JPS6136342B2 - - Google Patents

Info

Publication number
JPS6136342B2
JPS6136342B2 JP4231779A JP4231779A JPS6136342B2 JP S6136342 B2 JPS6136342 B2 JP S6136342B2 JP 4231779 A JP4231779 A JP 4231779A JP 4231779 A JP4231779 A JP 4231779A JP S6136342 B2 JPS6136342 B2 JP S6136342B2
Authority
JP
Japan
Prior art keywords
deflection
electron beam
sample stage
output
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4231779A
Other languages
Japanese (ja)
Other versions
JPS55133887A (en
Inventor
Kazumitsu Nakamura
Soichiro Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4231779A priority Critical patent/JPS55133887A/en
Publication of JPS55133887A publication Critical patent/JPS55133887A/en
Publication of JPS6136342B2 publication Critical patent/JPS6136342B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】 本発明は電子線照射装置に係り、特に偏向コイ
ルへの電子ビーム入射位置補正手段を備えた電子
線照射装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron beam irradiation device, and more particularly to an electron beam irradiation device equipped with means for correcting the position of electron beam incidence on a deflection coil.

従来より、電子ビームを試料上で偏向させて加
工を行なうような電子線照射装置が知られてい
る。電子ビームを偏向する手段として偏向コイル
による磁場を用いた場合には、周知のように偏向
磁場に歪が存在するため、何らの補正手段をもた
ない従来装置では、電子ビーム入射位置が偏向磁
場の中心から約250μmずれると、6mm口の偏向
フイールドで約1μmのずれを生ずる。
2. Description of the Related Art Conventionally, electron beam irradiation apparatuses have been known that perform processing by deflecting an electron beam onto a sample. When a magnetic field from a deflection coil is used as a means for deflecting an electron beam, as is well known, there is distortion in the deflection magnetic field. Therefore, in conventional devices that do not have any correction means, the electron beam incident position does not match the deflection magnetic field. A deviation of about 250 μm from the center of the deflection field with a 6 mm opening will result in a deviation of about 1 μm.

したがつて、0.1μmの位置精度を保証するた
めには、数10μm以内の誤差範囲で電子ビームを
偏向磁場の中心に入射させる必要がある。しかし
ながら、このようなことは現在の技術ではほとん
ど不可能であり、偏向歪をなくすことはさけられ
なかつた。
Therefore, in order to guarantee a positional accuracy of 0.1 μm, it is necessary to make the electron beam enter the center of the deflection magnetic field within an error range of several tens of μm. However, such a thing is almost impossible with current technology, and it is inevitable to eliminate deflection distortion.

本発明の目的は、偏向コイルの上部に補正コイ
ルを設け、偏向コイルの中心に電子ビームを正し
く入射させることにより、偏向歪を低減しようと
するものである。
An object of the present invention is to reduce deflection distortion by providing a correction coil above the deflection coil and making the electron beam enter the center of the deflection coil correctly.

前記目的を達成するために、本発明において
は、偏向コイルの上部に補正コイルを設け、試料
台上に設けた標準マークを原点位置から正負方向
に等距離移動し、二次電子信号によつてマークが
検出された位置の誤差分を補正電流として補正コ
イルに供給するように構成している。
In order to achieve the above object, in the present invention, a correction coil is provided above the deflection coil, and a standard mark provided on the sample stage is moved an equal distance in the positive and negative directions from the origin position, and is The configuration is such that an error in the position where the mark is detected is supplied to the correction coil as a correction current.

第1図に本発明の1実施例を示す。電子銃1か
ら発生した電子はアノード2により加速されて電
子ビーム3となり、絞り4,7、コンデンサレン
ズ5および対物レンズ8により、所望のビーム径
と電流量に制御されて試料台11上の試料10に
照射される。
FIG. 1 shows one embodiment of the present invention. Electrons generated from the electron gun 1 are accelerated by the anode 2 and become an electron beam 3, which is controlled to a desired beam diameter and current amount by the aperture 4, 7, condenser lens 5, and objective lens 8, and is directed to the sample on the sample stage 11. 10 irradiated.

試料台11は、二次電子によつて試料台の位置
を検出するための標準マーク19を装備してい
る。また、レーザ光源16、固定ミラー14、ハ
ーフミラー15、移動ミラー13、およびレーザ
検出器17よりなるレーザ干渉測長計が設けら
れ、干渉波のパルス計数を行なうことによつて約
0.01μmの精度で、試料台11の移動距離を測定
することが可能である。
The sample stage 11 is equipped with a standard mark 19 for detecting the position of the sample stage using secondary electrons. Further, a laser interferometric length meter consisting of a laser light source 16, a fixed mirror 14, a half mirror 15, a movable mirror 13, and a laser detector 17 is provided, and by counting the pulses of interference waves, approximately
It is possible to measure the moving distance of the sample stage 11 with an accuracy of 0.01 μm.

また試料台11は、レーザ計測器21とモータ
12の制御電源22とを連動することにより、約
1μmの精度で停止位置を制御されることが可能
である。すなわち、レーザ計測器21は試料台1
1の現在位置を表わす信号を出力する。
Further, the stop position of the sample stage 11 can be controlled with an accuracy of about 1 μm by interlocking the laser measuring device 21 and the control power source 22 of the motor 12. That is, the laser measuring instrument 21 is connected to the sample stage 1.
Outputs a signal representing the current position of 1.

なお、6はブランキングプレート、9は電子ビ
ーム3の偏向コイル、18は本発明にしたがつて
その上に配置された補正コイル、20は2次電子
検出器、23は2次電子検出器20の出力を入力
とする2値化回路、24は2値化回路23の出力
信号および偏向量設定信号Dを入力され、これに
対応して偏向コイル9に供給すべき電流信号を発
生すると共に、前記電流信号に対して、ビームが
偏向磁場中心に入射した場合のビーム偏向量を出
力する偏向制御回路、25はレーザ計測器21の
出力および偏向制御回路24からのビーム偏向量
出力の差を演算する差分検出器、26,27はそ
れぞれ前記偏向制御回路24および差分検出器2
5の出力を供給されるDAコンバータ、28,2
9はそれぞれ偏向コイル9および補正コイル18
を付勢するための偏向アンプである。
In addition, 6 is a blanking plate, 9 is a deflection coil for the electron beam 3, 18 is a correction coil arranged thereon according to the present invention, 20 is a secondary electron detector, and 23 is a secondary electron detector 20. A binarization circuit 24 receives the output signal of the binarization circuit 23 and the deflection amount setting signal D, and generates a current signal to be supplied to the deflection coil 9 in response to the input signal. A deflection control circuit outputs the beam deflection amount when the beam is incident on the center of the deflection magnetic field in response to the current signal; 25 calculates the difference between the output of the laser measuring device 21 and the beam deflection amount output from the deflection control circuit 24; The difference detectors 26 and 27 correspond to the deflection control circuit 24 and the difference detector 2, respectively.
DA converter supplied with the output of 5, 28,2
9 are a deflection coil 9 and a correction coil 18, respectively.
It is a deflection amplifier for energizing.

次に第3図によつて、偏向コイル9に入射する
電子ビーム3の位置が偏向磁場中心からずれてい
る場合の偏向図形について説明する。図の中心に
ある図形イは偏向コイルの9の磁場の中心にビー
ム3が入射した場合の矩形のパタンである。これ
と同一の図形を偏向しても、ビームの入射位置が
偏向磁場中心よりずれている場合には、それぞれ
周辺に示したようなパタンとなつて偏向歪みが表
われる。
Next, with reference to FIG. 3, a description will be given of a deflection pattern when the position of the electron beam 3 incident on the deflection coil 9 is deviated from the center of the deflection magnetic field. The figure A in the center of the figure is a rectangular pattern when the beam 3 is incident on the center of the magnetic field 9 of the deflection coil. Even if the same figure is deflected, if the incident position of the beam is deviated from the center of the deflection magnetic field, deflection distortion will appear in the patterns shown in the respective peripheries.

すなわち、図形ロは電子ビーム3が上方にずれ
た場合の像パターン、図形ハ,ニ,ホはそれぞれ
左,下,右方にずれた場合の像パターンである。
That is, figure B is an image pattern when the electron beam 3 is shifted upward, and figures C, D, and H are image patterns when it is shifted leftward, downward, and rightward, respectively.

つぎに第2図を参照して、本発明による誤差検
出および補正作用についてさらに詳細に説明す
る。
Next, with reference to FIG. 2, error detection and correction operations according to the present invention will be explained in more detail.

まず、偏向アンプ28,29の出力を零とした
状態で、すなわち偏向信号原点の位置で試料台1
1の標準マーク19を検出する。つぎに第2図に
実線で示したように試料台11を右方へaμm移
動すると共に、偏向制御回路24の偏向量設定信
号Dとして+a偏向信号を設定する。その結果、
偏向コイル9には、これによつて作られる偏向磁
場の中心に電子ビーム3が入射した場合に試料台
11上で+aμmだけ電子ビームを偏向させるに
必要な偏向電流が供給される。
First, with the outputs of the deflection amplifiers 28 and 29 set to zero, that is, at the position of the origin of the deflection signal, the sample stage 1 is
1 standard mark 19 is detected. Next, as shown by the solid line in FIG. 2, the sample stage 11 is moved to the right by a μm, and the +a deflection signal is set as the deflection amount setting signal D of the deflection control circuit 24. the result,
The deflection coil 9 is supplied with a deflection current necessary to deflect the electron beam by +am on the sample stage 11 when the electron beam 3 is incident on the center of the deflection magnetic field created thereby.

このときレーザ計測器21および偏向制御回路
24から差分検出器25に入力される信号はいず
れもaであるので、その出力は0となつている。
At this time, the signals input from the laser measuring device 21 and the deflection control circuit 24 to the difference detector 25 are both a, so the output thereof is 0.

ところで、電子ビーム3が前記偏向磁場の中心
に入射していないと、前述のように誤差を生ずる
ので、電子ビーム3は標準マーク19には照射さ
れない。そこで、+aμmを中心として、さらに
±△aμmの巾で電子ビーム3を振らせるような
信号を偏向制御回路24に入力し、2次電子検出
器20および2値化回路23によつて標準マーク
19が検出されるようにする。
By the way, if the electron beam 3 is not incident on the center of the deflection magnetic field, the standard mark 19 will not be irradiated with the electron beam 3 because an error will occur as described above. Therefore, a signal is input to the deflection control circuit 24 to cause the electron beam 3 to swing with a width of ±△aμm centered on +aμm, and the standard mark 19 is detected by the secondary electron detector 20 and the binarization circuit 23. be detected.

標準マーク19が検出されたとき、偏向制御回
路24から差分検出器25へ供給される信号をa
±△apとすると、そのときの差分検出器25の
出力は±△apとなり、これがDA変換器27を経
て偏向アンプ29へ供給される。これによつて偏
向アンプ29は、±△apに対応する補正電流を補
正コイル18に供給し、その結果電子ビーム3は
偏向コイル9によつて作られる偏向磁場の中心に
入射するようにその経路を補正される。
When the standard mark 19 is detected, the signal supplied from the deflection control circuit 24 to the difference detector 25 is
If ±Δa p , then the output of the difference detector 25 will be ±Δa p , which is supplied to the deflection amplifier 29 via the DA converter 27. As a result, the deflection amplifier 29 supplies a correction current corresponding to ±△a p to the correction coil 18, and as a result, the electron beam 3 is directed so that it is incident on the center of the deflection magnetic field created by the deflection coil 9. The route is corrected.

同様の操作を、第2図点線で示したように試料
台11を左方へaμm移動させた場合について行
えば、その方向での誤差の測定および補正ができ
る。
If a similar operation is performed when the sample stage 11 is moved to the left by a μm as shown by the dotted line in FIG. 2, the error in that direction can be measured and corrected.

さらに、第2図の紙面に垂直な方向に関して
も、同様の誤差測定および補正ができることは明
らかであろう。
Furthermore, it will be obvious that similar error measurements and corrections can be made in the direction perpendicular to the paper plane of FIG.

以上の説明から明らかなように、本発明によれ
ば、電子ビームを常に、偏向コイルの中心に正し
く入射させることが可能となるので、試料面上で
の電子ビームの断面形状や集束状態の誤差や変
動、ならびに照射領域の誤差すなわち偏向歪など
を著しく低減できる効果がある。
As is clear from the above explanation, according to the present invention, it is possible to always make the electron beam enter the center of the deflection coil correctly, so there is no error in the cross-sectional shape or focusing state of the electron beam on the sample surface. This has the effect of significantly reducing fluctuations in the irradiation area, as well as errors in the irradiation area, that is, deflection distortion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の概略構成図、第2
図はその動作を説明するための図、第3図は偏向
歪みの1例を示す図である。 3……電子ビーム、5,8……電磁レンズ、
9,18……偏向コイル、11……試料台、1
3,14……ミラー、16……レーザ光源、17
……レーザ検出器、19……標準マーク、20…
…二次電子検出器、21……レーザ計測器、24
……偏向制御回路、25……差分検出器、28,
29……偏向アンプ。
FIG. 1 is a schematic configuration diagram of one embodiment of the present invention, and FIG.
The figure is a diagram for explaining the operation, and FIG. 3 is a diagram showing an example of deflection distortion. 3...electron beam, 5,8...electromagnetic lens,
9, 18... Deflection coil, 11... Sample stage, 1
3, 14...Mirror, 16...Laser light source, 17
...Laser detector, 19...Standard mark, 20...
...Secondary electron detector, 21...Laser measuring instrument, 24
...Deflection control circuit, 25...Difference detector, 28,
29...Deflection amplifier.

Claims (1)

【特許請求の範囲】 1 電子ビームを試料台上の試料面に照射する手
段と、 試料面上の電子ビーム照射位置を制御する偏向
手段と、 偏向手段に供給する電流を調節すると共に、前
記電流に対応した試料面上のビーム偏向量を出力
する偏向制御手段と、 試料台に設けられた標準マークと、 標準マークに電子ビームが照射されたことを検
出する手段と、 試料台を駆動する手段と、 試料台の現在位置を表わす信号を発生する手段
と、 偏向手段の電子源側に配設された補正用偏向手
段と、 試料台が予定方向へ予定量だけ偏位されたとき
の、試料台現在位置信号発生手段の出力、および
試料台の前記予定位置で前記標準マークに電子ビ
ームが照射されたときの、偏向制御手段からのビ
ーム偏向量出力を供給され、これら両出力の差分
を検出し、出力する手段と、 前記差分検出手段の出力を供給され、前記出力
を相殺する極性および大きさの補正偏向電流を補
正用偏向手段に供給する手段とを具備したことを
特徴とする電子線照射装置。
[Claims] 1. Means for irradiating an electron beam onto a sample surface on a sample stage; Deflection means for controlling the electron beam irradiation position on the sample surface; Adjusting the current supplied to the deflection means; a standard mark provided on the sample stage; a means for detecting that the standard mark is irradiated with the electron beam; and a means for driving the sample stage. a means for generating a signal representing the current position of the sample stage; a correction deflection means disposed on the electron source side of the deflection means; The output of the table current position signal generation means and the beam deflection amount output from the deflection control means when the standard mark is irradiated with the electron beam at the planned position of the sample table are supplied, and the difference between these two outputs is detected. and means for supplying, to the correction deflection means, a correction deflection current having a polarity and a magnitude that cancels out the output, which is supplied with the output of the difference detection means. Irradiation device.
JP4231779A 1979-04-07 1979-04-07 Electron beam radiation apparatus Granted JPS55133887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4231779A JPS55133887A (en) 1979-04-07 1979-04-07 Electron beam radiation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4231779A JPS55133887A (en) 1979-04-07 1979-04-07 Electron beam radiation apparatus

Publications (2)

Publication Number Publication Date
JPS55133887A JPS55133887A (en) 1980-10-18
JPS6136342B2 true JPS6136342B2 (en) 1986-08-18

Family

ID=12632631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4231779A Granted JPS55133887A (en) 1979-04-07 1979-04-07 Electron beam radiation apparatus

Country Status (1)

Country Link
JP (1) JPS55133887A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787131A (en) * 1980-11-20 1982-05-31 Jeol Ltd Exposing method of electron beam
JPS585955A (en) * 1981-07-03 1983-01-13 Hitachi Ltd Dynamic deflection astigmatism correcting device
JPS60128616A (en) * 1983-12-16 1985-07-09 Hitachi Ltd Electron beam drawing apparatus
JPS615517A (en) * 1984-06-19 1986-01-11 Toshiba Corp Correcting method for deflection strain of charged beam device

Also Published As

Publication number Publication date
JPS55133887A (en) 1980-10-18

Similar Documents

Publication Publication Date Title
US3894271A (en) Method and apparatus for aligning electron beams
US4939371A (en) Charged particle beam device
US4334139A (en) Apparatus for writing patterns in a layer on a substrate by means of a beam of electrically charged particles
US4119854A (en) Electron beam exposure system
JP2835097B2 (en) Correction method for charged beam astigmatism
GB1598735A (en) Corpuscular beam apparatus
US4572956A (en) Electron beam pattern transfer system having an autofocusing mechanism
US5648188A (en) Real time alignment system for a projection electron beam lithographic system
JPS6136342B2 (en)
JPS62291118A (en) Method and apparatus for aligning image of mask pattern on substrate
JPS6341401B2 (en)
US4973849A (en) Electron beam lithography apparatus having external magnetic field correcting device
US5255252A (en) Light spot position detector and optical head
JP5451555B2 (en) DAC amplifier diagnostic apparatus, charged particle beam drawing apparatus, and DAC amplifier diagnostic method
JPH08227840A (en) Adjusting method and drawing method in charged-particle-line drawing apparatus
JP3065472B2 (en) Adjustment method of rectangular beam size and positioning in charged particle beam writing apparatus
JP2786660B2 (en) Charged beam drawing method
JP2659320B2 (en) Electron beam exposure equipment
JP2001322053A (en) Method of measuring laser axis in stage moving quantity measuring system using laser length measuring machine
JP4690586B2 (en) Mask, electron beam deflection calibration method, electron beam exposure apparatus
JPS59169132A (en) Drawing device by electron beam
JP2786662B2 (en) Charged beam drawing method
JPS6231488B2 (en)
JPS6229136A (en) Mark detection in charged particle beam exposure and device thereof
JPS62114219A (en) Matching method for beam axis of charged beam lithography equipment