JPS6139615A - Reference voltage generating circuit - Google Patents

Reference voltage generating circuit

Info

Publication number
JPS6139615A
JPS6139615A JP15980984A JP15980984A JPS6139615A JP S6139615 A JPS6139615 A JP S6139615A JP 15980984 A JP15980984 A JP 15980984A JP 15980984 A JP15980984 A JP 15980984A JP S6139615 A JPS6139615 A JP S6139615A
Authority
JP
Japan
Prior art keywords
reference voltage
operational amplifier
switched capacitor
terminal
output end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15980984A
Other languages
Japanese (ja)
Inventor
Kazuyuki Miyadera
宮寺 一幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15980984A priority Critical patent/JPS6139615A/en
Publication of JPS6139615A publication Critical patent/JPS6139615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filters That Use Time-Delay Elements (AREA)

Abstract

PURPOSE:To enable to obtain stable reference voltage without increasing electric power consumption for variation of load by connecting an operational amlifier having connected inversion input end with an output end to the output end of a reference power source. CONSTITUTION:As the inversion input terminal and output terminal 21 of the operational amplifier 22 are connected directly, gain of this operational amplifier 22 becomes 1, and voltage of non-inversion input appears in the output end 21. Further, as output impedance of the operational amplifier 22 is as low as less than 1, potential of the output end 21 does not change even when load of the operational amplifier 22 changes. Accordingly, by using this circuit as the reference voltage generating circuit of switched capacitor integrators 23, 24, stable reference voltage is supplied and characteristic of the integrators 23, 24 becomes stable. As stable reference voltage is obtained even if large electric current is not let flow in resistances 18, 19, it is suitable also for an integrated circuit.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は基準電圧発生回路、特にスイッチド・キャパシ
タ積分器用の基準電圧発生回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a reference voltage generation circuit, and more particularly to a reference voltage generation circuit for a switched capacitor integrator.

(従来技術) 従来、電子フィルタ、音声認識回路、音声合成回路等に
はスイッチド・キャパシタ積分器が用いられる。
(Prior Art) Switched capacitor integrators are conventionally used in electronic filters, speech recognition circuits, speech synthesis circuits, and the like.

第2図は従来のスイッチド・キャパシタ積分器の一例の
回路図である。
FIG. 2 is a circuit diagram of an example of a conventional switched capacitor integrator.

第2図において、切換スイッチSWの第1接点2は入力
端子1に、第2接点3は演算増幅器7の反転入力端に、
共通接点4はキャパシタCIを介して基準電圧端6に接
続され、演算増幅器7の非反転入力端は基準電圧端6に
接続され、該演算増幅器7の反転入力端はキャパシタC
2を介して出力端5に接続される。
In FIG. 2, the first contact 2 of the changeover switch SW is connected to the input terminal 1, and the second contact 3 is connected to the inverting input terminal of the operational amplifier 7.
The common contact 4 is connected to a reference voltage terminal 6 via a capacitor CI, the non-inverting input terminal of an operational amplifier 7 is connected to the reference voltage terminal 6, and the inverting input terminal of the operational amplifier 7 is connected to a capacitor C.
2 to the output end 5.

今、入力端1に電圧v1が加えられ、前記スイッチSW
が周期T秒で切換わり、t=nT秒でスイッチSWが接
点2側に倒れて、キャパシタC1を充電し、t = (
n + 1 / 2 ) T秒で、スイッチSWが接点
3側に倒れるとC1の電荷はC2に転送され、スイッチ
SWでサンプルされた出力電圧■2が出力端5に出力さ
れる。このときの伝達関数はキャパシタC1及びC2の
比で決まり、これをZ変換で表わすと となる。
Now, a voltage v1 is applied to the input terminal 1, and the switch SW
switches at a period of T seconds, and at t = nT seconds, the switch SW falls to the contact 2 side, charging the capacitor C1, and t = (
n + 1 / 2 ) T seconds, when the switch SW falls to the contact 3 side, the charge of C1 is transferred to C2, and the output voltage 2 sampled by the switch SW is output to the output terminal 5. The transfer function at this time is determined by the ratio of capacitors C1 and C2, and is expressed by Z transformation.

第3図(a) 、 (b)は従来のスイッチド・キャパ
シタ積分器の他の例の回路図で、(a)図と(b)図は
スイッチの切換わり状態を示す。
FIGS. 3(a) and 3(b) are circuit diagrams of other examples of conventional switched capacitor integrators, and FIGS. 3(a) and 3(b) show the switching states of the switches.

スイッチド・キャパシタ積分器を半導体素子で構成した
場合、スイッチに寄生容量を生ずる。この寄生容量がス
イッチング速度などに影響することが判ってきたので、
寄生容量の影響を受けないスイッチド・キャパシタ積分
器として第3図(a)。
When a switched capacitor integrator is constructed from a semiconductor element, a parasitic capacitance is generated in the switch. It has become clear that this parasitic capacitance affects switching speed, etc.
Figure 3(a) shows a switched capacitor integrator that is not affected by parasitic capacitance.

(b)に示すものが考案されたのである。What is shown in (b) was devised.

第3図(a)において、t = n T秒でスイッチ8
W1゜SW2がそれぞれ接点9.接点10に接続され、
入力端子8に電圧v1が加えられると、キャパシタC1
及びC2を介し、演算増幅器15により出力端13にC
1,C2の比で決まる出力電圧V2が現われる。次にt
=(n+172)T秒で、第3図(b)に示すように、
スイッチsw1.sw2はそれぞれ接点11.接点12
に接続され、C1に充電された電荷は基準電圧端14に
放電されC2の電荷は保持される。このときスイッチの
寄生容量の電荷も同時に放電されvlよりv2への電荷
転送には何ら影響を及はさない。
In Fig. 3(a), switch 8 is turned on at t = n T seconds.
W1 and SW2 are the contacts 9. connected to contact 10,
When voltage v1 is applied to input terminal 8, capacitor C1
and C2 to the output terminal 13 by the operational amplifier 15.
An output voltage V2 determined by the ratio of C1 and C2 appears. Then t
=(n+172)T seconds, as shown in Figure 3(b),
Switch sw1. sw2 are contacts 11. Contact 12
The charge charged in C1 is discharged to the reference voltage terminal 14, and the charge in C2 is held. At this time, the charge of the parasitic capacitance of the switch is also discharged at the same time, and has no effect on the charge transfer from vl to v2.

(発明が解決しようとする問題点) ところで、第2図、第3図(a) 、 (b)に示した
ように、スイッチド・キャパシタ積分器は、演算増幅器
用電源vDD、Vssのため2個の端子及び基準電源V
ref用の1個の端子を必要とする。従って、このよう
なスイッチド・キャパシタ積分器を二電源(VDD v
 Vss )使用形の通常のランダムロジックと混在さ
せるにはさらに電源を増やす必要がある。そこで、従来
性なわれて来たのは第4図に示すように、VDD、78
8間に2個の抵抗を直列に接続し、その接続点から基準
電圧vrefを得方法である。又一般に、半導体基板上
では拡散層等により形成される。ところが第4図のよう
な抵抗分割による基準電圧発生回路は、第3図で示した
電荷の放電を基準電圧Vrefに対して行なうと、集積
回路の様に、多数のスイッチドキャパシタ積分器を含む
と抵抗RI 、R2に流れる電流が時間的に変化し、か
つR1,R,の抵抗値が高い数にΩ〜数千1(Ωと基準
電圧Vrefの変動が大きくなシ、スイッチド・・キャ
パシタ積分器の特性に多大な影響を与える。又、変動を
小さくするために、抵抗値を小さくする(数Ω〜数十Ω
)と、消費電力が非常に大きくなり、特に集積回路にお
いては致命的であるという欠点がある。
(Problems to be Solved by the Invention) By the way, as shown in FIGS. 2, 3(a) and 3(b), the switched capacitor integrator has two terminals and reference power supply V
Requires one terminal for ref. Therefore, such a switched capacitor integrator can be connected to two power supplies (VDD v
Vss) It is necessary to further increase the power supply in order to mix it with the normal random logic used. Therefore, as shown in Figure 4, what has been conventionally used is the VDD, 78
In this method, two resistors are connected in series between 8 and 8, and a reference voltage vref is obtained from the connection point. Further, it is generally formed by a diffusion layer or the like on a semiconductor substrate. However, the reference voltage generation circuit using resistance division as shown in FIG. 4 includes a large number of switched capacitor integrators like an integrated circuit when the charge shown in FIG. 3 is discharged to the reference voltage Vref. If the current flowing through the resistors RI and R2 changes over time, and the resistance values of R1 and R are high, the resistance value ranges from Ω to several thousand 1 (Ω and the reference voltage Vref vary greatly). It has a great effect on the characteristics of the integrator.In addition, to reduce the fluctuation, the resistance value should be small (several ohms to several tens of ohms).
), the power consumption becomes extremely large, which is particularly fatal for integrated circuits.

本発明の目的は、上記欠点を除去し、演算増幅器を用い
て1時間的に変動する負荷に対して消費電力を大きくす
ることなく安定した基準電位が得られるスイッチド・キ
ャパシタ積分器用の基準電圧発生回路を提供することに
ある。
The object of the present invention is to provide a reference voltage for a switched capacitor integrator that eliminates the above-mentioned drawbacks and that uses an operational amplifier to obtain a stable reference potential for a load that changes hourly without increasing power consumption. The purpose of this invention is to provide a generating circuit.

(問題点を解決するだめの手段) 本発明のスイッチド・キャパシタ積分器用の基準電圧発
生回路は、二つの電源間に直列に接続された二つの抵抗
の接続点を演算増幅器の非反転入力端に接続し、演算増
幅器の反転入力端と、出力端を接続し、該出力端を複数
のスイッチド・キャパシタ積分器の基準電圧端へ接続す
ることによ多構成される。
(Means for solving the problem) The reference voltage generation circuit for a switched capacitor integrator of the present invention connects the connection point of two resistors connected in series between two power supplies to the non-inverting input terminal of an operational amplifier. The inverting input terminal and the output terminal of the operational amplifier are connected to each other, and the output terminal is connected to reference voltage terminals of a plurality of switched capacitor integrators.

(作用) 5一 本発明の基準電圧発生回路において、二つの電源間に直
列に接続された二つの抵抗の接続点の電位は抵抗値の比
によって決まり、例えば抵抗値が等しければ−r (V
DD −Vss )の電位となる。演算増幅器の反転入
力端と出力端を接続することにより、該演算増幅器用電
源は1となり、非反転入力の電圧が出力端に表われる。
(Function) 5. In the reference voltage generation circuit of the present invention, the potential at the connection point of two resistors connected in series between two power supplies is determined by the ratio of the resistance values. For example, if the resistance values are equal, -r (V
DD-Vss). By connecting the inverting input terminal and the output terminal of the operational amplifier, the power supply for the operational amplifier becomes 1, and the voltage at the non-inverting input appears at the output terminal.

さらに演算増幅器の出力インピーダンスは10以下とな
り、時間的な負荷変動に対して安定した所定電位が得ら
れる。
Furthermore, the output impedance of the operational amplifier is 10 or less, and a stable predetermined potential can be obtained against temporal load fluctuations.

(実施例) 次に、本発明の実施例について図面を用いて説明する。(Example) Next, embodiments of the present invention will be described using the drawings.

第1図は本発明の一実施例の回路図である。FIG. 1 is a circuit diagram of an embodiment of the present invention.

この実施例は、二つの電源VDDとVSSとの間に直列
に接続された二つの抵抗18.19の接続点20を演算
増幅器22の非反転入力端に接続し、との演算増幅器2
20反転入力端と出力端21を接続し、演算増幅器の出
力端21を複数のスイッチド・キャパシタ積分器の基準
電圧端へ接続することにより構成される。第1図におい
て番号23゜24は例えば第2図、第3図(a) 、 
(b)に示したようなスイッチド・キャパシタ積分器で
ある。
In this embodiment, a connection point 20 between two resistors 18 and 19 connected in series between two power supplies VDD and VSS is connected to a non-inverting input terminal of an operational amplifier 22.
20 inverting input terminal and output terminal 21 are connected, and the output terminal 21 of the operational amplifier is connected to the reference voltage terminal of a plurality of switched capacitor integrators. In Fig. 1, the numbers 23 and 24 are, for example, Fig. 2, Fig. 3 (a),
This is a switched capacitor integrator as shown in (b).

抵抗18.19は分割抵抗であり、通常その抵抗値は等
しくしておく。すると、接続点20には一!−(VDD
  VSS )の電圧が得れる。演算増幅器22の入力
は高インピーダンスであるので、抵抗18゜19の負荷
の時間的変動は皆無である。演算増幅器22の反転入力
端は出力端に接続されているのでその出力インピーダン
スは1Ω以下である。
Resistors 18 and 19 are divided resistors, and their resistance values are usually kept equal. Then, there is one at connection point 20! -(VDD
VSS) voltage can be obtained. Since the input of the operational amplifier 22 is of high impedance, there is no temporal variation in the load on the resistors 18 and 19. Since the inverting input terminal of the operational amplifier 22 is connected to the output terminal, its output impedance is 1Ω or less.

本実施例では2個のスイッチド・キャパシタ積分器を2
3.24の様に示したが、もちろん3個以上であっても
よく、基準電圧端Vref の全体の過渡電流が1mA
としてもその電位変動は1°×1mA−1mVとなり1
mV以下となる。
In this example, two switched capacitor integrators are used.
3.24, but of course there may be three or more, and the entire transient current of the reference voltage terminal Vref is 1 mA.
Even if the potential fluctuation is 1°×1mA-1mV, 1
mV or less.

(発明の効果) 以上説明した様に、本発明によれば、反転入力端と出力
端を接続した演算増幅器を用いて、時間的に変動する負
荷に対して、消費電力を大きくすることなく安定した基
準電源が得られる、スイッチド・キャパシタ積分器用の
基準電圧発生回路が得られる。
(Effects of the Invention) As explained above, according to the present invention, by using an operational amplifier in which an inverting input terminal and an output terminal are connected, it is possible to stabilize loads that vary over time without increasing power consumption. A reference voltage generation circuit for a switched capacitor integrator is obtained, which can provide a reference power supply with a constant voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路図、第2図は従来のス
イッチド・キャパシタ積分器の一例の回路図、第3図(
a) I (b)は従来のスイッチド・キャパシタ積分
器の他の例の回路図、第4図は従来の抵抗分割による基
準電圧発生回路を示す回路図である。 1・・・・・・入力端子、2,3.4・・・・・・接点
、5・・・・・・出力端、6・・・・・・基準電圧端、
7・・・・・・演算増幅器、8・・・・・・入力端子、
9.10.11.12・・・・・・接点、13・・・・
・・出力端、14・・・・・・基準電圧端、15・・・
・・・演算増幅器、16.17.18.19パ・・°抵
抗、20・・・・・・接続点、21・・・・・出力端、
22・・・・・・演算増幅器、23.24・・・・パス
イッチド・キャパシタ積分器。
FIG. 1 is a circuit diagram of an embodiment of the present invention, FIG. 2 is a circuit diagram of an example of a conventional switched capacitor integrator, and FIG.
a) I (b) is a circuit diagram of another example of a conventional switched capacitor integrator, and FIG. 4 is a circuit diagram showing a conventional reference voltage generation circuit using resistance division. 1...Input terminal, 2, 3.4...Contact, 5...Output terminal, 6...Reference voltage terminal,
7... operational amplifier, 8... input terminal,
9.10.11.12... Contact, 13...
...Output end, 14...Reference voltage end, 15...
...Operation amplifier, 16.17.18.19 resistor, 20...Connection point, 21...Output end,
22... operational amplifier, 23.24... path switched capacitor integrator.

Claims (1)

【特許請求の範囲】[Claims] 二つの電源間に直列に接続された二つの抵抗の接続点を
演算増幅器の非反転入力端に接続し、該演算増幅器の反
転入力端と出力端を接続し、該演算増幅器の出力端を複
数のスイッチドキャパシタ積分器の基準電圧端へ接続し
たことを特徴とする基準電圧発生回路。
A connection point between two resistors connected in series between two power supplies is connected to a non-inverting input terminal of an operational amplifier, an inverting input terminal and an output terminal of the operational amplifier are connected, and a plurality of output terminals of the operational amplifier are connected. A reference voltage generation circuit characterized in that the circuit is connected to a reference voltage terminal of a switched capacitor integrator.
JP15980984A 1984-07-30 1984-07-30 Reference voltage generating circuit Pending JPS6139615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15980984A JPS6139615A (en) 1984-07-30 1984-07-30 Reference voltage generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15980984A JPS6139615A (en) 1984-07-30 1984-07-30 Reference voltage generating circuit

Publications (1)

Publication Number Publication Date
JPS6139615A true JPS6139615A (en) 1986-02-25

Family

ID=15701727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15980984A Pending JPS6139615A (en) 1984-07-30 1984-07-30 Reference voltage generating circuit

Country Status (1)

Country Link
JP (1) JPS6139615A (en)

Similar Documents

Publication Publication Date Title
EP0508360B1 (en) Sampled band-gap voltage reference circuit
JPS62219813A (en) Mosfet integrated delay circuit for digital signal
US4484089A (en) Switched-capacitor conductance-control of variable transconductance elements
US4987323A (en) Peak voltage holding circuit
JPH02174414A (en) Semiconductor integrated circuit device
JPS61273796A (en) Sample holding circuit array
US5148162A (en) Analog-to-digital converter comparator circuit utilizing a reverse polarity sampling technique
US6957278B1 (en) Reference -switch hysteresis for comparator applications
JPS585873A (en) Switched capacitor integrator
JPS63211414A (en) Reference voltage generating circuit
JPH06232706A (en) Comparator
JPS6139615A (en) Reference voltage generating circuit
JPH10124159A (en) Voltage impressing circuit
JP3389291B2 (en) High speed current sense amplifier
JPH0993086A (en) Switched capacitor circuit and signal processing circuit using the same
US4405908A (en) Filter circuit having a charge transfer device
JP2679402B2 (en) Offset compensation circuit and amplifier using the same
JPS60128702A (en) Semiconductor integrated circuit device
JPS63251820A (en) Constant current source circuit
JPS58169925A (en) Node voltage evaluating insulated gate field effect transistor integrated circuit
JPH03242715A (en) Band gap reference voltage generating circuit
JP2914011B2 (en) Current switch circuit
JPS63263910A (en) Voltage comparator
JPH07106872A (en) Operational amplifier with high slew rate
JPH04340112A (en) Voltage feedback circuit and constant voltage circuit using the voltage feedback circuit