JPS613803A - Production of tungsten pipe - Google Patents

Production of tungsten pipe

Info

Publication number
JPS613803A
JPS613803A JP12426084A JP12426084A JPS613803A JP S613803 A JPS613803 A JP S613803A JP 12426084 A JP12426084 A JP 12426084A JP 12426084 A JP12426084 A JP 12426084A JP S613803 A JPS613803 A JP S613803A
Authority
JP
Japan
Prior art keywords
core
hole
powder
sintering
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12426084A
Other languages
Japanese (ja)
Inventor
Tsuguro Muneda
宗田 嗣朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Kinzoku Co Ltd
Original Assignee
Hokkai Tungsten Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkai Tungsten Industrial Co Ltd filed Critical Hokkai Tungsten Industrial Co Ltd
Priority to JP12426084A priority Critical patent/JPS613803A/en
Publication of JPS613803A publication Critical patent/JPS613803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain easily a W pipe having a straight core hole and uniform thickness by forming W powder under pressure into a cylindrical body having the tapered core hole by press molding, presintering the molding, forming the core hole into the straight hole, making the thickness uniform and sintering the pipe at a high temp. CONSTITUTION:The W powder or the powder consisting of said powder added with a small amt. of the other metallic powder is press-molded to the cylindrical body having the tapered core hole by using a tapered core material. The cylindrical body is presintered at a low temp. and the core hole is drilled to the straight hole. The outside periphery is machined to have the uniform thickness. Insertion terminals 9 each having a through-hole 9a are fitted to both ends of the core hole 6a of such presintered body 6. The terminals 9 are grasped by electrodes of a clip type, etc. and gaseous hydrogen is passed to the inside of the hole 6a through the holes 9a. Electricity is conducted to the body 6 to generate heat therein by the resistance heat, thereby sintering the presintered body. A core material 11 for working is then inserted into the hole 6a and the sintered body is subjected to plastic working such as swaging and drawing, by which the W pipe having the desired inside and outside diameters is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、真空炉及び雰囲気炉の部品並びに原子力機
器の部品、その他熱電対の保護管等に使用されるタング
ステンもしくはタングステン合金のパイプの製造方法に
関するものである。
Detailed Description of the Invention (Field of Industrial Application) This invention is directed to the manufacture of tungsten or tungsten alloy pipes used as parts of vacuum furnaces and atmospheric furnaces, parts of nuclear power equipment, and protection tubes for thermocouples, etc. It is about the method.

(従来枝術およびその問題点) タングステンは融点がきわめて高いので、耐熱性を必要
とする電子部品等の構成材料として板・林・細線等の形
で広く使用されてきた6最近、真空炉及び雰囲気炉の部
品並びに原子力機器の部品、その他熱電対の保護管等と
してタングステンパイプに対する需要が高まっているが
、タングステンjま加T゛性が悪いので、所望の長さを
もつ細長いパイプを製作するのはきわめて困難であった
(Conventional techniques and their problems) Because tungsten has an extremely high melting point, it has been widely used in the form of plates, wires, thin wires, etc. as a constituent material for electronic components that require heat resistance. There is an increasing demand for tungsten pipes as parts of atmospheric furnaces, parts of nuclear power equipment, and protection tubes for thermocouples, etc. However, since tungsten has poor thermal resistance, it is necessary to manufacture elongated pipes with the desired length. It was extremely difficult.

同様な高融点金属ではあるがタングステンよりも加工性
が良好で、融点がかなり低いモリブデンのパイプを製造
する方法として、金属粉末を筒状体に成形してのち焼結
し、芯部に6%八文、4%V含イ1のチタン合金のよう
なaf+1!性材でつくられた中子を挿入して鍛造し、
その後中子を除去する方法が提案されている(特開昭5
8−171505号)。
Although it is a similar high-melting point metal, it has better workability than tungsten and has a much lower melting point.As a method of manufacturing molybdenum pipes, metal powder is formed into a cylindrical body, then sintered, and the core is made of 6% Yabun, af+1 like a titanium alloy with 4% V and I1! A core made of stainless steel is inserted and forged.
After that, a method of removing the core was proposed (Unexamined Japanese Patent Publication No. 5
No. 8-171505).

しかしながら、タングステンは鍛造温度が高く、」二記
のような超塑性材を中子として用いることができないの
で、この方法をそのまま適用してタングステンパイプを
作ることはできなかった。
However, since tungsten has a high forging temperature and superplastic materials such as those described in ``2'' cannot be used as cores, it was not possible to make tungsten pipes by applying this method as is.

また、−上記超塑性材よりも塑性変形しにくい材料を中
子として用いる場合は、中子と筒状焼結体との密着性を
高めるため、中子の挿入される芯部はできるだけ真直な
ものとするのが望ましいが、このような真直な芯部をそ
なえた成形体をタングステン粉末の加圧成形によって得
ることはきわめて困難であった。
In addition, - when using a material that is less plastically deformable than the above-mentioned superplastic material as the core, the core into which the core is inserted should be as straight as possible in order to improve the adhesion between the core and the cylindrical sintered body. However, it is extremely difficult to obtain a molded body with such a straight core by pressure molding of tungsten powder.

(発明の目的) 本発明は、上記事情に鑑み、粉末の加圧成形と焼結とを
含む粉末冶金法によって、真直な芯部をそなえたタング
ステンパイプを得ることを目的とするものである。
(Object of the Invention) In view of the above-mentioned circumstances, an object of the present invention is to obtain a tungsten pipe having a straight core by a powder metallurgy method including pressure molding and sintering of powder.

(発明の構成) 本発明にかかるタングステンパイプの製造方法は、タン
グステン粉末もしくはこれに他の金属成分を添加した粉
末を、テーパ付きの芯材を用いてテーパ付き芯部を有す
る筒状体に加圧成形し、焼結温度よりも低い温度で予焼
結したのち、得られた予焼給体にドリル加工を施して芯
部をテーパ1.のない真直な穴に成形するとともに、成
形された真直な芯部を基準として外周を削ることによっ
て肉厚を均一・化し、その後高温で焼結するとともに、
必要な塑性前]−を施して、真直な芯部と均一な肉厚と
をそなえた筒体を得ることを特徴としている。
(Structure of the Invention) A method for manufacturing a tungsten pipe according to the present invention is to add tungsten powder or powder obtained by adding other metal components to a cylindrical body having a tapered core using a tapered core material. After pressure forming and presintering at a temperature lower than the sintering temperature, the obtained presintered body is drilled to form a core with a taper of 1. In addition to molding into a straight hole without any cracks, the outer periphery is shaved using the molded straight core as a reference to make the wall thickness uniform and then sintered at high temperature.
The cylindrical body is characterized in that it undergoes the necessary plasticity treatment to obtain a cylindrical body with a straight core and uniform wall thickness.

(実施例) 先ず、出発原料であるタングステン粉末としては、従来
電子材料用等に使用されてきたタングステン粉末を使用
することができる。例えばタングステンフィラメント用
ノンサグワイヤーを製造する場合のタングステン粉゛末
には、カリウム(K)、アルミニウ、ム(AM)、シリ
コン(St)’14の元素がドープ剤として添加される
が、このようなドープ剤を含んでいてもよく、含んでい
なくてもよい。また、用途によっては。
(Example) First, as the tungsten powder that is the starting material, tungsten powder that has been conventionally used for electronic materials etc. can be used. For example, when manufacturing non-sag wire for tungsten filaments, the elements potassium (K), aluminum, aluminum (AM), and silicon (St) are added as dopants to tungsten powder. It may or may not contain a doping agent. Also, depending on the use.

タングステン以外の合金成分、例えばレニウム(Re)
、 タンタル(Ta)、トリウム(Th)等を少量添加
しておいてもよい。粉末の粒度は3ミクロン程度のもの
が多いが、これに限るもの゛ではない。
Alloy components other than tungsten, such as rhenium (Re)
, tantalum (Ta), thorium (Th), etc. may be added in small amounts. The particle size of the powder is often about 3 microns, but it is not limited to this.

この原料粉末を、例えば−芯材を用いるラバープレス等
の方法によって加圧成形し、芯部を有する成形体を得る
。ラバープレスを用いるかわりに、第1図に解すような
金型lを用いて、約1.8t/cm’の圧力で加圧成形
し、第2図に示すような成形体2を得たのち、その張出
部分2aを削り落して断面円形の成形体としてもよい0
図中、 laは上型、lbは下型、3は芯材(中子)、
4は粉末である。上記いずれの方法で加圧成形する場合
でも、芯材はテーパ付きの棒を用いる。このテーパは、
成形後に成形体から芯材を抜き取るための抜きテーパで
あり、1/800程度のテーパをつけておけばよい0例
えば、成形体の外径28am、内径約10腸層、長さが
400層腸0場合は、芯材として一方の端部の外径が1
0mm、他方の端部の外径が1111となるようなゆる
やかなテーパのついた芯材を使用すればよい、芯材の材
質は軟鋼棒その他の金属棒を採用することができる。
This raw material powder is pressure-molded, for example, by a method such as a rubber press using a core material, to obtain a molded body having a core. Instead of using a rubber press, a mold l as shown in Fig. 1 is used to perform pressure molding at a pressure of about 1.8 t/cm' to obtain a molded body 2 as shown in Fig. 2. , the overhanging portion 2a may be shaved off to form a molded body with a circular cross section0
In the figure, la is the upper mold, lb is the lower mold, 3 is the core material (core),
4 is powder. In any of the above methods of pressure forming, a tapered rod is used as the core material. This taper is
This is a taper for extracting the core material from the molded body after molding, and it is sufficient to have a taper of about 1/800. If it is 0, the outer diameter of one end is 1 as the core material.
A gently tapered core material having an outer diameter of 0 mm and an outer diameter of 1111 mm at the other end may be used.The material of the core material may be a mild steel rod or other metal rod.

成形が終ったら芯材の小径側の端部を叩いて′芯材を抜
き取る。芯材に抜きテーパがついているので、抜取りは
きわめて容易である。芯材を抜き取ったら、水素炉中で
予焼結を行なう。予焼結温度は、後続工程での取扱いに
支障のない程度の強度が得られる温度であり、例えば9
00〜1000℃で20分間保持すればよい。
When the molding is completed, tap the end of the core material on the small diameter side to remove the core material. Since the core material has an extraction taper, extraction is extremely easy. After removing the core material, pre-sintering is performed in a hydrogen furnace. The presintering temperature is a temperature at which a strength that does not hinder handling in the subsequent process is obtained, for example, 9
What is necessary is just to hold|maintain at 00-1000 degreeC for 20 minutes.

傅られた予焼給体は、ドリル加工で芯部の拡径と真直化
を行なう。この加工は、ロングドリルを用いて複数段に
分けて繰返し行なうのが好ましい。例えば、最終の穴径
を18+mmとする場合は、予焼結1ニリの状態におけ
る10〜11mmの穴径を先ず13Il■とじ、以後1
su+おきにドリルを取換えて18am+まで繰返し拡
径してゆく。予焼給体に予め下穴となる芯部が形成され
ているので、削粉抜けがよく、ドリル加工は容易である
。心穴が所定の内径となったら、つぎに第3図に示すよ
うな治具5を用いて予焼給体を保持し、外周削りを行な
う。治具5は予焼給体6の芯部にうま〈嵌合する心棒5
aの一方の端部よりの位置にフランジ5bを設け、他方
の端部にはねじ部5Cを設けてなる。フランジ5bが端
部に密着するまで心棒5aを芯部に挿入し、ねじ部に螺
合したナツト7で座金8を介して締め付けることにより
、治具5が予焼給体6にしっかりと固定される。この状
態で、治具5の把手5dをチャッキングして予焼給体の
外周を旋削すればよい。このようにして、例えば内径1
8■鵬、外径2軸曽、長さ400−  の均一な肉厚(
3s■)をもつ予焼給体が得られる。
The prefired body is drilled to enlarge the diameter of the core and straighten it. It is preferable to perform this processing repeatedly in multiple stages using a long drill. For example, if you want the final hole diameter to be 18+mm, first 13Il■ is used for the 10~11mm hole diameter in the pre-sintered state, and then 1
Replace the drill every su+ and repeatedly expand the diameter to 18am+. Since the pre-burning body has a core formed in advance to serve as a pilot hole, it is easy to remove chips and drill. When the core hole has a predetermined inner diameter, the preheating body is held using a jig 5 as shown in FIG. 3, and the outer periphery is milled. The jig 5 has a mandrel 5 that fits snugly into the core of the preheating body 6.
A flange 5b is provided at a position closer to one end of a, and a threaded portion 5C is provided at the other end. The jig 5 is firmly fixed to the preheating body 6 by inserting the mandrel 5a into the core until the flange 5b comes into close contact with the end, and tightening the nut 7 screwed onto the threaded part via the washer 8. Ru. In this state, the handle 5d of the jig 5 may be chucked to turn the outer periphery of the preheating body. In this way, for example, the inner diameter 1
8 ■Peng, outer diameter 2 shafts, length 400mm, uniform wall thickness (
A preheated body having a heating time of 3 s■) is obtained.

つぎに、この予焼給体6の芯部6aの両端部に、第4図
に示す如く挿入端子9,9を嵌着する。挿入端子9は後
続の通電焼結の際の電極接続端子となるもので、導電性
と耐熱性にすぐれているものでなければならないため、
タングステン材料で製作するのがよく、通常の予焼結温
度よりも高めの温度1例えば1200℃程度で固めに予
焼結したタングステンの予焼給体を芯部8aにきつく嵌
合するような外径に旋削して製作するのが好ましい、な
お、挿入端子9には、焼結中に水素ガスを芯部6a内部
に波通させるため、軸方向の通孔9a(例えば孔径2〜
3■■)を穿設しておく。
Next, insertion terminals 9, 9 are fitted to both ends of the core portion 6a of the preheating body 6, as shown in FIG. The insertion terminal 9 serves as an electrode connection terminal during the subsequent current sintering, and it must have excellent conductivity and heat resistance.
It is preferable to manufacture it from tungsten material, and it is possible to tightly fit the tungsten pre-sintering body into the core part 8a by pre-sintering it at a temperature higher than the normal pre-sintering temperature, for example around 1200°C. It is preferable to manufacture the insertion terminal 9 by turning it to the diameter. In addition, the insertion terminal 9 has an axial through hole 9a (for example, a hole diameter of
3■■) is drilled.

本焼結は、通常用いられているペルジャ一式焼結炉を用
いて水素ガス雰囲気中で行なわれる。このとき、予焼給
体6は、その両端部に嵌着した挿入端子9.9をクリッ
プ式の電極で挾持することによって支持される。ペルジ
ャー内に支持された ・予焼給体には、1−記電極と挿
入端子を通じて直接通電され、その抵抗による発熱によ
って焼結久行なわれる。この焼結は、例えば1サイクル
1時間で行なわれ、溶融電流の約90%の最高通電電流
で約15分間保持するようなスケジュールが採用される
。焼結を終えた焼結体(インゴット)は、エンドカット
を施して端部の焼結不均一な部分を除去する。得られた
筒状の焼結体は、偏心度の少い芯部と均一な肉厚をそな
えたすぐれたものであり、用途によってはこのままタン
グステンパイプとして使用することもできる。
The main sintering is performed in a hydrogen gas atmosphere using a commonly used Pelger sintering furnace. At this time, the preheating body 6 is supported by holding insertion terminals 9.9 fitted to both ends thereof with clip-type electrodes. The pre-sintering body supported in the Pelger is directly energized through the electrode and insertion terminal described in 1- above, and sintering is carried out by the heat generated by the resistance. This sintering is performed, for example, for one cycle for one hour, and a schedule is adopted in which the maximum current, which is about 90% of the melting current, is maintained for about 15 minutes. After sintering, the sintered body (ingot) is end-cut to remove unevenly sintered ends. The obtained cylindrical sintered body is excellent in that it has a core with little eccentricity and a uniform wall thickness, and depending on the purpose, it can be used as is as a tungsten pipe.

つぎに、より小径のパイプを製作する場合は焼結体の塑
性加重を行なうため、上記筒状の焼結体の芯部に加工用
芯材を挿入する。タングステンは、鍛造(スェージング
)に際して最高1600℃以上の高温に加熱されるため
、この芯材として、耐熱性と加工性に富んだ材料を使用
する必要があり、このような材料としてモリブデンを用
いるのが最も好ましい。この場合、芯部の変形やクラッ
クの発生を防ぐため、芯材は芯部に密着していなければ
ならないが、実際には寸法の変化や微妙な曲り等がある
ため、ソリッドの丸棒を芯材として用いるのは実生産上
困難である。こ°のため、芯材としてモリブデン線を複
数本束ねたものかモリブデンの粒を使用するのが好まし
い。この場合のモリブデン線の太さは、芯部の寸法にも
よるが、線径0.5履l以下のものを用いるのが好まし
く、0.3〜0.1■の細線1例えば線径0.2−一の
線を用いるのが特に好ましい、また、モリブデン粒とし
ては、例えばモリブデン線を短く切断したもの等の粒状
物を使用することができる。第5図に示″すようにモリ
ブデン線を束ねた。芯材を芯部に充分緻密に充填したら
、通常の丸棒の場合と同様に加熱しつつスェージング加
工を施し、必要な場合はさらに線引きを行なって小径化
してゆく、このとき、芯部内のモリブデン芯材も筒体の
外径とともに小径化してゆく。加工がある程度進んだ状
態では、線材を束ねた芯材が殆んど一体化して固形の丸
棒状となる。
Next, when manufacturing a pipe with a smaller diameter, a core material for processing is inserted into the core of the cylindrical sintered body in order to plastically load the sintered body. Tungsten is heated to high temperatures of up to 1,600°C or more during forging (swaging), so it is necessary to use a material with high heat resistance and workability as the core material. is most preferred. In this case, the core material must be in close contact with the core to prevent deformation and cracks in the core, but in reality there are changes in dimensions and slight bends, so it is necessary to use a solid round bar as the core. It is difficult to use it as a material in actual production. For this reason, it is preferable to use a bundle of molybdenum wires or molybdenum grains as the core material. The thickness of the molybdenum wire in this case depends on the dimensions of the core, but it is preferable to use a wire with a diameter of 0.5 l or less. It is particularly preferable to use a wire of .2-1, and as the molybdenum grains, for example, granules such as molybdenum wire cut into short pieces can be used. The molybdenum wires were bundled as shown in Figure 5. Once the core material was packed sufficiently densely into the core, it was heated and swaged in the same way as for ordinary round rods, and if necessary, the wires were drawn further. At this time, the molybdenum core material inside the core also becomes smaller in diameter along with the outer diameter of the cylinder.When processing has progressed to a certain extent, the core material that bundles the wire rods is almost integrated. It becomes a solid round bar shape.

上記スェージング、線引き等のヂ性加工によって所望の
径となったら、内部に充填した芯材を除去する。この除
去方法は、径が大きい場合は芯材の部分にドリルで下穴
を穿孔し、モリブデンのみを溶解する薬液、例えば重量
比で硝酸2、硫醜l、水lの組成の混酸溶液中に浸漬し
て芯材のモリブデンを溶解する。ドリルが入らない程度
に小径の場合は、全体を上記混酸溶液中に浸漬して芯材
の端部を溶解し、端部に凹部を形成したのち、第6図に
示すように、テフロンチューブlOで芯材11の端部の
凹部11aに上記混酸を滴下供給して、芯材llを徐々
に溶解除去する。芯材の溶解の進行、と□ともに芯部内
にチューブlOを挿入してゆく。
Once the desired diameter has been achieved through the above-described processing such as swaging and wire drawing, the core material filled inside is removed. This removal method involves drilling a pilot hole in the core material if the diameter is large, and placing it in a chemical solution that dissolves only molybdenum, such as a mixed acid solution with a weight ratio of 2 parts nitric acid, 1 part sulfur, and 1 part water. Soak to dissolve the molybdenum core material. If the diameter is so small that a drill cannot fit into it, immerse the entire core material in the above mixed acid solution to dissolve the end of the core material and form a recess at the end, then insert the Teflon tube lO as shown in Figure 6. Then, the mixed acid is supplied dropwise to the concave portion 11a at the end of the core material 11, and the core material 11 is gradually dissolved and removed. As the core material melts, the tube 10 is inserted into the core.

このようにして、第7図に示すように、偏心度か少く、
かつ、真円度の高い芯部12を有する所望の径のタング
ステンパイプ13が得られる。このりングステンパイプ
13の内外径および長さは、広い範囲にわたって自由に
選択することができる。上記説明から明らかなように、
その製造は容易である。
In this way, as shown in Figure 7, the eccentricity is reduced,
Moreover, a tungsten pipe 13 having a desired diameter and having a highly circular core portion 12 can be obtained. The inner and outer diameters and length of the ring stencil pipe 13 can be freely selected over a wide range. As is clear from the above explanation,
Its manufacture is easy.

(発明の効果) 以上に説明したように、本発明によれば、所望の内外径
を有する細長いタングステンパイプを容易に製造するこ
とが可能となった。
(Effects of the Invention) As explained above, according to the present invention, it has become possible to easily manufacture an elongated tungsten pipe having desired inner and outer diameters.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は金型の断面図、第2図は成形体の断面図、第3
図は治具の説明図、第4図は挿入端子の説明図、第5図
(a)、(b)は芯材を充填した状態をあられす正面図
および縦断面図、第6図は芯材除去法の説明図、第7図
(a)、(b)はタングステンパイプの正面図および縦
断面図である。 l・・・金型、?・・・成形体、3・・・芯材、4・・
・粉末、5・・−治具、6・・・予焼給体、9・・・挿
入端子、10・・・テフロンチューブ、 11・・・芯
材、13・・・タングステンパイプ。
Figure 1 is a sectional view of the mold, Figure 2 is a sectional view of the molded body, and Figure 3 is a sectional view of the molded body.
The figure is an explanatory diagram of the jig, Figure 4 is an explanatory diagram of the insertion terminal, Figures 5 (a) and (b) are a front view and longitudinal sectional view of the state filled with core material, and Figure 6 is a diagram of the core. FIGS. 7(a) and 7(b), which are explanatory views of the material removal method, are a front view and a longitudinal cross-sectional view of a tungsten pipe. l...Mold? ... Molded body, 3... Core material, 4...
- Powder, 5...-Jig, 6... Pre-burning body, 9... Insertion terminal, 10... Teflon tube, 11... Core material, 13... Tungsten pipe.

Claims (1)

【特許請求の範囲】[Claims] (1)タングステン粉末もしくはこれに他の金属成分を
添加した粉末を、テーパ付きの芯材を用いてテーパ付き
芯部を有する筒状体に加圧成形し、焼結温度よりも低い
温度で予焼結したのち、得られた予焼結体にドリル加工
を施して芯部をテーパのない真直な穴に成形するととも
に、成形された真直な芯部を基準として外周を削ること
によって肉厚を均一化し、その後高温で焼結するととも
に、必要な塑性加工を施して、真直な芯部と均一な肉厚
とをそなえた筒体を得ることを特徴とするタングステン
パイプの製造方法。
(1) Tungsten powder or powder with other metal components added to it is pressure-molded into a cylindrical body with a tapered core using a tapered core material, and preheated at a temperature lower than the sintering temperature. After sintering, the obtained pre-sintered body is drilled to form the core into a straight hole with no taper, and the wall thickness is reduced by cutting the outer periphery based on the formed straight core. A method for manufacturing a tungsten pipe, which is characterized by homogenizing it, then sintering it at high temperature, and performing necessary plastic processing to obtain a cylindrical body with a straight core and uniform wall thickness.
JP12426084A 1984-06-16 1984-06-16 Production of tungsten pipe Pending JPS613803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12426084A JPS613803A (en) 1984-06-16 1984-06-16 Production of tungsten pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12426084A JPS613803A (en) 1984-06-16 1984-06-16 Production of tungsten pipe

Publications (1)

Publication Number Publication Date
JPS613803A true JPS613803A (en) 1986-01-09

Family

ID=14880924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12426084A Pending JPS613803A (en) 1984-06-16 1984-06-16 Production of tungsten pipe

Country Status (1)

Country Link
JP (1) JPS613803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091812A (en) * 2011-10-24 2013-05-16 Choshu Industry Co Ltd Method for manufacturing tungsten product
KR20170094212A (en) * 2014-12-12 2017-08-17 스미또모 덴꼬 쇼오께쯔 고오낑 가부시끼가이샤 Method for manufacturing sintered component, sintered component, and drill

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641302A (en) * 1979-09-10 1981-04-18 Toshiba Corp Manufacture of molybdenum pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641302A (en) * 1979-09-10 1981-04-18 Toshiba Corp Manufacture of molybdenum pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091812A (en) * 2011-10-24 2013-05-16 Choshu Industry Co Ltd Method for manufacturing tungsten product
KR20170094212A (en) * 2014-12-12 2017-08-17 스미또모 덴꼬 쇼오께쯔 고오낑 가부시끼가이샤 Method for manufacturing sintered component, sintered component, and drill
US11305347B2 (en) 2014-12-12 2022-04-19 Sumitomo Electric Sintered Alloy, Ltd. Method for manufacturing sintered component, sintered component, and drill
US11325186B2 (en) 2014-12-12 2022-05-10 Sumitomo Electric Sintered Alloy, Ltd. Method for manufacturing sintered component, sintered component, and drill

Similar Documents

Publication Publication Date Title
KR100576901B1 (en) Tunsten wire, cathode heater, filament for vibration service lamp, probe pin, braun tube, and lamp
JPH0581195B2 (en)
CN106269965A (en) A kind of preparation method of molybdenum-copper silk material
JPS613803A (en) Production of tungsten pipe
JPS613612A (en) Manufacture of tungsten pipe
JPS613613A (en) Manufacture of tungsten pipe
US3150936A (en) Tungsten tubing extrusion billet
JPS61163201A (en) Production of tungsten pipe
CN106090452B (en) A kind of preparation method of small-bore platinum and platinum-rhodium alloy pipe
US2761207A (en) Method of making a composite metal rod
JPH05277742A (en) Contact tip and its manufacture
JP2006255765A (en) Method for manufacturing screw parts with through hole formed therein
JPH10244363A (en) High melting point metal brazed cylindrical member and manufacture thereof
JP2016094656A (en) Cylindrical material and method for producing the same
JP3940474B2 (en) Tungsten wire for filament, method for producing tungsten wire, filament and method for producing the same
JPS6363522A (en) Hot working method for reducing diameter of pipe
US3416342A (en) Method for treating working and bonding refractory metals and alloys
CN215096102U (en) Metal material for manufacturing ornaments
CN107552590B (en) The manufacturing method of stud
JPH049842B2 (en)
JP2003213388A (en) METHOD OF PRODUCING SHAPE-MEMORY ALLOY BOLT WITH OUTER DIAMETER OF >=3 mm
JPH0542109B2 (en)
JPH0824953B2 (en) High-density packed capillary manufacturing method
JP2005350709A (en) Seamless pipe made of molybdenum, and manufacturing method therefor
US3243274A (en) Method of forming silicon article