JPS6140034B2 - - Google Patents

Info

Publication number
JPS6140034B2
JPS6140034B2 JP2203181A JP2203181A JPS6140034B2 JP S6140034 B2 JPS6140034 B2 JP S6140034B2 JP 2203181 A JP2203181 A JP 2203181A JP 2203181 A JP2203181 A JP 2203181A JP S6140034 B2 JPS6140034 B2 JP S6140034B2
Authority
JP
Japan
Prior art keywords
reaction
gas
film
substrate
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2203181A
Other languages
Japanese (ja)
Other versions
JPS57136932A (en
Inventor
Seiichi Iwamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP2203181A priority Critical patent/JPS57136932A/en
Publication of JPS57136932A publication Critical patent/JPS57136932A/en
Publication of JPS6140034B2 publication Critical patent/JPS6140034B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、気相から基板表面に光化学反応によ
り生成した物質の被膜を成長させる、いわゆる光
気相成長装置に関し、主として光気相化学成長
(以下光CVDと称する)Si3N4膜の形成方法を対
象とする。 トランジスタやICのごとき半導体装置の製造
において、半導体基板上にSi3N4膜のごとき窒化
膜やアモルフアスSi膜を形成するのに気相化学反
応を進行させるために、半導体基板等を炉中にお
いて直接加熱する方法、すなわち、熱エネルギー
によつて反応させる物質を気相で熱分解させ、同
時に基板上に被膜を成長させるようにしていた。
上記の加熱手段として、赤外線ランプ、高周波加
熱、あるいは電気抵抗加熱等の方法が利用されて
いた。 しかしながら、このような加熱を化学反応の主
要条件とする方法では、かなりの高温度で行なう
ために、例えば金属フレームに組立てられたトラ
ンジスタ上にSi3N4膜を被覆する場合、シリコ
ン・チツプと金属フレームとを接着せるAn―Si
共晶合金等の融点(400℃)をはるかに越える温
度を必要とし、適用が不可能であつた。 ところで、特公昭39−2426号公報によれば、広
い意味で気相化学反応法の一つにあるエピタキシ
ヤル法により半導体基体上に単結晶半導体層を形
成する方法において、半導体基体を加熱体により
加熱しながら紫外線を反応する物質にあてること
により、反応を300℃程低温で行なえることが記
載されている。Si半導体基板上にSi3N4膜を形成
する場合に、CVD法によればモノシラン
(SiH4)とアンモニア(NH3)を用いてSi3N4膜を
600℃程度で生成することができ、石英反応管内
で上記反応を紫外線照射しながら行なうと、100
℃〜300℃の基板加熱温度で低温のSi3N4膜形成が
可能となる。 しかし、上記紫外線照射によるSi3N4(CVD膜
形成法では、石英反応管にもSi3N4膜が徐々に堆
積し、石英反応管の紫外線透過率を徐々に低下さ
せる欠点を有する。そこで、前述の光CVD法に
おいて、反応ガスの紫外線による活性化領域と
CVD膜形成のための反応領域とを分離し、その
間をパイプで連結することにより、上記CVD反
応による石英部失透による反応速度の低下を防ぐ
ことが可能であると考え、本発明が生まれたので
ある。 よつて、本発明の目的は、気相化学成長膜を低
温で安定に反応させる装置を提供することであ
る。 上記目的を達成するための基本的な装置構成
は、気相から基体表面に光化学反応により生成す
る物質を沈着させる装置において、光によりガス
を活性化する部分と、該ガス活性化部分から活性
化ガスを導出する部分と、該活性化ガスを気相反
応させ基板表面に膜形成させる反応部分とを具備
せる装置であることを特徴とする。 以下、実施例にそつて具体的に説明する。 第1図において、本発明による光気相化学成長
法のための装置が示され、2つの導入によりアン
モニア(NH3)ガスとモノシラン(SiH4)ガスが導
入され、コツク1,1′および流量計2,2′を通
つてガス活性化部分3,3′に送られる。ガス活
性化領域は、その光導入部窓4,4′が石英で構
成され、他の領域はステンレス等で構成された容
器となつている。石英窓4,4′へは、Xe―Hg
(キセノン―水銀)ランプ5から2000〜2200Åの
光が照射されることにより、
The present invention relates to a so-called photovapor phase growth apparatus that grows a film of a substance generated by a photochemical reaction on the surface of a substrate from the gas phase, and is mainly used for forming a Si 3 N 4 film by photochemical vapor deposition (hereinafter referred to as photoCVD). Target method. In the manufacture of semiconductor devices such as transistors and ICs, semiconductor substrates are placed in a furnace in order to proceed with a gas phase chemical reaction to form a nitride film such as a Si 3 N 4 film or an amorphous Si film on the semiconductor substrate. Direct heating was used, that is, thermal energy was used to thermally decompose the reacting substance in the gas phase, and at the same time, a film was grown on the substrate.
As the above heating means, methods such as an infrared lamp, high frequency heating, or electric resistance heating have been used. However, in such a method in which heating is the main condition for the chemical reaction, the temperature is quite high, so when coating a Si 3 N 4 film on a transistor assembled on a metal frame, for example, the silicon chip and An-Si that can be bonded to metal frames
It required temperatures far exceeding the melting point (400°C) of eutectic alloys, etc., making it impossible to apply. By the way, according to Japanese Patent Publication No. 39-2426, in a method of forming a single crystal semiconductor layer on a semiconductor substrate by the epitaxial method, which is one of the vapor phase chemical reaction methods in a broad sense, the semiconductor substrate is heated by a heating body. It is stated that the reaction can be carried out at temperatures as low as 300°C by exposing the reacting substance to ultraviolet rays while heating. When forming a Si 3 N 4 film on a Si semiconductor substrate, the CVD method uses monosilane (SiH 4 ) and ammonia (NH 3 ) to form the Si 3 N 4 film.
It can be produced at around 600℃, and if the above reaction is carried out in a quartz reaction tube while irradiating ultraviolet rays, 100
It is possible to form a low-temperature Si 3 N 4 film at a substrate heating temperature of ℃ to 300 ℃. However, the Si 3 N 4 (CVD film formation method) by ultraviolet irradiation has the drawback that the Si 3 N 4 film is gradually deposited on the quartz reaction tube as well, which gradually reduces the ultraviolet transmittance of the quartz reaction tube. , in the photo-CVD method mentioned above, the activated region of the reactive gas by ultraviolet rays and
The present invention was created based on the idea that by separating the reaction area for CVD film formation and connecting the area with a pipe, it is possible to prevent the reaction rate from decreasing due to the devitrification of the quartz part caused by the CVD reaction. It is. Therefore, an object of the present invention is to provide an apparatus that stably reacts a vapor-phase chemically grown film at low temperatures. The basic configuration of an apparatus for achieving the above purpose is to deposit a substance generated by a photochemical reaction from the gas phase onto the surface of a substrate. The apparatus is characterized in that it is equipped with a part for deriving a gas, and a reaction part for causing a vapor phase reaction of the activated gas to form a film on the surface of the substrate. Hereinafter, a detailed description will be given along with examples. In FIG. 1, an apparatus for photochemical vapor deposition according to the present invention is shown, in which ammonia (NH 3 ) gas and monosilane (SiH 4 ) gas are introduced by two introductions, and the flow rate is The gas is sent to the gas activation section 3, 3' through a total of 2, 2'. In the gas activation region, the light introduction windows 4, 4' are made of quartz, and the other region is a container made of stainless steel or the like. For quartz windows 4 and 4', use Xe-Hg
By irradiating light of 2000 to 2200 Å from the (xenon-mercury) lamp 5,

【表】 の反応によつてSiH4とNH3はそれぞれ活性なSiH3
ガス、NH2ガスとなり、パイプ6,6′を通つて
反応部7へ導入される。反応部7は、ステンレス
や石英等の容器で構成され、ヒーター9で100℃
程度に加熱されたSiウエーハ8上に、 3・SiH3+4・NH2+7・H〓〓Si3N4+12H2
↑ の反応によつてSi3N4膜が形成され、残ガスは排
気口10より排出される。 以上の実施例で述べたような本発明によれば、
下記のようにその目的が達成できる。 Xe―Hgランプにより活性化された個々のガス
は活性部の石英窓に反応物を生成することがな
く、絶えず同一の光透過条件でガスが活性化さ
れ、且つ化学反応は反応部のみで低温で進行させ
ることができる。 本発明によれば安定な光化学反応を行なうこと
ができ、量産性にすぐれ、連絡処理も可能とする
業の効果がもたらされる。
[Table] SiH 4 and NH 3 each become active SiH 3 by the reaction
The resulting gas becomes NH 2 gas and is introduced into the reaction section 7 through the pipes 6 and 6'. The reaction section 7 consists of a container made of stainless steel or quartz, and is heated to 100°C by a heater 9.
3・SiH 3 +4・NH 2 +7・H〓〓Si 3 N 4 +12H 2
A Si 3 N 4 film is formed by the reaction ↑, and the remaining gas is exhausted from the exhaust port 10. According to the present invention as described in the above embodiments,
The purpose can be achieved as follows. The individual gases activated by the Xe-Hg lamp do not generate reactants in the quartz window of the active part, and the gases are constantly activated under the same light transmission conditions, and the chemical reaction takes place only in the reaction part at a low temperature. It can be proceeded with. According to the present invention, a stable photochemical reaction can be carried out, and the advantages of being excellent in mass productivity and enabling continuous processing are brought about.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施形態を示す光化学反応
装置原理を示す構成図である。 1…バルブ、2…流量計、3…活性化部、4…
石英窓、5…Xe―Hgランプ、6…パイプ、7…
反応部、8…基体、9…ヒーター、10排ガス
口。
FIG. 1 is a configuration diagram showing the principle of a photochemical reaction device according to an embodiment of the present invention. 1... Valve, 2... Flowmeter, 3... Activation part, 4...
Quartz window, 5...Xe-Hg lamp, 6...pipe, 7...
reaction section, 8...substrate, 9...heater, 10 exhaust gas port.

Claims (1)

【特許請求の範囲】[Claims] 1 気相から基板表面に化学反応により生成する
物質の被膜を沈着するにあたり、上記化学反応を
進行させるためにあらかじめガス体に光照射を行
ないガス体の活性化を行なう部分と、該活性化ガ
ス体を誘導する導通部と、該導通部の終端に活性
化ガスによる化学反応を行なう反応部とを具備す
ることを特徴とする光化学反応装置。
1. When depositing a film of a substance generated by a chemical reaction on the surface of a substrate from a gas phase, a part where the gas body is activated by irradiating the gas body with light in order to advance the chemical reaction, and the activation gas. 1. A photochemical reaction device comprising: a conduction section that guides the body; and a reaction section that performs a chemical reaction using an activated gas at the end of the conduction section.
JP2203181A 1981-02-17 1981-02-17 Photochemical reaction device Granted JPS57136932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2203181A JPS57136932A (en) 1981-02-17 1981-02-17 Photochemical reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2203181A JPS57136932A (en) 1981-02-17 1981-02-17 Photochemical reaction device

Publications (2)

Publication Number Publication Date
JPS57136932A JPS57136932A (en) 1982-08-24
JPS6140034B2 true JPS6140034B2 (en) 1986-09-06

Family

ID=12071601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2203181A Granted JPS57136932A (en) 1981-02-17 1981-02-17 Photochemical reaction device

Country Status (1)

Country Link
JP (1) JPS57136932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181423A (en) * 1992-12-14 1994-06-28 Kawasaki Steel Corp Digital filter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982720A (en) * 1982-11-02 1984-05-12 Nec Corp Optical vapor growth method
JPS59182520A (en) * 1983-04-01 1984-10-17 Hitachi Ltd Optical cvd method
JP4690148B2 (en) * 2005-09-01 2011-06-01 株式会社アルバック Organic thin film manufacturing method and photo-CVD apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181423A (en) * 1992-12-14 1994-06-28 Kawasaki Steel Corp Digital filter

Also Published As

Publication number Publication date
JPS57136932A (en) 1982-08-24

Similar Documents

Publication Publication Date Title
US4421592A (en) Plasma enhanced deposition of semiconductors
JPS5747706A (en) Lump of silicon nitride containing ti and its manufacture
US4501769A (en) Method for selective deposition of layer structures consisting of silicides of HMP metals on silicon substrates and products so-formed
JPH02302027A (en) Selective growth method for amorphous or polycrystalline silicon
JPS6140035B2 (en)
JPS6043485A (en) Formation of amorphous silicon film
JPS6054919B2 (en) low pressure reactor
JPH02258689A (en) Method for forming crystalline thin film
JPS6140034B2 (en)
US4609424A (en) Plasma enhanced deposition of semiconductors
JPS61149477A (en) Formation of boron nitride film
JPS5953674A (en) Chemical vapor deposition method
US3152932A (en) Reduction in situ of a dipolar molecular gas adhering to a substrate
JPS6138269B2 (en)
JPS61127119A (en) Method of growing silicon crystal
JPS6225256B2 (en)
JPH0360918B2 (en)
JP2618408B2 (en) Manufacturing method of single crystal alloy film
JPS5921863Y2 (en) Reaction tube for vapor phase growth
JPS6086274A (en) Preparation of polycrystalline silicon film
JPH0547519B2 (en)
JPS6057507B2 (en) Manufacturing equipment and method for manufacturing ultra-hard high-purity silicon nitride
JPS5988307A (en) Manufacture of product coated with silicon carbide
JPS5493357A (en) Growing method of polycrystal silicon
JPS60106969A (en) Optical cvd apparatus