the molten resin on the surface of the metal roll fired in the previous step is sufficiently absorbed by the vacuum inside the furnace. The purpose of this is to cause the unevenness that existed without being smoothed to undergo a smoothing phenomenon over time, and to make the desired unevenness approximately equal.
Point (b) is that the coating surface smoothed in the previous step (a) is smoothed under atmospheric pressure by bringing the inside of the furnace to normal pressure by introducing air or inert gas. At the same time, the heated roll is rapidly cooled to harden the smoothed film and strengthen the adhesion of the cured film to the metal roll, thereby increasing the adhesion strength (see Table 4). However, in the above case, if the temperature at cooling down is below (less than) 310°C, crystals of the applied resin will form and the desired smoothness cannot be obtained, so care must be taken to ensure that the lower limit temperature does not fall below 310°C. It is essential. Table 4 shows that in the same manner as for the specimens in Table 2,
The degree of vacuum in the furnace was set to 2×10 -3 Torr, 5×10 -1 Torr,
30 Torr and 100 Torr, firing temperature was 420℃ for each degree of vacuum, 45 minutes, and the temperature when introducing air was 420℃.
℃, 400℃, 380℃, 360℃, 340℃, 310℃, 300℃
The surface roughness of the film was shown using the RSM method for each case with a film thickness of 50 μm, depending on the atmosphere inside the furnace and the temperature at the time of air introduction. From this table, it is known that the smoothness of the film is optimal when the temperature at the time of introducing air into the furnace is in the range of 360 to 310°C.

【表】 によつた。
以上詳説したように本発明は、表面に四ふつ化
エチレン・パーフロロプロピルビニルエーテル共
重合体粉末を塗布した金属ロールを10-3〜10-1
ールの真空炉内で330〜400℃で一定時間焼成後加
熱を止め、同一炉内で引続き同一真空度の下に炉
内温度の低下を待ち、該温度低下が360℃以下310
℃に至るまでの温度範囲内で空気または不活性ガ
スを炉内に導入し、被熱ロールを急冷するもので
あるから、得られるロールは樹脂本来の高硬度を
有し、付着強度が大きく耐摩耗性および平滑性に
すぐれた滑り性良好な熱定着性ロールを得ること
ができる。 従つてこの熱定着ロールは、所望する特性の全
てを併有し、従来知られた複写機用ロールの欠点
を効果的に解消して長期使用に耐えるので、これ
が実用上に益する効果は特に大きい。 以下実施例によつて本発明をさらに具体的に説
明する。 実施例 1 アルミニウム合金製ロール(直径60mm、長さ
320mm)を溶剤(パークロルエチレン)で脱脂後
該面を#100アルミナ砥粒で常法によりブラスト
加工して粗面を形成した後粗面に付着した粉塵を
エアーブローして除去後PFA粉末を粉体静電塗
装機(スイス国、ゲマ社製)により均一に塗布し
た。次いでこのロールを真空炉内に懸吊固定した
後真空ポンプを始動して炉内真空度が10-3トール
となつた時点で加熱を開始し、炉内温度が390℃
に到達後該温度下に60分間焼成する。その終了時
点で加熱を止め、引続き同一真空度(10-3トー
ル)の下で炉内温度の降温を持ち、340℃となつ
た時に真空ポンプを止め、直ちに空気を導入して
常圧となし被熱ロールを急冷し、これを炉内から
取出した。ロールに塗布されたPFA皮膜の厚さ
は40μmで、ロール表面のあらさはRMS表示で
0.5〜0.7μmであつた。また皮膜硬度は鉛筆硬度
でHを示し、剥離強度はクロスカツトを行いセロ
テープによる繰返し20回テストによつても何等異
常が認められなかつた。また爪による剥離試験結
果も極めて満足すべきものであつた。 実施例 2 銅製ロール(直径60mm、長さ405mm)表面に実
施例1と同様の方法によりPFA粉末を塗布した
後これを真空炉内に懸吊固定し実施例1と同様に
して炉内真空度が10-3トールに到達時点で加熱を
開始し、380℃において40分間焼成した時に加熱
を止め、引続き同一真空度の下で炉内温度の降温
を待ち、310℃となつた時に真空ポンプを止め、
炉内に窒素ガスを導入し常圧とした。銅の酸化を
防止するため15分そのまゝ放置し、放置後の温度
が170℃となつた時にロールを炉内から取出し
た。銅の酸化は殆んどみられなかつた。PFA皮
膜の厚さは45μmで、ロール表面あらさはRMS
表示で0.8〜0.9μm、皮膜硬度は鉛筆硬度でHを
示した。クロスカツト後セロテープによる剥離テ
ストを繰返し20回行つたが何等異常はなかつた。
また爪テストの結果によつても実施例1同様満足
すべきものであつた。 実施例 3 アルミニウム合金製ロール(直径30mm、長さ
275mm)表面に実施例1と同様の方法によりPFA
粉末を塗布後これを真空炉内に懸吊固定すととも
に、5×10-1トールの真空度を示すまで炉内空気
を排除した後加熱を開始し、390℃において45分
間焼成した時に加熱を止め、引続き同一真空度の
下で炉内の降温を待ち、該温度が360℃となつた
時点で真空ポンプを止め実施例1と同様にして空
気を炉内に導入し、被熱ロールを急冷して該ロー
ルを取出した。このロールのPFA皮膜の厚さは
20μmで、ロール表面あらさはRMS表示で0.5〜
0.8μmであつた。また皮膜硬度は鉛筆硬度でH
を示し、剥離強度はクロスカツト後のセロテープ
試験を20回繰返し行つたがその結果は全く異常が
なく、爪による剥離テストの結果も異常は認めら
れなかつた。 実施例 4 鉄鋼製ロール(直径30mm、長さ275mm)表面に
実施例1と同様の方法によりPFA粉末を塗布後
これを真空炉内に懸吊固定するとゝもに、5×
10-1トールの真空度を示すまで炉内空気を排除し
た後加熱を開始し、380℃で60分間焼成した時に
加熱を止め、引続き同一真空度の下で炉内の降温
を待ち、該温度が340℃に到達した時点で実施例
1と同様にして空気を炉内に導入し、被熱ロール
を急冷して該ロールを取出した。ロールのPFA
皮膜の厚さは30μmでロールの表面あらさは
RMS表示で0.5〜0.6μmであつた。また皮膜硬度
は鉛筆硬度でHを示し、剥離強度はクロスカツト
後のセロテープ試験を20回繰返し行つても全く異
常がなかつた。爪による剥離テストの結果も異常
は認められなかつた。 実施例 5 ステンレスロール(直径40mm、長さ330mm)表
面に実施例1と同様の方法によりPFA粉末を塗
布後これを真空炉内に懸吊固定するとゝもに、2
×10-3トールの真空度を示すまで炉内空気を排除
した後加熱を開始し、400℃で45分間焼成した時
に加熱を止め、引続き同一真空度の下で炉内の降
温を待ち、該温度が360℃に到達した時点で実施
列1と同様にして空気を導入し被熱ロールを急冷
して該ロールを取出した。ロールのPFA皮膜の
厚さは25μmで、ロールの表面あらさはRMS表
示で0.5〜0.8μmであつた。また皮膜硬度は鉛筆
硬度でHを示し、耐剥離強度はクロスカツト後の
セロテープ試験を20回繰返しても全く異常がな
く、爪による剥離テストの結果も異常は認められ
なかつた。
[Table]
As explained in detail above, the present invention involves heating a metal roll whose surface is coated with tetrafluoroethylene/perfluoropropyl vinyl ether copolymer powder at 330 to 400°C for a certain period of time in a vacuum furnace at 10 -3 to 10 -1 Torr. After firing, stop heating and continue to wait for the temperature in the furnace to drop under the same vacuum level until the temperature drop is 360℃ or less.310
Since the heated roll is rapidly cooled by introducing air or inert gas into the furnace within a temperature range of up to It is possible to obtain a heat fixing roll with excellent abrasion resistance and smoothness, and good sliding properties. Therefore, this heat fixing roll has all the desired properties, effectively eliminates the drawbacks of conventional copying machine rolls, and can withstand long-term use, so its practical benefits are particularly big. The present invention will be explained in more detail below using Examples. Example 1 Aluminum alloy roll (diameter 60 mm, length
320mm) with a solvent (perchlorethylene), then blast the surface with #100 alumina abrasive grains in a conventional manner to form a rough surface, remove the dust adhering to the rough surface by air blowing, and then remove PFA powder. It was applied uniformly using a powder electrostatic coating machine (manufactured by Gema, Switzerland). Next, after suspending and fixing this roll in a vacuum furnace, the vacuum pump was started and heating started when the degree of vacuum in the furnace reached 10 -3 Torr, and the temperature in the furnace reached 390℃.
After reaching this temperature, bake at that temperature for 60 minutes. At the end of the process, the heating is stopped, and the temperature inside the furnace continues to fall under the same degree of vacuum (10 -3 Torr). When the temperature reaches 340°C, the vacuum pump is stopped, and air is immediately introduced to achieve normal pressure. The heated roll was rapidly cooled and taken out from the furnace. The thickness of the PFA coating applied to the roll is 40μm, and the roughness of the roll surface is shown in RMS.
It was 0.5 to 0.7 μm. Further, the film hardness showed H on a pencil hardness scale, and no abnormality was observed in peel strength even after cross-cutting and repeating the test with cellophane tape 20 times. The results of the nail peel test were also extremely satisfactory. Example 2 After applying PFA powder to the surface of a copper roll (diameter 60 mm, length 405 mm) in the same manner as in Example 1, it was suspended and fixed in a vacuum furnace, and the vacuum inside the furnace was adjusted in the same manner as in Example 1. Heating started when the temperature reached 10 -3 Torr, stopped heating after firing at 380°C for 40 minutes, continued to wait for the temperature inside the furnace to fall under the same degree of vacuum, and when it reached 310°C, turned on the vacuum pump. Stop,
Nitrogen gas was introduced into the furnace to maintain normal pressure. To prevent oxidation of the copper, the roll was left as it was for 15 minutes, and when the temperature reached 170°C, the roll was taken out of the furnace. Almost no oxidation of copper was observed. The thickness of the PFA film is 45μm, and the roll surface roughness is RMS
The film hardness was H on a pencil hardness scale. After cross-cutting, a peel test using cellophane tape was repeated 20 times, but no abnormalities were found.
Furthermore, the results of the nail test were also satisfactory as in Example 1. Example 3 Aluminum alloy roll (diameter 30 mm, length
275mm) PFA on the surface by the same method as in Example 1.
After applying the powder, it was suspended and fixed in a vacuum furnace, and the air in the furnace was removed until the degree of vacuum was 5 × 10 -1 Torr, and then heating was started. Continue to wait for the temperature in the furnace to fall under the same degree of vacuum, and when the temperature reaches 360°C, stop the vacuum pump and introduce air into the furnace in the same manner as in Example 1 to rapidly cool the heated roll. Then, the roll was taken out. The thickness of the PFA coating on this roll is
At 20 μm, the roll surface roughness is 0.5 to RMS
It was 0.8 μm. Also, the film hardness is H on the pencil hardness scale.
The peel strength was determined by repeating the Cellotape test after cross-cutting 20 times, and the results showed no abnormalities at all, and the results of the peel test with a fingernail showed no abnormalities. Example 4 PFA powder was applied to the surface of a steel roll (diameter 30 mm, length 275 mm) in the same manner as in Example 1, and then suspended and fixed in a vacuum furnace.
Start heating after removing the air in the furnace until it shows a vacuum level of 10 -1 Torr, stop heating when it is fired at 380℃ for 60 minutes, continue to wait for the temperature inside the furnace to fall under the same vacuum level, and then reduce the temperature to that temperature. When the temperature reached 340°C, air was introduced into the furnace in the same manner as in Example 1, the heated roll was rapidly cooled, and the roll was taken out. PFA on roll
The thickness of the film is 30μm, and the surface roughness of the roll is
It was 0.5 to 0.6 μm in RMS. Further, the film hardness showed H in terms of pencil hardness, and the peel strength showed no abnormality at all even when the cellophane tape test after cross-cutting was repeated 20 times. No abnormalities were observed in the peeling test with a fingernail. Example 5 After applying PFA powder to the surface of a stainless steel roll (diameter 40 mm, length 330 mm) in the same manner as in Example 1, this was suspended and fixed in a vacuum furnace.
After removing the air from the furnace until it reaches a vacuum level of ×10 -3 Torr, heating begins. After firing at 400°C for 45 minutes, heating is stopped. Continue to wait for the temperature in the furnace to fall under the same vacuum level, and When the temperature reached 360°C, air was introduced in the same manner as in Example 1 to rapidly cool the heated roll, and the roll was taken out. The thickness of the PFA coating on the roll was 25 μm, and the surface roughness of the roll was 0.5 to 0.8 μm in RMS. In addition, the film hardness showed H on a pencil hardness scale, and the peel resistance showed no abnormality at all even after repeating the cellophane tape test after cross-cutting 20 times, and no abnormality was observed in the results of the peel test with a fingernail.

Claims (1)

【特許請求の範囲】[Claims] 1 表面に四ふつ化エチレン・パーフロロプロピ
ルビニルエーテル共重合体粉末を塗布した金属ロ
ールを減圧炉内で焼成する熱定着ロールの製法に
おいて、前記金属ロールを10-3〜10-1トールの真
空炉内で330〜400℃で一定時間焼成した時に加熱
を止め、同一真空炉内で引続き同一真空度の下に
炉内温度の低下を待ち、該温度低下が360℃以下
310℃に至るまでの温度範囲内で空気または不活
性ガスを炉内に導入し、被熱ロールを急冷するこ
とを特徴とする金属ロールに樹脂皮膜を形成する
方法。
1. In a method for producing a heat fixing roll in which a metal roll whose surface is coated with tetrafluoroethylene/perfluoropropyl vinyl ether copolymer powder is fired in a vacuum furnace, the metal roll is heated in a vacuum furnace at 10 -3 to 10 -1 Torr. After firing at 330 to 400℃ for a certain period of time, stop the heating, continue in the same vacuum furnace and wait for the temperature inside the furnace to decrease under the same degree of vacuum, until the temperature decrease is 360℃ or less.
A method for forming a resin film on a metal roll, characterized by introducing air or inert gas into a furnace within a temperature range of 310°C to rapidly cool the heated roll.
JP14923782A 1982-08-30 1982-08-30 Formation of resin film on metal roll Granted JPS5939372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14923782A JPS5939372A (en) 1982-08-30 1982-08-30 Formation of resin film on metal roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14923782A JPS5939372A (en) 1982-08-30 1982-08-30 Formation of resin film on metal roll

Publications (2)

Publication Number Publication Date
JPS5939372A JPS5939372A (en) 1984-03-03
JPS6141269B2 true JPS6141269B2 (en) 1986-09-13

Family

ID=15470873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14923782A Granted JPS5939372A (en) 1982-08-30 1982-08-30 Formation of resin film on metal roll

Country Status (1)

Country Link
JP (1) JPS5939372A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827573B2 (en) * 1986-10-31 1996-03-21 昭和電線電纜株式会社 Method of manufacturing heat fixing roller
US5256747A (en) * 1991-05-20 1993-10-26 Leo Ojakaar Soluble perfluoroelastomers
JP2563065B2 (en) * 1993-05-21 1996-12-11 川崎重工業株式会社 Copper alloy lining method
JP6842078B2 (en) * 2016-08-02 2021-03-17 学校法人近畿大学 How to paint aluminum base material

Also Published As

Publication number Publication date
JPS5939372A (en) 1984-03-03

Similar Documents

Publication Publication Date Title
US5773087A (en) Coated article and method for producing same
JP2000229388A (en) Hot-melt fluoroplastic-coated polytetrafluoroethylene molded object
US2550232A (en) Method of coating metallic articles with vinyl resin dispersions
US2893900A (en) Process of condensing polytetrafluoroethylene vapors onto a substrate and sintering the condensate
JP2005288440A (en) Coating of permeation-resistant etfe composition
US4568573A (en) Process of forming a film of fluorine-containing resin on a metallic substrate
JPS6141269B2 (en)
US3936569A (en) Metals coated with 3,3,3-trifluoro-2-trifluoromethyl propene/vinylidene fluoride copolymer compositions
JPS6210704B2 (en)
JPS6150031B2 (en)
US3825993A (en) Method of providing article from clad aluminum base alloy
US3411965A (en) Method of bonding polyhalocarbon fabrics to metal
SU1475973A1 (en) Method of producing coatings
JPH0366914A (en) Coated roll for printer and manufacture thereof
JPS6333012B2 (en)
JPS605355B2 (en) Method for forming a fluororesin film on the surface of aluminum or aluminum alloy utensils
JPS62755B2 (en)
JPS6184670A (en) Manufacture of toner image fixing roller
JPH01141007A (en) Ceramic roll for heating synthetic resin sheet
JPH0256427B2 (en)
JPS5830375A (en) Formation of fluoroplastic film on copper surface
KR880000640B1 (en) One-step cooting precess of p.t.f.e.resin aluminium plate
JPS5821545B2 (en) Method for forming fluororesin film
KR890004788B1 (en) Process of forming a film of fluorine containing resin on a metallic substrate
JPH0141497B2 (en)