JPS6136577B2 - - Google Patents

Info

Publication number
JPS6136577B2
JPS6136577B2 JP57204890A JP20489082A JPS6136577B2 JP S6136577 B2 JPS6136577 B2 JP S6136577B2 JP 57204890 A JP57204890 A JP 57204890A JP 20489082 A JP20489082 A JP 20489082A JP S6136577 B2 JPS6136577 B2 JP S6136577B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
alloy
less
strength
intergranular corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57204890A
Other languages
Japanese (ja)
Other versions
JPS5996243A (en
Inventor
Ken Toma
Masanao Iida
Isao Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP20489082A priority Critical patent/JPS5996243A/en
Publication of JPS5996243A publication Critical patent/JPS5996243A/en
Publication of JPS6136577B2 publication Critical patent/JPS6136577B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、耐食性、特に耐粒界腐食性および
耐孔食性にすぐれた中強度Al合金に関するもの
である。 一般に、JIS6000番代のAl−Mg−Si系合金は、
時効処理によつて中程度の強度をもつようにな
り、しかも耐食性の比較的良好な材料であること
から、例えば熱交換器の管材、給排水管材、およ
び水タンク材などとして広く用いられている。 しかし、上記のAl−Mg−Si系合金において
は、実用に際して局部腐食、特に粒界腐食が発生
し易く、この粒界腐食は比較的早期に内部深くま
で進行することから、比較的短時間で使用寿命に
至るものであつた。なお、前記Al−Mg−Si系合
金における粒界腐食は、粒界にMg2Siが存在する
場合、このMg2Siが素地に比して電気化学的に卑
であるために、素地に優先して溶解することに起
因するものであり、したがつて強度を付与する目
的で時効処理を施した場合、粒界に析出した
Mg2Siによつて特に著しい粒界腐食が見られるよ
うになる。 一方、粒界腐食を防止する目的で、陽極酸化な
どの表面処理を施すことが行なわれているが、こ
れらの表面処理はコスト高の原因となるばかりで
なく、形成された酸化皮膜は苛酷な条件での成形
〓〓〓〓
加工に耐えられないなどの問題がある。 そこで、本発明者等は、上述のような観点か
ら、上記のAl−Mg−Si系合金にすぐれ耐粒界腐
食性を付与すべく研究を行なつた結果、前記Al
−Mg−Si系合金にInおよびSnのうちの1種また
は2種を固溶範囲内で含有させると、これらの成
分を固溶含有した素地は電気化学的に卑になり、
この結果前記素地と、粒界に析出したMg2Siとは
電気化学的にほぼ同じ電位をもつようになること
から、Mg2Siの優先溶解が阻止され、粒界腐食が
抑制されるようになり、さらにこれにZnを含有
させると、耐孔食性が一段と向上するようになる
という知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、重量%で(以下%は重量%を示
す)、 Mg:0.35〜1.5%、 Si:0.2〜0.8%、 Zn:0.1〜0.3%、 を含有し、 In:0.005〜0.1%、 Sn:0.02〜0.1%、 のうちの1種または2種を含有し、さらに必要に
応じて、 Cr:0.04〜0.35%、 Cu:0.15〜0.4%、 のうちの1種または2種を含有し、残りがAlと
不可避不純物からなる組成を有する耐粒界腐食性
および耐孔食性にすぐれた中強度Al合金に特徴
を有するものである。 つぎに、この発明のAl合金において、成分組
成範囲を上記の通りに限定した理由を説明する。 (a) MgおよびSi これらの成分には、溶体化処理後の時効処理
で、素地中に微細なMg2Siとして均一に分散析
出し、もつて合金の強度を向上させる作用があ
るが、その含有量が、それぞれMg:0.35%未
満およびSi:0.2%未満では析出するMg2Siの量
が不十分で所望の強度を確保することができ
ず、一方Mgにあつては1.5%を越えて含有させ
ると、高温変形抵抗が高くなりすぎて、例えば
押出加工が困難になり、生産性が阻害されるよ
うになり、またSiにあつては0.8%を越えて含
有させると、耐食性が劣化するようになること
から、それぞれ、その含有量を、Mg:0.35〜
1.5%、Si:0.2〜0.8%と定めた。 (b) InおよびSn これらの成分には、素地に固溶して、これを
電気化学的に卑にし、もつて素地と、時効処理
によつて素地中に微細均一に析出分散する
Mg2Siとの間に電位差がないようにする作用が
あり、この結果前記Mg2Siの優先溶解が阻止さ
れて粒界腐食が抑制されるようになるが、その
含有量が、それぞれIn:0.005%未満および
Sn:0.02%未満では前記作用に所望の効果が得
られず、一方In:0.1%およびSn:0.1%をそれ
ぞれ越えて含有させると、合金自体が電気化学
的に卑になりすぎて全面腐食型の腐食が進行す
るようになることから、その含有量を、それぞ
れIn:0.005〜0.1%、Sn:0.02〜0.1%と定め
た。 (c) Zn Zn成分には、InおよびSnとの共存におい
て、素地に固溶して耐孔食性を一段と改善する
作用があるが、その含有量が0.1%未満では前
記作用に所望の効果が得られず、一方0.3%を
越えて含有させると全面腐食型の腐食が著しく
なることから、その含有量を0.1〜0.3%と定め
た。 (d) CrおよびCu これらの成分には、組織の微細化あるいは
Mg2Siの析出促進をはかつて合金の強度を向上
させる作用があるので、特に高強度が要求され
る場合に必要に応じて含有されるが、その含有
量が、それぞれCr:0.04%未満およびCu:
0.15%未満では所望の強度向上効果が得られ
ず、一方Crにあつては、0.35%を越えて含有さ
せると、鋳造時に巨大晶を形成し易くなり、そ
の後の加工工程における加工性劣化の原因とな
り、またCuにあつては、0.4%を越えて含有さ
せると、素地が電気化学的に貴になる傾向が現
われるようになり、この結果粒界腐食が促進す
るようになることから、その含有量を、それぞ
れCr:0.04〜0.35%、Cu:0.15〜0.4%を定め
た。 つぎに、この発明のAl合金を実施例により具
体的に説明する。 実施例 〓〓〓〓
通常の溶解法により、それぞれ第1表に示され
る成分組成をもつた本発明Al合金1〜20および
比較Al合金1〜8を溶製し、鋳造して直径:50
mmφ×長さ:200mmの寸法をもつた円柱状鋳塊と
した。なお、これらの鋳塊は、第1表には表示を
省略したが、いずれも不可避不純物として、
Fe:0.35%以下、Si:0.13%以下、Cu:0.04%以
下、Mn:0.01%以下、Mg:0.01%以下、Zn:
0.02%以下、およびCr:0.01%以下を含有するも
のであつた。 また、比較Al合金は、構成成分のうちのいず
れかの成分含有量(第1表に※印を付す)がこの
発明の範囲から外れた組成をもつものである。 ついで、この結果得られた本発明Al合金1〜
20および比較Al合金1〜8の鋳塊のそれぞれ
に、540℃の温度に加熱した状態で熱間押出し加
工を施して、幅:30mm×厚さ:2mmの寸法をもつ
た帯板とし、これを強制空冷した後、この帯板よ
り長さ:70mmの試験片を切出し、この試験片を温
度:160℃に20時間保持の条件で時効処理 〓〓〓〓
The present invention relates to a medium-strength Al alloy with excellent corrosion resistance, particularly intergranular corrosion resistance and pitting corrosion resistance. Generally, JIS6000 series Al-Mg-Si alloys are
Because it becomes a material with moderate strength through aging treatment and relatively good corrosion resistance, it is widely used, for example, as pipe materials for heat exchangers, water supply and drainage pipes, and water tank materials. However, in the above-mentioned Al-Mg-Si alloy, local corrosion, especially intergranular corrosion, tends to occur in practical use, and since this intergranular corrosion progresses relatively quickly and deep inside, it can be used in a relatively short period of time. It had reached the end of its useful life. Note that intergranular corrosion in the Al-Mg-Si alloy is caused by the presence of Mg 2 Si in the grain boundaries, which is electrochemically less noble than the base material. Therefore, when aging treatment is performed for the purpose of imparting strength, it precipitates at grain boundaries.
Particularly significant intergranular corrosion is observed due to Mg 2 Si. On the other hand, surface treatments such as anodic oxidation are carried out to prevent intergranular corrosion, but these surface treatments not only cause high costs, but also cause the oxide film formed to be harsh. Molding under conditions〓〓〓〓
There are problems such as not being able to withstand processing. Therefore, from the above-mentioned viewpoint, the present inventors conducted research to impart excellent intergranular corrosion resistance to the above-mentioned Al-Mg-Si alloy.
- When one or both of In and Sn are contained in a solid solution range in a Mg-Si alloy, the base material containing these components as a solid solution becomes electrochemically base.
As a result, the base material and the Mg 2 Si precipitated at the grain boundaries come to have approximately the same electrochemical potential, which prevents preferential dissolution of Mg 2 Si and suppresses intergranular corrosion. They found that when Zn is added to this material, the pitting corrosion resistance is further improved. This invention was made based on the above knowledge, and in weight% (hereinafter % indicates weight%), Mg: 0.35 to 1.5%, Si: 0.2 to 0.8%, Zn: 0.1 to 0.3%, Contains In: 0.005 to 0.1%, Sn: 0.02 to 0.1%, and one or two of the following, and if necessary, Cr: 0.04 to 0.35%, Cu: 0.15 to 0.4%, It is characterized by a medium-strength Al alloy with excellent intergranular corrosion resistance and pitting corrosion resistance, which has a composition containing one or two of the above, with the remainder consisting of Al and unavoidable impurities. Next, the reason why the composition range of the Al alloy of the present invention is limited as described above will be explained. (a) Mg and Si These components have the effect of uniformly dispersing and precipitating in the matrix as fine Mg 2 Si during aging treatment after solution treatment, thereby improving the strength of the alloy. If the Mg content is less than 0.35% and Si: less than 0.2%, the amount of Mg 2 Si precipitated is insufficient and the desired strength cannot be secured, whereas if the Mg content exceeds 1.5%, If Si is included, the high-temperature deformation resistance becomes too high, making extrusion processing difficult and productivity inhibited, and if Si is included in excess of 0.8%, corrosion resistance deteriorates. Therefore, the content of each is Mg: 0.35 ~
1.5%, Si: 0.2 to 0.8%. (b) In and Sn These components are solid dissolved in the base material, made electrochemically base, and precipitated and dispersed finely and uniformly in the base material through aging treatment.
It has the effect of eliminating potential difference between In and Mg 2 Si, and as a result, preferential dissolution of Mg 2 Si is inhibited and intergranular corrosion is suppressed. Less than 0.005% and
If Sn: less than 0.02%, the desired effect cannot be obtained, while if the content exceeds In: 0.1% and Sn: 0.1%, the alloy itself becomes electrochemically too base, resulting in general corrosion. Since corrosion progresses, the contents were determined to be In: 0.005 to 0.1% and Sn: 0.02 to 0.1%, respectively. (c) Zn When coexisting with In and Sn, the Zn component has the effect of forming a solid solution in the substrate and further improving pitting corrosion resistance, but if its content is less than 0.1%, the desired effect is not achieved. On the other hand, if the content exceeds 0.3%, general corrosion becomes severe, so the content was set at 0.1 to 0.3%. (d) Cr and Cu These components have fine structures or
Mg 2 Si precipitation has the effect of improving the strength of the alloy, so it is included as necessary when particularly high strength is required, but if the content is less than 0.04% Cr and Cu:
If the Cr content is less than 0.15%, the desired strength-improving effect cannot be obtained; on the other hand, if the Cr content exceeds 0.35%, giant crystals are likely to form during casting, causing deterioration of workability in subsequent processing steps. In addition, when Cu is contained in excess of 0.4%, the substrate tends to become electrochemically noble, and as a result, intergranular corrosion is promoted. The amounts were determined to be 0.04 to 0.35% for Cr and 0.15 to 0.4% for Cu. Next, the Al alloy of the present invention will be specifically explained using examples. Example〓〓〓〓
Inventive Al alloys 1 to 20 and Comparative Al alloys 1 to 8, each having the composition shown in Table 1, were melted and cast using a normal melting method to a diameter of 50 mm.
A cylindrical ingot with dimensions of mmφ x length: 200 mm was made. Although these ingots are not shown in Table 1, they all contain unavoidable impurities.
Fe: 0.35% or less, Si: 0.13% or less, Cu: 0.04% or less, Mn: 0.01% or less, Mg: 0.01% or less, Zn:
It contained 0.02% or less, and Cr: 0.01% or less. Furthermore, the comparative Al alloys have compositions in which the content of any one of the constituent components (marked with * in Table 1) is outside the scope of the present invention. Next, the resulting Al alloys of the present invention 1~
20 and Comparative Al Alloys 1 to 8 ingots were hot extruded while heated to a temperature of 540°C to form strips with dimensions of width: 30 mm x thickness: 2 mm. After forced air cooling, a test piece with a length of 70 mm was cut from this strip, and this test piece was aged at a temperature of 160°C for 20 hours.

【表】 〓〓〓〓
[Table] 〓〓〓〓

【表】 を行ない。引張試験と耐食性試験に供した。な
お、耐食性試験は、それぞれ1ppmのCu++イオン
を含有する温度:40℃の水道水中に30日間浸漬、
並びに3%食塩水中に30日間浸漬の条件で行な
い、試験後の腐食量、並びに最大孔食深さと、こ
の最大孔食底部における粒界腐食深さを測定し
た。これらの結果を第1表に合せて示した。 第1表に示される結果から、本発明Al合金1
〜20は、いずれもすぐれた耐粒界腐食性および耐
孔食性を示し、かつ従来中強度Al合金と同程度
の良好な強度を有するのに対して、比較Al合金
1〜8に見られるように、構成成分のうちのいず
〓〓〓〓
れかの成分含有量がこの発明の範囲から外れる
と、強度、耐食度、耐孔食性、さらに耐粒界腐食
性のうちの少なくともいずれかに所望の特性が得
られないことが明らかである。 上述のように、この発明のAl合金は、すぐれ
た耐粒界腐食性および耐孔食性を有するばかりで
なく、中程度の強度も合せもつので、例えば熱交
換器の管材、給排水管材、さらに水タンク材など
として用いる場合に薄肉化による軽量化をはかる
ことができ、しかもきわめて長期に亘つての使用
が可能となるなど工業上有用な特性を有するので
ある。 〓〓〓〓
Perform [Table]. It was subjected to tensile test and corrosion resistance test. In addition, the corrosion resistance test was performed by immersion in tap water containing 1 ppm of Cu ++ ions at a temperature of 40°C for 30 days,
The specimens were also immersed in 3% saline for 30 days, and the amount of corrosion after the test, the maximum pitting corrosion depth, and the intergranular corrosion depth at the bottom of the maximum pitting corrosion were measured. These results are also shown in Table 1. From the results shown in Table 1, the present invention Al alloy 1
-20 all exhibit excellent intergranular corrosion resistance and pitting corrosion resistance, and have good strength comparable to that of conventional medium-strength Al alloys, whereas In, some of the constituent components〓〓〓〓
It is clear that if the content of any component deviates from the range of the present invention, the desired properties in at least one of strength, corrosion resistance, pitting corrosion resistance, and intergranular corrosion resistance cannot be obtained. As mentioned above, the Al alloy of the present invention not only has excellent intergranular corrosion resistance and pitting corrosion resistance, but also has moderate strength. When used as a tank material, etc., it can be made thinner and lighter, and it can be used for an extremely long period of time, making it industrially useful. 〓〓〓〓

Claims (1)

【特許請求の範囲】 1Mg:0.35〜1.5%、 Si:0.2〜0.8%、 Zn:0.1〜0.3%、 を含有し、さらに、 In:0.005〜0.1%、 Sn:0.02〜0.1%、 のうちの1種または2種を含有し、残りがAlと
不可避不純物からなる組成(以上重量%)を有す
ることを特徴とする耐粒界腐食性および耐孔食性
にすぐれたAl合金。 2 Mg:0.35〜1.5%、 Si:0.2〜0.8%、 Zn:0.1〜0.3%、 を含有し、さらに、 In:0.005〜0.1%、 Sn:0.02〜0.1%、 のうちの1種または2種と、 Cr:0.04〜0.35%、 Cu:0.15〜0.4%、 のうちの1種または2種を含有し、残りがAlと
不可避不純物からなる組成(以上重量%)を有す
ることを特徴とする耐粒界腐食性および耐孔食性
にすぐれたAl合金。
[Claims] 1 Contains Mg: 0.35-1.5%, Si: 0.2-0.8%, Zn: 0.1-0.3%, and further contains In: 0.005-0.1%, Sn: 0.02-0.1%, 1. An Al alloy with excellent intergranular corrosion resistance and pitting corrosion resistance, characterized by having a composition (weight %) containing one or two types, and the remainder consisting of Al and unavoidable impurities. 2 Contains Mg: 0.35-1.5%, Si: 0.2-0.8%, Zn: 0.1-0.3%, and further contains one or two of the following: In: 0.005-0.1%, Sn: 0.02-0.1% Cr: 0.04 to 0.35%, Cu: 0.15 to 0.4%, and one or two of these, with the remainder consisting of Al and unavoidable impurities (weight %). Al alloy with excellent intergranular corrosion and pitting corrosion resistance.
JP20489082A 1982-11-22 1982-11-22 Al alloy with superior intergranular corrosion resistance Granted JPS5996243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20489082A JPS5996243A (en) 1982-11-22 1982-11-22 Al alloy with superior intergranular corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20489082A JPS5996243A (en) 1982-11-22 1982-11-22 Al alloy with superior intergranular corrosion resistance

Publications (2)

Publication Number Publication Date
JPS5996243A JPS5996243A (en) 1984-06-02
JPS6136577B2 true JPS6136577B2 (en) 1986-08-19

Family

ID=16498086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20489082A Granted JPS5996243A (en) 1982-11-22 1982-11-22 Al alloy with superior intergranular corrosion resistance

Country Status (1)

Country Link
JP (1) JPS5996243A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8704251D0 (en) * 1987-02-24 1987-04-01 Alcan Int Ltd Welding aluminium alloys
JP6457193B2 (en) * 2014-03-31 2019-01-23 株式会社神戸製鋼所 Aluminum alloy material and bonded body with excellent adhesion durability, or automobile parts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396557A (en) * 1977-02-03 1978-08-23 Sumitomo Light Metal Ind Finned members for aluminum heat exchanger
JPS5456961A (en) * 1977-10-14 1979-05-08 Sumitomo Light Metal Ind Brazing sheet for fin having sacrifice anodic effect
JPS54110909A (en) * 1978-02-21 1979-08-30 Sumitomo Light Metal Ind Aluminum alloy for use as sacrifice anode
JPS572856A (en) * 1980-06-06 1982-01-08 Showa Alum Corp Cathodically protecting brazing sheet for vacuum brazing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396557A (en) * 1977-02-03 1978-08-23 Sumitomo Light Metal Ind Finned members for aluminum heat exchanger
JPS5456961A (en) * 1977-10-14 1979-05-08 Sumitomo Light Metal Ind Brazing sheet for fin having sacrifice anodic effect
JPS54110909A (en) * 1978-02-21 1979-08-30 Sumitomo Light Metal Ind Aluminum alloy for use as sacrifice anode
JPS572856A (en) * 1980-06-06 1982-01-08 Showa Alum Corp Cathodically protecting brazing sheet for vacuum brazing

Also Published As

Publication number Publication date
JPS5996243A (en) 1984-06-02

Similar Documents

Publication Publication Date Title
JPS6248742B2 (en)
CA1208042A (en) Rhenium-bearing copper-nickel-tin alloys
JPS60121249A (en) Stress corrosion resistant aluminum base alloy
JPS6034617B2 (en) Al material for brazing
JPS5918457B2 (en) Magnesium-based alloy with high mechanical strength and low corrosion tendency
KR950014423B1 (en) A copper-based metal alloy of improved type particularly for the contruction of electronic components
JPS6136577B2 (en)
JPH0459379B2 (en)
JPS6250538B2 (en)
JPS5864339A (en) Al alloy for fin material of heat exchanger with superior sacrificial anode effect and drooping resistance
JPH07166270A (en) Copper alloy excellent in resistance to ant-lair-like corrosion
JPH07166271A (en) Copper alloy excellent in resistance to ant-lair-like corrosion
KR102353612B1 (en) Magnesium alloy, magnesium alloy plate using thereof, and method for manufacturing of magnesium alloy plate
US2108050A (en) Alloys
US3438771A (en) Extruded article of magnesium-base alloy
JPS6256223B2 (en)
US2108049A (en) Nontarnish alloys
JPS636619B2 (en)
JPH029098B2 (en)
JPH025569B2 (en)
JPS6261102B2 (en)
JPH0770686A (en) Al alloy material having excellent sacrificial anode effect even after heating by brazing
JPS6334215B2 (en)
JP2000017354A (en) High-tensile copper alloy excellent in hot workability
JPH0473080B2 (en)