JPS6140073A - Solid laser oscillator - Google Patents

Solid laser oscillator

Info

Publication number
JPS6140073A
JPS6140073A JP16050884A JP16050884A JPS6140073A JP S6140073 A JPS6140073 A JP S6140073A JP 16050884 A JP16050884 A JP 16050884A JP 16050884 A JP16050884 A JP 16050884A JP S6140073 A JPS6140073 A JP S6140073A
Authority
JP
Japan
Prior art keywords
solid
laser
laser beam
state laser
slanting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16050884A
Other languages
Japanese (ja)
Inventor
Akitaka Yamada
山田 明孝
Noriyuki Tanaka
田仲 範行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16050884A priority Critical patent/JPS6140073A/en
Publication of JPS6140073A publication Critical patent/JPS6140073A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0615Shape of end-face
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08095Zig-zag travelling beam through the active medium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To improve the laser oscillation efficiency and reduce the overall length of a solid laser element, by forming a plurality of slanting surfaces on each end face of a rectangular plate-shaped solid laser element, each slanting surface slanting in a direction which is different from the direction of travel of the laser beam output from the laser element. CONSTITUTION:A solid laser element 11 has a rectangular plate-shaped configuration. Excitation surfaces 12 which are irradiated with the excitation light radiated from excite lamps are respectively formed on both side surfaces of the element 11. The excitation surfaces 12 are optically polished. Two pairs of slanting surfaces 13a, 13b and 14a, 14b are formed by optical polishing, each of these surfaces slanting in a direction which is different from the direction of travel of the laser beam output from the element 11. The pairs of slanting surfaces 13a, 13b and 14a, 14b respectively define angular laser beam incident/emergent end parts 15, 16 each projecting outwards at a substantially central portion thereof. A highly reflective part 17 which totally reflects the laser beam is disposed in opposing relation to either of the end parts 15 or 16, and a laser beam emerging part 18 which can transmit a part of the laser beam and reflect the remaining beam is disposed in opposing relation to the other. Thus, it is possible to improve the laser oscillation capability and reduce the overall length of the laser element 11.

Description

【発明の詳細な説明】 C発明の技術分野) 、 この発明は矩形板状の固体レーザ素子を備えた固体
レーザ発振装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an improvement of a solid-state laser oscillation device equipped with a rectangular plate-shaped solid-state laser element.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、固体レーザ発振装置として第5図および第6図
に示すように縦寸法a、横寸法b(b・≧2a)、長さ
寸法1の矩形板状に形成された固体レーザ素子1を備え
、この固体レーザ素子1の両側面に形成される励起面2
.゛2に図示しない励起ランプから放射された励起光が
照射されるととも□に、この固体レーザ素子1の一端側
にレーザ光を全反射する高反射部3.他端側にレーザ光
の一部を透過し残りを反・射可能・なレーザ光出射部4
がそれぞれ対向配置され、さらに固体レーザ素子1の・
両端面に固体レーザ素子1から出力されるレーザ光の進
行方向に対し所定の傾斜角度θB傾斜する傾斜面5.5
が形成され、励起ランプから放射された励起光が固体レ
ーザ素子1の励起面2,2に照射されることにより固体
レーザ素子1の内部で励起されるレーザ光が傾斜面5,
5を通る際に屈折されて固体レーザ素子1の各励起面2
.2上で全反射を繰返しながら進み発振する構成のもの
が知られている。この場合、固体レーザ素子1の両端傾
斜面甑5の傾斜角度θBは入射レーザ光が固体レーザ素
子1の各励起面2.2上で全反射を起こし得る角度に設
定されている。
Generally, a solid-state laser oscillation device includes a solid-state laser element 1 formed in the shape of a rectangular plate with a vertical dimension a, a horizontal dimension b (b≧2a), and a length dimension 1, as shown in FIGS. 5 and 6. , excitation surfaces 2 formed on both sides of this solid-state laser device 1
.. 2 is irradiated with excitation light emitted from an excitation lamp (not shown), and a high reflection part 3 which totally reflects the laser light toward one end side of the solid-state laser element 1. Laser light emitting section 4 that can transmit part of the laser light to the other end and reflect/reflect the rest
are arranged facing each other, and furthermore, the solid-state laser element 1 and
Slanted surfaces 5.5 on both end faces are inclined at a predetermined inclination angle θB with respect to the traveling direction of the laser beam output from the solid-state laser element 1.
is formed, and when the excitation light emitted from the excitation lamp is irradiated onto the excitation surfaces 2, 2 of the solid-state laser device 1, the laser beam excited inside the solid-state laser device 1 is directed to the inclined surfaces 5, 2.
5, each excitation surface 2 of the solid-state laser element 1 is refracted when passing through the
.. A structure is known in which the laser beam advances and oscillates while repeating total reflection on the laser beam. In this case, the inclination angle θB of the inclined surfaces 5 at both ends of the solid-state laser device 1 is set to an angle at which total reflection of the incident laser beam can occur on each excitation surface 2.2 of the solid-state laser device 1.

ところで、固体レーザ素子1の傾斜面5.5の傾斜角度
θBを大きく設定した場合には固体レーザ素子1の内部
におけるレーザ光の反射回数が少なくなり、固体レーザ
素子1の内部におけるレーザ光路の長さが比較的短くな
るので、固体レーザ素子1の長さ寸法Iが長くなる問題
があった。そのため、固体レーザ素子1の長さ寸法を比
較的小さくする場合には傾斜面5.5の傾斜角度θBを
比較的小さく設定して固体レーザ素子1の内部における
レーザ光の反射回数を増やして固体レーザ素子1の内部
のレーザ光路の長さを長くするす必要がある。しかしな
がら、上記従来構成のものにあっては固体レーザ素子1
の両端傾斜面5.5は一方向にのみ形成されていたので
、傾斜面5.5の傾斜角度θBを比較的大きく設定する
ことにより固体レーザ素子1の内部におけるレーザ光の
反射回数を増やした場合には固体レーザ素子1の内部に
レーザ発振に直接寄与しない部分、すなわちレーザ光路
を形成しない部分が固体レーザ素子1全体の30〜40
%程度に達し、レーザ発振効率が悪くなる問題があった
By the way, when the inclination angle θB of the inclined surface 5.5 of the solid-state laser device 1 is set large, the number of reflections of the laser beam inside the solid-state laser device 1 decreases, and the length of the laser optical path inside the solid-state laser device 1 decreases. Since the length becomes relatively short, there is a problem that the length dimension I of the solid-state laser device 1 becomes long. Therefore, when the length dimension of the solid-state laser element 1 is made relatively small, the inclination angle θB of the inclined surface 5.5 is set relatively small to increase the number of reflections of the laser beam inside the solid-state laser element 1. It is necessary to increase the length of the laser optical path inside the laser element 1. However, in the conventional structure described above, the solid-state laser element 1
Since the sloped surfaces 5.5 at both ends of the solid-state laser element 1 were formed only in one direction, the number of reflections of the laser beam inside the solid-state laser element 1 was increased by setting the slope angle θB of the sloped surfaces 5.5 to be relatively large. In some cases, the portion of the solid-state laser device 1 that does not directly contribute to laser oscillation, that is, the portion that does not form a laser optical path, is 30 to 40 of the entire solid-state laser device 1.
%, and there was a problem that the laser oscillation efficiency deteriorated.

〔発明の目的〕[Purpose of the invention]

この発明は固体レーザ素子の内部のレーザ発振に直接寄
与しない部分の割合いを低減することができ、レーザ発
振効率の向上を図ることができるとともに、固体レーザ
素子全体の長さ寸法を短縮することができる固体レーザ
発振装置を提供することを目的とするものである。
The present invention can reduce the proportion of the portion inside the solid-state laser device that does not directly contribute to laser oscillation, improve the laser oscillation efficiency, and shorten the overall length of the solid-state laser device. The object of the present invention is to provide a solid-state laser oscillation device that can perform the following steps.

〔発明の概要〕[Summary of the invention]

この発明は矩形板状の固体レーザ素子の両端面に固体レ
ーザ素子カーら出力されるレーザ光の進行方向に対し異
なる方向に傾斜する複数の傾斜面をそれぞれ形成したこ
とを特徴とするものである。
This invention is characterized in that a plurality of inclined surfaces are formed on both end faces of a rectangular plate-shaped solid-state laser element, each inclined in a different direction with respect to the traveling direction of laser light outputted from the solid-state laser element. .

〔発明の実施例〕[Embodiments of the invention]

第1図および第2図はこの考案の一実施例を示すもので
ある。第1図および第2図中で、11は縦寸法a、横寸
法b(b≧2a)、長さ寸法1の矩形板状に形成された
固体レーザ素子である。この固体レーザ素子11の両側
面には図示しない励起ランプから放射された励起光が照
射される励起面12.12が形成されている。これらの
励起面12.12は内部で効率良く・全反射できるよう
に光学研磨されている。さらに、この固体レーザ素子1
1の両端部には固体レーザ素子11から出力されるレー
ザ光の進行方向に対し興なる方向に傾斜する各一対の傾
斜面13a、13b、14a。
FIGS. 1 and 2 show an embodiment of this invention. In FIGS. 1 and 2, 11 is a solid-state laser element formed in the shape of a rectangular plate with a vertical dimension a, a horizontal dimension b (b≧2a), and a length dimension 1. Excitation surfaces 12.12 are formed on both sides of the solid-state laser element 11, and are irradiated with excitation light emitted from an excitation lamp (not shown). These excitation surfaces 12.12 are optically polished so that efficient total reflection can occur inside them. Furthermore, this solid-state laser element 1
A pair of inclined surfaces 13a, 13b, and 14a are provided at both ends of the solid-state laser element 11, respectively, and are inclined in a direction opposite to the traveling direction of the laser beam output from the solid-state laser element 11.

14bがそれぞれ光学研磨されて形成されており、これ
らの各一対の傾斜面13a、13b、14a。
14b are formed by optical polishing, and each pair of inclined surfaces 13a, 13b, 14a.

14k)によって略中央部位が外方向に突出する略山形
(頂角θW)のレーザ光入出射端部15,16がそれぞ
れ形成されている。また、固体し一ザ素子11の両端の
レーザ光入出射端81115.16にはレーザ光を全反
射する高反射部17.他端側にはレーザ光の一部を透過
し残りを反射可能なレーザ光出射部18がそれぞれ対向
配置されている。
14k), laser beam input/output ends 15 and 16 each having a substantially chevron shape (apex angle θW) whose substantially central portion protrudes outward are formed, respectively. Also, at the laser light input/output ends 81115.16 at both ends of the solid-state laser element 11, high reflection portions 17. On the other end side, laser light emitting sections 18 that can transmit a part of the laser light and reflect the rest are arranged facing each other.

この高反射部17は直角プリズム反射器によって形成さ
れている。さらに、レーザ光出射部18には固体レーザ
素子11のレーザ光入出射端部16の一方の傾斜面14
aと対向する上半部に一部透過性を有する出力1111
9.他方の傾斜面14bと対向する下半部に全反射鏡2
0がそれぞれ一般されている。
This high reflection section 17 is formed by a right angle prism reflector. Further, the laser beam emitting section 18 includes one inclined surface 14 of the laser beam input/output end 16 of the solid-state laser element 11.
Output 1111 with partial transparency in the upper half facing a
9. A total reflection mirror 2 is provided in the lower half facing the other inclined surface 14b.
0 is common.

そこで、上記構成のものにあっては励起ランプから放射
された励起光は第1図中に矢印で示すように固体レーザ
素子11の励起面12.12に照射される。そして、固
体レーザ素子11の内部で励起されるレーザ光は固体レ
ーザ素子11のレーザ光入出射端部15,16の各一対
の傾斜面13a、13b、14a、14bを通る際に屈
折されて固体レーザ素子11の各5励起面12.12上
で全反射を繰返しながら進み発振する。この場合、高反
射部17は直角プリズム反射器によって形成されている
ので、レーザ光入出射端部15の一方の傾斜面13a(
或いは13b)側から出射されたレーザ光成分は直角プ
リズム反射器の両反射面17a、17b (17b、1
7a)によってそれぞれ反射されてレーザ光入出射端部
15の他方の傾斜面13b(13a)側に入射されるよ
うになっている。さらに、レーザ光出射部18は一部透
過性を有する上半部側の出力鏡19と固体レーザ素子1
1のレーザ光入出射端部16の一方の傾斜面14aと下
半部側の全反射鏡20とによって形成されているので、
レーザ光入出射端部16の一方の傾斜面14b側から出
射されたレーザ光成分はレーザ光出射部18の全反射1
120によって全反射されて再び同一の傾斜面14b側
から入射されるとともに、レーザ光入出射端部16の他
方の傾斜面14a側から出射されたレーザ光成分は一部
が出力l!19によって全反射されて再び同一の傾斜面
14a側から入射され、残りはこの出力鏡19を介して
外部に取出されるようになっている。
Therefore, in the structure described above, the excitation light emitted from the excitation lamp is irradiated onto the excitation surface 12.12 of the solid-state laser element 11 as shown by the arrow in FIG. The laser light excited inside the solid-state laser element 11 is refracted when passing through each pair of inclined surfaces 13a, 13b, 14a, and 14b of the laser light input/output ends 15 and 16 of the solid-state laser element 11, and is refracted into the solid state. The laser beam advances and oscillates while repeating total reflection on each of the five excitation surfaces 12 and 12 of the laser element 11. In this case, since the high reflection section 17 is formed by a right angle prism reflector, one inclined surface 13a of the laser beam input/output end section 15 (
Alternatively, the laser beam component emitted from the side 13b) is reflected by both reflective surfaces 17a, 17b (17b, 1
7a) and are incident on the other inclined surface 13b (13a) of the laser light input/output end portion 15. Furthermore, the laser beam emitting section 18 includes an output mirror 19 on the upper half side that is partially transparent, and a solid-state laser element 1.
Since it is formed by one inclined surface 14a of the laser beam input/output end 16 of No. 1 and the total reflection mirror 20 on the lower half side,
The laser beam component emitted from one inclined surface 14b side of the laser beam input/output end 16 is totally reflected 1 by the laser beam output section 18.
120 and enters again from the same inclined surface 14b side, and a part of the laser beam component emitted from the other inclined surface 14a side of the laser beam input/output end 16 is output l! 19 and enters again from the same inclined surface 14a side, and the rest is taken out to the outside via this output mirror 19.

かくして、上記構成のものにあっては固体レーザ素子1
1の内部全体にレーザ光路を形成することができるので
、固体レーザ素子11の内部全体をレーザ発振に寄与さ
せることができ、従来に比べてレーザ発振効率の向上を
図ることができる。
Thus, in the structure described above, the solid-state laser device 1
Since the laser optical path can be formed throughout the interior of the solid-state laser element 11, the entire interior of the solid-state laser element 11 can contribute to laser oscillation, and the laser oscillation efficiency can be improved compared to the conventional method.

さらに、固体レーザ素子11の内部全体をレーザ光路と
して使用することができるの′で、固体レーザ素子11
の内部に従来に比べて略2倍のレーザ光路を形成するこ
とができ、固体レーザ素子11全体の長さ寸法を短縮す
ることができる。
Furthermore, since the entire interior of the solid-state laser device 11 can be used as a laser optical path, the solid-state laser device 11
Approximately twice as many laser optical paths can be formed inside the solid-state laser element 11 as compared to the conventional one, and the overall length of the solid-state laser element 11 can be shortened.

なお、この発明は上記実施例に限定されるものではない
。例えば、上記実施例ではレーザ光出射部18の全反射
120によって全反射させたレーザ光成分をレーザ光入
出射端部15の上側の傾斜面13aから出射させたのち
直角プリズム反射器の両段射面17a、17bによって
それぞれ反射させてレーザ光入出射端部15の下側の傾
斜面13bに入射させる構成にしたものを示したが、第
3図に示すようにレーザ光出射部18の全反射鏡20に
よって全反射させたレーザ光成分をレーザ光入出射端部
15の下側の傾斜面13bから出射させたのち直角プリ
ズム反射器の両段射面17b。
Note that this invention is not limited to the above embodiments. For example, in the above embodiment, the laser beam component totally reflected by the total reflection 120 of the laser beam emitting section 18 is emitted from the upper inclined surface 13a of the laser beam input/output end section 15, and then is emitted from both stages of the right angle prism reflector. Although a structure is shown in which the laser beam is reflected by the surfaces 17a and 17b and is made incident on the lower inclined surface 13b of the laser beam input/output end portion 15, as shown in FIG. After the laser beam component totally reflected by the mirror 20 is emitted from the lower inclined surface 13b of the laser beam input/output end 15, the laser beam component is emitted from the lower slope surface 13b of the right angle prism reflector.

17aによってそれぞれ反射させてレーザ光入出射端部
15の上側の傾斜面13aに入射させる構成にしてもよ
い。また、第4図に示すように高反射部21を全反射用
の誘電体鏡によって形成するとともに、レーザ光出射部
22の全面を一部透過性を有する出力鏡によって形成し
てもよい。この場合には固体レーザ素子11の内部全体
を一層効果的にレーザ発振に使用することができる゛。
It may be configured such that the laser beams are reflected by the respective laser beams 17a and made to enter the upper inclined surface 13a of the laser beam input/output end portion 15. Further, as shown in FIG. 4, the high reflection section 21 may be formed of a dielectric mirror for total reflection, and the entire surface of the laser beam emitting section 22 may be formed of an output mirror that is partially transparent. In this case, the entire interior of the solid-state laser element 11 can be used more effectively for laser oscillation.

さらに、固体レーザ素子11両端の傾斜面は3以上の複
数面形成してもよく、その他この発明の要旨を逸脱しな
い範囲で種々変形実施できることは勿論である。
Furthermore, three or more inclined surfaces at both ends of the solid-state laser element 11 may be formed, and it goes without saying that various other modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

この発明によれば矩形板状の固体レーザ素子の両端面に
固体レーザ素子から出方されるレーザ光の進行方向に対
し異なる方向に傾斜する複数の傾斜面をそれぞれ形成し
たので、固体レーザ素子の内部のレーザ発振に直接寄与
しない部分の割合いを低減することができ、レーザ発振
効率の向上を図ることができるとともに、固体レーザ素
子全体の長さ寸法を短縮することができる。
According to this invention, a plurality of inclined surfaces are formed on both end faces of a rectangular plate-shaped solid-state laser device, each inclined in a different direction with respect to the traveling direction of laser light emitted from the solid-state laser device. The proportion of the internal portion that does not directly contribute to laser oscillation can be reduced, the laser oscillation efficiency can be improved, and the overall length of the solid-state laser element can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明の一実施例を示すもので
、第1図は要部の概略構成を示す側面図、第2図は第1
図の■−■線断面図、餉3図は別の実施例を示す側面図
、第4図はさらに別の実施例を示す側面図、第5図およ
び第6図は従来例を示すもので、第5図は要部の概略構
成を示す側面図、第6図は第5図のVl−Vl線断面因
である。 11・・・固体レーザ素子、12・・・励起面、13a
。 13b、14a、 14b・’傾斜面、17.21・・
・高反射部、18.22・・・レーザ光出射部。
1 and 2 show one embodiment of the present invention, FIG. 1 is a side view showing a schematic configuration of the main part, and FIG.
3 is a side view showing another embodiment, FIG. 4 is a side view showing still another embodiment, and FIGS. 5 and 6 are a conventional example. , FIG. 5 is a side view showing a schematic configuration of the main parts, and FIG. 6 is a cross-sectional view taken along the line Vl--Vl in FIG. 5. 11... Solid-state laser element, 12... Excitation surface, 13a
. 13b, 14a, 14b・'slanted surface, 17.21...
- High reflection part, 18.22...Laser light emitting part.

Claims (1)

【特許請求の範囲】[Claims] 矩形板状の固体レーザ素子の一端側にレーザ光を全反射
する高反射部、他端側にレーザ光の一部を透過し残りを
反射可能なレーザ光出射部がそれぞれ対向配置されると
ともに、前記固体レーザ素子の両端面に前記固体レーザ
素子から出力されるレーザ光の進行方向に対し傾斜する
傾斜面が形成され、前記固体レーザ素子の内部で励起さ
れるレーザ光が前記傾斜面を通る際に屈折されて前記固
体レーザ素子の各側壁面上で全反射を繰返しながら進み
発振する固体レーザ発振装置において、前記固体レーザ
素子の両端面に前記固体レーザ素子から出力されるレー
ザ光の進行方向に対し異なる方向に傾斜する複数の傾斜
面をそれぞれ形成したことを特徴とする固体レーザ発振
装置。
A rectangular plate-shaped solid-state laser element has a high reflection part that totally reflects the laser beam at one end thereof, and a laser light emitting part that can transmit a part of the laser beam and reflect the rest at the other end thereof, and is arranged to face each other. Slanted surfaces that are inclined with respect to the traveling direction of the laser beam output from the solid-state laser device are formed on both end surfaces of the solid-state laser device, and when the laser beam excited inside the solid-state laser device passes through the sloped surface, In the solid-state laser oscillation device, the solid-state laser oscillation device advances and oscillates while repeating total reflection on each side wall surface of the solid-state laser element. A solid-state laser oscillation device characterized in that a plurality of inclined surfaces are formed, each of which is inclined in a different direction.
JP16050884A 1984-07-31 1984-07-31 Solid laser oscillator Pending JPS6140073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16050884A JPS6140073A (en) 1984-07-31 1984-07-31 Solid laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16050884A JPS6140073A (en) 1984-07-31 1984-07-31 Solid laser oscillator

Publications (1)

Publication Number Publication Date
JPS6140073A true JPS6140073A (en) 1986-02-26

Family

ID=15716461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16050884A Pending JPS6140073A (en) 1984-07-31 1984-07-31 Solid laser oscillator

Country Status (1)

Country Link
JP (1) JPS6140073A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158854U (en) * 1986-03-31 1987-10-08
US5099850A (en) * 1989-01-17 1992-03-31 Olympus Optical Co., Ltd. Ultrasonic diagnostic apparatus
EP0821453A2 (en) * 1996-07-18 1998-01-28 Hamamatsu Photonics K.K. Solid-state laser amplifier
FR2756672A1 (en) * 1996-12-04 1998-06-05 Thomson Csf LIGHT AMPLIFIER DEVICE WITH TWO INCIDENT BEAMS

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158854U (en) * 1986-03-31 1987-10-08
US5099850A (en) * 1989-01-17 1992-03-31 Olympus Optical Co., Ltd. Ultrasonic diagnostic apparatus
EP0821453A2 (en) * 1996-07-18 1998-01-28 Hamamatsu Photonics K.K. Solid-state laser amplifier
EP0821453B1 (en) * 1996-07-18 2004-10-13 Hamamatsu Photonics K.K. Solid-state laser amplifier
FR2756672A1 (en) * 1996-12-04 1998-06-05 Thomson Csf LIGHT AMPLIFIER DEVICE WITH TWO INCIDENT BEAMS
EP0847115A1 (en) * 1996-12-04 1998-06-10 Thomson-Csf Light amplifier with two incident beams

Similar Documents

Publication Publication Date Title
JPS6216588A (en) Laser unit
KR950031358A (en) Laser oscillator
JPS6140073A (en) Solid laser oscillator
US3628180A (en) Two-slab laser system with compensation for lens power
JPH01100983A (en) Laser rod excitation device of solid state laser
US7356066B2 (en) Solid state laser
JP2586110B2 (en) Solid-state laser device
JP3060493B2 (en) Solid state laser oscillator
JP2956152B2 (en) Laser light source
JP4047989B2 (en) Laser oscillator
JP2516698B2 (en) Slab type solid-state laser oscillator
JP2664517B2 (en) Solid state laser oscillator
JPH0669569A (en) Optical wavelength conversion apparatus
JP2666350B2 (en) Solid-state laser device
JPH10284779A (en) Condenser
JP3003172B2 (en) Solid state laser oscillator
JPH0547637A (en) Light source device
JP3640819B2 (en) Zigzag slab type solid-state laser amplifier and oscillator
JPS63254776A (en) Solid-state laser device
JP2599087Y2 (en) LD pumped solid-state laser device
JPH06268289A (en) Slab laser
KR930003960B1 (en) Lcd projector
JPH0476516B2 (en)
KR100617147B1 (en) integrator of projection system
JPH036075A (en) Higher harmonic generator device