JPS6139409B2 - - Google Patents

Info

Publication number
JPS6139409B2
JPS6139409B2 JP54088934A JP8893479A JPS6139409B2 JP S6139409 B2 JPS6139409 B2 JP S6139409B2 JP 54088934 A JP54088934 A JP 54088934A JP 8893479 A JP8893479 A JP 8893479A JP S6139409 B2 JPS6139409 B2 JP S6139409B2
Authority
JP
Japan
Prior art keywords
melting point
composite
point component
strength
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54088934A
Other languages
Japanese (ja)
Other versions
JPS5615417A (en
Inventor
Yasuhiko Furukawa
Taizo Sugihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP8893479A priority Critical patent/JPS5615417A/en
Publication of JPS5615417A publication Critical patent/JPS5615417A/en
Publication of JPS6139409B2 publication Critical patent/JPS6139409B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は融点差が20℃以上ある熱接着性複合繊
維及びその製造方法において低伸度でかつ低強力
を特徴とする複合繊維及びその製造法に関するも
のである。 融点の異なる繊維形成性重合体を複合成分とす
る複合繊維はよく知られている。熱接着性複合繊
維は繊維形状を略々維持したまゝで接触部が接着
すること、接着部の強度、接着加工の容易性等の
特長によつて、各種用途が開拓されつつある。 従来、熱接着性複合繊維を製造するには高低両
融点重合体を複合に配して溶融紡糸して巻きと
り、さらに延伸して延伸糸となして使用するか、
場合によつて紡糸巻きとりのまゝ即ち未延伸糸と
して使用するのが一般である。ポリオレフイン系
の熱接着性繊維は、通常、延伸糸の伸度は100%
以下、強度は2g/d以上で、未延伸糸の伸度は
200%以上、強度は1g/d以下が一般であり、低
強力かつ低伸度の両物性を備えた複合繊維は得ら
れない。 一般に複合繊維の場合も含めて溶融紡糸により
繊維を製造する場合、紡糸捲取のみで低伸度の物
性を有する繊維を得るには、紡糸時に高い配向度
をもつように十分に高い紡糸速度もしくはドラフ
ト率(103以上)と、大きい冷却速度もしくは特
別な冷却装置を必要とする。このような条件で紡
糸を行う事は技術的、経済的な理由により工業的
に導入する事は容易でない。例えば特殊処理して
分子量分布を非常に狭くしたポリプロピレンを高
融点成分として用いた場合は、紡糸ドラフト率を
非常に高くすることは可能であるが、伸度を約
100とするには約3000の紡糸ドラフトを必要とす
る。本発明者達は、特定のポリオレフインを高融
点成分とするときは、通常と大差ない紡糸ドラフ
ト率により、即ち、特別な高速捲き取り装置や冷
却装置を必要とせず、通常の溶融紡糸条件下の紡
糸、捲き取りのみで低伸度、低強度な熱接着性複
合繊維が得られ、しかもこれを用いて不織布を造
るときは、寸法安定性あり、かつ充分な強力を有
するものとなることを見出して本発明に到達し
た。 本発明は、融点差が20℃以上ある2種若しくは
それ以上のオレフイン系重合体を高融点成分と低
融点成分とし、低融点成分の繊維断面周率が50%
以上の並列型または鞘心型の複合に配して溶融紡
出し捲き取る複合繊維の製造方法において、高融
点成分としてポリブテン−1及びポリ4−メチル
ペンテン−1から選ばれる重合体を少なくとも50
%(重量)含有する重合体を用いて溶融紡出し、
ドラフト率80〜500で捲き取ることを特徴とす
る、伸度40〜150%、強度0.5〜1.5g/dの未延伸
熱接着性複合繊維の製造方法である。 本発明において用いるポリオレフイン系重合体
とはエチレン、プロピレン、ブテン−1、ペンテ
ン−1・4−メチルペンテン−1等のα−オレフ
インの各単独重合体の他に、相互に共重合可能な
2以上のα−オレフインの共重合体、さらに、α
−オレフインを主とする他の共重合可能な、例え
ば酢酸ビニルエステル、アクリル酸エステル等と
の共重合体である。具体的には、高圧ポリエチレ
ン、中低圧ポリエチレン、ポリプロピレン、ポリ
ブテン−1、ポリ4−メチルペンテン−1、エチ
レン−プロピレン共重合体、エチレン−ブテン−
1共重合体、プロピレン−ブテン−1共重合体、
エチレン酢酸ビニル共重合体及びその酸化物、エ
チレン−アクリル酸エステル共重合体等を示すこ
とができる。これらの重合体は可紡性の点でメル
トフローレート(MFRと略記する)が2以上の
ものが好ましい(上記メルトフロレート値は、
ASTM D−1238の方法に準拠したものであり、
ブテン−1、エチレンの各単独重合体またはそれ
らを主とする共重合体は190℃、2.16Kg荷重下
(E)、プロピレンの単独重合体またはそれを主とす
る共重合体は230℃、2.16Kg荷重下(L)、ポリ4
−メチルペンテン−1は260℃、5Kg荷重下にお
ける各10分間の流出量のg数である)。 本発明の方法においては、上記オレフイン系重
合体からいくつかの重合体を選んで単独で、また
は混合して高低融点の各成分とするに当つて、高
融点成分として常に、ポリブテン−1(融点126
〜128℃)またはポリ−メチルペンテン−1(融
点230℃)を、該成分の全部として、または、少
なくとも50%(重量)含むように他のオレフイン
系重合体と混合した重合体を用いるのである。こ
の高低両融点成分の組み合せの例として(ポリ−
4メチルペンテン−1/ポリプロピレン(斜線の
先が高融点成分、後が低融点成分、以下同じ))、
(ポリブテン−1/エチレン−酢酸ビニル共重合
体)、(ポリ−4メチルペンテン−1が80重量%と
ポリプロピレン20重量%の混合物/ポリプロピレ
ン)、(ポリブテン−1が70重量%とポリエチレン
30重量%の混合物/エチレン−アクリル酸エステ
ル共重合体)等が示される。 選ばれた高低融点の両成分の重合体は、これは
低融点成分の繊維断面周率が少なくとも50%を占
める並列型または鞘心型の複合に配して溶融紡糸
するが、両成分の複合比は40:60〜60:40が好ま
しい。 繊維断面周率とは特定成分が繊維断面の外周を
占める割合(百分率)を意味する。並列型複合繊
維であれば複合比を大きくすることによりあるい
は紡糸時の樹脂粘度を小さくすることによりこの
割合を大きくすることができ、鞘芯型複合繊維で
は鞘成分が100%を占める。 溶液紡出する際の高融点成分の温度は、ポリ4
−メチルペンテン−1を用いる場合は260〜310
℃、ポリブテン−1を用いる場合は150〜250℃が
適当である。この範囲外の温度では可紡性が不良
となり、さらに該範囲以上の温度においては液滴
現象が発生し易いし、伸度も大きくなる。 捲きとりはドラフト率80〜500で行う。溶融紡
出、捲き取りの方法、装置は、従来公知のものを
用いてよい。 かくして得られる繊維は、未延伸糸でありなが
ら伸度40〜150%で、延伸糸と同程度の低伸度の
ものである。また強度は0.5〜1.5g/dで比較的弱
い。 本発明で得られる熱接着性複合繊維は未延伸糸
であるがために捲縮性を有せず、また低伸度であ
ることと相俟つて不織布製造に用いるときは、不
織布化するときの熱処理によつても寸法安定性が
高く、かつ繊維自体の強度は大きくなくても、熱
接着によつて構造安定化された不織布であるため
に、不織布としては充分な強力を有する。またタ
フト用パイル糸として用いるときは、カツトパイ
ル工程では低伸度、低強力のためにカツトが容易
であり、カツト後裏面を熱加工することにより、
強力なカツトパイルカーペツトが容易に得られ
る。またスパンボンド法を適用する場合も同様に
充分な強力を有するシートが得られ、低伸度のた
め、シートの寸法安定性が良好である。このよう
な多くの利点を有する熱接着性複合繊維か、本発
明の方法により、延伸工程なく、かつ紡糸捲き取
りにおいても特別な高速捲き取り装置や冷却装置
を必要とすることなく、製造することができる。 本発明においてドラフト率とは次の定義のもの
である。 D=(rj/fi)2 D:ドラフト率 rj:メズルホール半径 rf:未延伸糸の半径 また不織布強力とは次の如くして得たものを云
う。 定速伸長型試験機にて供試不織布片(巾50mm、
長さ150mm)をチヤツク間100mmにて引張速度100
mm/分で測定して得られた数値をサンプルの測定
部重量(即ち50mm×100mmの重量)で割つた数値
〔Kg/g〕。 実施例 1 ポリ4−メチルペンテン−1(MFR8、融点
230℃)を高融点成分とし、ポリプロピレン
(MFR20、融点167℃)を低融点成分とし、複合
比50:50の並列型に配して前者成分を300℃で、
後者成分を280℃で溶融紡出し、ドラフト率1.4×
102、1.9×102、3.7×102で捲き取り、低融点成分
(ポリプロピレン)の占める繊維断面周率が65%
の熱接着性複合繊維を得た。得られた複合繊維の
強伸度を第1表に示す。この複合繊維に12山/25
mmの機械捲縮を施し、64mm長にカツトした後、ロ
ーラカードにより200g/m2のウエブに形成し、熱
風式乾燥機にて180℃、5分間、フリーの状態で
熱処理した。この場合、複合繊維は未延伸糸であ
るため、潜在捲縮による収縮は少なく、ウエブの
熱収縮率は10%以下にとどまり、寸法安定性の良
好なものであつた。また不織布強力は15Kg/gで
あり、未延伸糸の強度は低いが、不織布化(ウエ
ブの熱処理)により、充分な強力の不織布が得ら
れた。 比較例 1〜5 実施例1と同じ複合成分を用い、製造条件を変
えて未延伸複合繊維を造つた。比較例1、2はド
ラフト率を変えた場合、比較例3、4は紡糸温度
を変えた場合、比較例5は複合比を変えた場合で
ある。これらの条件及び結果を第1表に示す。こ
れらの比較例においては、伸度において本発明の
目的を達しないか、紡糸状態が不良となることが
分る。 実施例2、比較例6〜9 ポリブテン(MFR10、融点130℃)を高融点成
分とし、エチレン−酢酸ビニル共重合体(酢酸ビ
ニル含量20重量%、MFR20、融点92℃)を低融
点成分とし並列型複合に配して、溶融紡出、捲き
取りを行い、熱接着性複合繊維を得た。製造条件
及び結果を第1表に示す。比較例6、7はドラフ
ト率の、また比較例8、9は高融点成分の紡出温
度の影響を示す。 実施例2で得た複合繊維を5mmにカツトして、
抄紙後、ヤンキードライヤーで熱処理(100℃、
1分間)を行ない、不織布を得た。この不織布は
目付40g/m2、強力15Kg/gで、湿潤時でも強力の
低下はなく、未延伸糸ではあるが中伸度であるた
め寸法安定性の良好なものであつた。 実施例 3 ポリ4−メチルペンテン−1が80重量%とポリ
プロピレンが20重量%との混合ポリマー(融点
230℃)を高融点成分とし、ポリプロピレンを低
融点成分とし、並列型複合に配して溶融紡出、捲
き取りを行い、熱接着性複合繊維を製造した。製
造条件及び糸質を第1表に示す。 実施例 4 ポリブテン−1が70重量%と高密度ポリエチレ
ンが30重量%との混合ポリマー(融点127℃)を
高融点成分とし、エチレン−アクリル酸エチル共
重合体(アクリル酸エチル含量20重量%、融点80
℃)を低融点成分とし、並列型複合に配して溶融
紡出、捲き取りを行い、熱接着性複合繊維を製造
した。製造条件及び糸質を第1表に示す。 比較例 10〜12 本発明の複合成分の組み合せでない組み合せの
場合について比較例として示す。比較例12は高融
点成分として、ポリ4−メチルベンテン−140重
量%(本発明では50重量%以上)とポリプロピレ
ン60重量%との混合ポリマー(融点188℃)を用
いた場合である。各例の成分組み合せ、製造条件
及び結果を第1表に示す。 比較例10の未延伸を100℃で3.8倍延伸して伸度
50%、強度3.5g/dの延伸糸を得、これを実施例
1と同様にして不織布となしたところ、その強力
は20Kg/gであつた。 比較例 13 本比較例では、ポリ4−メチルペンテン−1を
低融点成分とし、ポリエチレンテレフタレート
(融点255〜260℃)を高融点成分とし、複合比
50:50の並列型複合に配して、両成分共300℃で
溶融紡出し、ドラフト率3.5×102で捲き取つた。
得られた複合繊維(6d/f、低融点成分の繊維断
面周率65%)の伸度は240%、強度は0.9g/dであ
つた。本発明は、一般熱可塑性重合体から成る熱
可塑性複合繊維の研究において、本例により、ポ
リ−4メチルペンテン−1を低融点成分とする通
常ドラフトによる紡糸捲き取り糸(未延伸糸)の
伸度が大きいことが見出されたことから、ポリ−
4メチルペンテン−1より高融点の重合体である
ポリエステル、ポリアミド等と組み合わせる場合
がなく、使用重合体をポリオレフイン系に限定し
たものである。しかしながら比較例としては、上
記事情により、ポリオレフイン以外のポリマーと
組み合わせた本例を示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-adhesive conjugate fiber having a melting point difference of 20° C. or more and a method for producing the same, which is characterized by low elongation and low strength, and a method for producing the same. Composite fibers containing fiber-forming polymers having different melting points as composite components are well known. Thermoadhesive composite fibers are being developed into a variety of uses due to their characteristics, such as the ability to adhere at the contact portion while substantially maintaining the fiber shape, the strength of the bonded portion, and the ease of bonding processing. Conventionally, to produce thermoadhesive composite fibers, a polymer with both high and low melting points is arranged in a composite, melt-spun, wound, and then stretched to form a drawn yarn, or
In some cases, it is generally used as a spun spool, that is, as an undrawn yarn. The elongation of polyolefin-based thermoadhesive fibers is usually 100%.
Below, the strength is 2g/d or more, and the elongation of undrawn yarn is
Generally, the strength is 200% or more and the strength is 1 g/d or less, making it impossible to obtain composite fibers that have both low strength and low elongation properties. In general, when manufacturing fibers by melt spinning, including composite fibers, in order to obtain fibers with low elongation properties only by spinning and winding, it is necessary to use a sufficiently high spinning speed or Requires draft rate (10 3 or more) and high cooling rate or special cooling equipment. It is not easy to industrially introduce spinning under such conditions for technical and economic reasons. For example, if polypropylene, which has been specially treated to have a very narrow molecular weight distribution, is used as a high melting point component, it is possible to achieve a very high spinning draft rate, but the elongation will be about
Approximately 3000 spinning drafts are required to make 100. The present inventors have discovered that when a specific polyolefin is used as a high-melting point component, the spinning draft rate is not much different from usual, that is, without the need for a special high-speed winding device or cooling device, and under normal melt-spinning conditions. We have discovered that it is possible to obtain a heat-adhesive composite fiber with low elongation and low strength simply by spinning and winding, and that when it is used to make a nonwoven fabric, it is dimensionally stable and has sufficient strength. We have arrived at the present invention. The present invention uses two or more olefin polymers with a melting point difference of 20°C or more as a high melting point component and a low melting point component, and the fiber cross-sectional circumference of the low melting point component is 50%.
In the above method for producing composite fibers, which is arranged in a parallel type or sheath-core type composite, melt-spun and rolled up, at least 50% of a polymer selected from polybutene-1 and poly-4-methylpentene-1 is added as a high melting point component.
% (by weight) using a polymer containing
This is a method for producing undrawn heat-adhesive conjugate fibers having an elongation of 40 to 150% and a strength of 0.5 to 1.5 g/d, which is characterized by winding at a draft rate of 80 to 500. The polyolefin polymer used in the present invention is not only homopolymers of α-olefins such as ethylene, propylene, butene-1, and pentene-1 and 4-methylpentene-1, but also two or more copolymerizable with each other. copolymer of α-olefin, furthermore, α-olefin copolymer of α-olefin
- It is a copolymer mainly composed of olefin and other copolymerizable copolymers such as vinyl acetate and acrylic ester. Specifically, high pressure polyethylene, medium and low pressure polyethylene, polypropylene, polybutene-1, poly4-methylpentene-1, ethylene-propylene copolymer, ethylene-butene-1
1 copolymer, propylene-butene-1 copolymer,
Examples include ethylene-vinyl acetate copolymers and their oxides, and ethylene-acrylic ester copolymers. These polymers preferably have a melt flow rate (abbreviated as MFR) of 2 or more from the viewpoint of spinnability (the above melt flow rate value is
Compliant with ASTM D-1238 method,
Butene-1 and ethylene homopolymers or copolymers mainly composed of them were tested at 190°C under a load of 2.16 kg.
(E), propylene homopolymer or a copolymer mainly composed of propylene at 230℃, under a load of 2.16 kg (L), poly 4
-Methylpentene-1 is the number of grams of outflow amount for each 10 minutes at 260°C and under a load of 5 kg). In the method of the present invention, when several polymers are selected from the above-mentioned olefinic polymers and used alone or mixed to form each component with a high or low melting point, polybutene-1 (melting point 126
~128℃) or poly-methylpentene-1 (melting point 230℃) as the entire component or mixed with other olefinic polymers so as to contain at least 50% (by weight) of the component. . As an example of this combination of high and low melting point components (poly-
4 methylpentene-1/polypropylene (the tip of the diagonal line is the high melting point component, the back is the low melting point component, the same applies below),
(Polybutene-1/ethylene-vinyl acetate copolymer), (Mixture of 80% by weight of poly-4 methylpentene-1 and 20% by weight of polypropylene/polypropylene), (70% by weight of polybutene-1 and polyethylene
30% by weight mixture/ethylene-acrylic acid ester copolymer), etc. are shown. The selected high- and low-melting-point polymers are melt-spun in a parallel or sheath-core composite in which the fiber cross-sectional area of the low-melting component is at least 50%. The ratio is preferably 40:60 to 60:40. The fiber cross-sectional circumference refers to the ratio (percentage) that a specific component occupies the outer circumference of the fiber cross-section. In the case of parallel type composite fibers, this ratio can be increased by increasing the composite ratio or by decreasing the resin viscosity during spinning, and in the case of sheath-core type composite fibers, the sheath component accounts for 100%. The temperature of the high melting point component during solution spinning is
-260 to 310 when using methylpentene-1
℃, and when using polybutene-1, 150 to 250℃ is suitable. At temperatures outside this range, spinnability becomes poor, and at temperatures above this range, droplet phenomena tend to occur and elongation increases. Winding is done with a draft rate of 80-500. Conventionally known methods and devices for melt spinning and winding may be used. The fiber thus obtained has an elongation of 40 to 150% even though it is an undrawn yarn, and has a low elongation comparable to that of a drawn yarn. Moreover, the strength is relatively weak at 0.5 to 1.5 g/d. Since the heat-adhesive composite fiber obtained in the present invention is an undrawn yarn, it does not have crimpability, and combined with its low elongation, it is difficult to use when making a nonwoven fabric. It has high dimensional stability even after heat treatment, and even though the strength of the fiber itself is not high, it has sufficient strength as a nonwoven fabric because it is structurally stabilized by thermal bonding. In addition, when used as pile yarn for tufting, it is easy to cut due to low elongation and low strength in the cut pile process, and by heat-processing the back side after cutting,
A strong cut pile carpet can be easily obtained. Furthermore, when applying the spunbond method, a sheet having sufficient strength can be obtained as well, and due to the low elongation, the sheet has good dimensional stability. A heat-adhesive composite fiber having many advantages as described above can be produced by the method of the present invention without a drawing step and without requiring special high-speed winding equipment or cooling equipment during spinning winding. I can do it. In the present invention, the draft rate has the following definition. D=(rj/fi) 2 D: Draft rate rj: Muzzle hole radius rf: Radius of undrawn yarn Further, the strength of the nonwoven fabric refers to that obtained as follows. A sample nonwoven fabric piece (width 50 mm,
150mm long) at a tension speed of 100 with a chuck distance of 100mm.
The value obtained by measuring in mm/min divided by the weight of the measuring part of the sample (i.e. the weight of 50 mm x 100 mm) [Kg/g]. Example 1 Poly 4-methylpentene-1 (MFR8, melting point
230℃) as a high melting point component and polypropylene (MFR20, melting point 167℃) as a low melting point component, arranged in a parallel type with a composite ratio of 50:50, and the former component at 300℃,
The latter component was melt-spun at 280℃, with a draft rate of 1.4×
10 2 , 1.9 x 10 2 , 3.7 x 10 2 , fiber cross-sectional circumference occupied by low melting point component (polypropylene) is 65%
A heat-adhesive composite fiber was obtained. Table 1 shows the strength and elongation of the composite fibers obtained. This composite fiber has 12 peaks/25
The web was mechanically crimped and cut into a length of 64 mm, formed into a 200 g/m 2 web using a roller card, and heat-treated in a hot air dryer at 180° C. for 5 minutes in a free state. In this case, since the composite fibers were undrawn yarns, there was little shrinkage due to latent crimp, and the web had a heat shrinkage rate of 10% or less, and had good dimensional stability. Furthermore, the strength of the nonwoven fabric was 15 Kg/g, and although the strength of the undrawn yarn was low, a sufficiently strong nonwoven fabric was obtained by making it into a nonwoven fabric (heat treatment of the web). Comparative Examples 1 to 5 Undrawn composite fibers were produced using the same composite components as in Example 1 but under different manufacturing conditions. Comparative Examples 1 and 2 are cases where the draft rate is changed, Comparative Examples 3 and 4 are cases where the spinning temperature is changed, and Comparative Example 5 is a case where the composite ratio is changed. These conditions and results are shown in Table 1. It can be seen that in these comparative examples, either the elongation did not reach the objective of the present invention, or the spinning state was poor. Example 2, Comparative Examples 6 to 9 Polybutene (MFR10, melting point 130°C) was used as a high melting point component, and ethylene-vinyl acetate copolymer (vinyl acetate content 20% by weight, MFR20, melting point 92°C) was used as a low melting point component in parallel. The fibers were placed in a composite mold, melt-spun, and rolled up to obtain heat-adhesive composite fibers. The manufacturing conditions and results are shown in Table 1. Comparative Examples 6 and 7 show the influence of the draft rate, and Comparative Examples 8 and 9 show the influence of the spinning temperature of the high melting point component. The composite fiber obtained in Example 2 was cut into 5 mm pieces,
After paper making, heat treatment with Yankee dryer (100℃,
1 minute) to obtain a nonwoven fabric. This nonwoven fabric had a basis weight of 40 g/m 2 and a tenacity of 15 Kg/g, with no decrease in tenacity even when wet, and although it was an undrawn yarn, it had medium elongation and had good dimensional stability. Example 3 A mixed polymer of 80% by weight of poly4-methylpentene-1 and 20% by weight of polypropylene (melting point
230°C) as a high melting point component and polypropylene as a low melting point component, they were arranged in a parallel composite, melt spun, and rolled up to produce a thermoadhesive composite fiber. The manufacturing conditions and fiber quality are shown in Table 1. Example 4 A mixed polymer (melting point 127°C) of 70% by weight of polybutene-1 and 30% by weight of high-density polyethylene was used as a high melting point component, and an ethylene-ethyl acrylate copolymer (ethyl acrylate content of 20% by weight, melting point 80
℃) was used as a low melting point component, and was placed in a parallel composite, melt-spun, and rolled up to produce a thermoadhesive composite fiber. The manufacturing conditions and fiber quality are shown in Table 1. Comparative Examples 10 to 12 Combinations other than the composite components of the present invention will be shown as comparative examples. Comparative Example 12 is a case where a mixed polymer (melting point: 188° C.) of 140% by weight of poly4-methylbentene (50% by weight or more in the present invention) and 60% by weight of polypropylene was used as a high melting point component. Table 1 shows the component combinations, manufacturing conditions, and results of each example. The unstretched comparative example 10 was stretched 3.8 times at 100℃ to determine the elongation.
A drawn yarn with a strength of 3.5 g/d and a strength of 3.5 g/d was obtained, and when this was made into a nonwoven fabric in the same manner as in Example 1, its strength was 20 kg/g. Comparative Example 13 In this comparative example, poly4-methylpentene-1 was used as a low melting point component, polyethylene terephthalate (melting point 255-260°C) was used as a high melting point component, and the composite ratio was
Both components were melt-spun at 300°C and rolled at a draft rate of 3.5×10 2 in a 50:50 parallel composite.
The resulting composite fiber (6 d/f, fiber cross-sectional circumference of low melting point component 65%) had an elongation of 240% and a strength of 0.9 g/d. In the research of thermoplastic composite fibers made of general thermoplastic polymers, the present invention is based on the present invention, in which a spun wind-up yarn (undrawn yarn) is drawn by a normal draft using poly-4 methylpentene-1 as a low melting point component. Since it was found that the degree of
It is not used in combination with polyester, polyamide, etc., which are polymers with a higher melting point than 4-methylpentene-1, and the polymers used are limited to polyolefins. However, as a comparative example, due to the above-mentioned circumstances, this example was shown in which a polymer other than polyolefin was used in combination. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 融点差が20℃以上ある2種若しくはそれ以上
のオレフイン系重合体を高融点成分及び低融点成
分として、低融点成分の繊維断面周率が50%以上
の並列型または鞘芯型の複合に配して溶融紡出し
捲き取る複合繊維の製造方法において、高融点成
分としてポリブテン−1及びポリ4−メチルペン
テン−1から選ばれる重合体を少なくとも50%
(重量)含有する重合体を用いて溶融紡出し、ド
ラフト率80〜500で捲き取ることを特徴とする、
伸度40〜150%、強度0.5〜1.5g/dの未延伸熱接
着性複合繊維の製造方法。
1. Two or more types of olefin polymers with a melting point difference of 20°C or more are used as a high melting point component and a low melting point component to form a parallel type or sheath-core type composite in which the fiber cross-sectional circumference of the low melting point component is 50% or more. In a method for producing a composite fiber in which the composite fiber is distributed, melt-spun and rolled up, at least 50% of the polymer selected from polybutene-1 and poly-4-methylpentene-1 is used as a high melting point component.
(Weight) Melt spinning using the contained polymer and winding at a draft rate of 80 to 500,
A method for producing an undrawn heat-adhesive composite fiber having an elongation of 40 to 150% and a strength of 0.5 to 1.5 g/d.
JP8893479A 1979-07-13 1979-07-13 Production of composite fiber Granted JPS5615417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8893479A JPS5615417A (en) 1979-07-13 1979-07-13 Production of composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8893479A JPS5615417A (en) 1979-07-13 1979-07-13 Production of composite fiber

Publications (2)

Publication Number Publication Date
JPS5615417A JPS5615417A (en) 1981-02-14
JPS6139409B2 true JPS6139409B2 (en) 1986-09-03

Family

ID=13956712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8893479A Granted JPS5615417A (en) 1979-07-13 1979-07-13 Production of composite fiber

Country Status (1)

Country Link
JP (1) JPS5615417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137222A (en) * 1989-10-19 1991-06-11 Daiwabou Kurieito Kk Splittable conjugate fiber and its production

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194221A (en) * 1985-02-18 1986-08-28 Chisso Corp Elastic conjugated yarn and cloth using same
US5162074A (en) * 1987-10-02 1992-11-10 Basf Corporation Method of making plural component fibers
JP2770049B2 (en) * 1989-06-23 1998-06-25 大和紡績株式会社 Polyolefin fiber and method for producing the same
JPH03113060A (en) * 1989-09-28 1991-05-14 Mitsui Petrochem Ind Ltd Sheet material, press board, their production and use thereof
AU774541B2 (en) 1999-12-21 2004-07-01 Kimberly-Clark Worldwide, Inc. Fine denier multicomponent fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137222A (en) * 1989-10-19 1991-06-11 Daiwabou Kurieito Kk Splittable conjugate fiber and its production

Also Published As

Publication number Publication date
JPS5615417A (en) 1981-02-14

Similar Documents

Publication Publication Date Title
KR880000381B1 (en) Bulky non-woven fabric's making method
US4814032A (en) Method for making nonwoven fabrics
JPH0120249B2 (en)
JP2000507654A (en) Polypropylene fibers and products made therefrom
JPS58191215A (en) Polyethylene hot-melt fiber
US5277974A (en) Heat-bondable filament and nonwoven fabric made of said filament
EP0311860B1 (en) Nonwoven fabric made of heat bondable fibers
JPS6139409B2 (en)
JP3774114B2 (en) Split type composite fiber, method for producing the same, and ultrafine fiber nonwoven fabric using the same
JPS63243324A (en) Heat bonding fiber and nonwoven fabric thereof
JP2925441B2 (en) Core-sheath type composite short fiber and method for producing the same
JP2002220740A (en) Splittable conjugated fiber, method for producing the same and nonwoven fabric using ultrafine fiber obtained from the same
JP3799202B2 (en) Polypropylene-containing fiber and fiber sheet
JP2872543B2 (en) Thermally bonded nonwoven fabric and method for producing the same
JPH02139469A (en) Nonwoven fabric consisting of thermally bonded filament
JP2587706B2 (en) Composite fiber and nonwoven fabric
JP2780050B2 (en) Binder fiber for nonwoven fabric
JPS63227814A (en) Heat bonding fiber and nonwoven fabric thereof
JP7432994B2 (en) Method for producing drawn composite fibers, nonwoven fabrics, and drawn composite fibers
JPH01111016A (en) Polyethylene composite fiber and production thereof
JPS6330408B2 (en)
JP2820439B2 (en) Thermal adhesive composite fiber
JP2533289B2 (en) Fiber made of a blended structure of polyethylene and polypropylene
JP2852551B2 (en) Heat-fusible composite fiber
JPH0533218A (en) Polyolefinic splittable fiber