JPS6135582A - Dielectric ceramic composite - Google Patents

Dielectric ceramic composite

Info

Publication number
JPS6135582A
JPS6135582A JP59158097A JP15809784A JPS6135582A JP S6135582 A JPS6135582 A JP S6135582A JP 59158097 A JP59158097 A JP 59158097A JP 15809784 A JP15809784 A JP 15809784A JP S6135582 A JPS6135582 A JP S6135582A
Authority
JP
Japan
Prior art keywords
dielectric
small
resonance frequency
oxide
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59158097A
Other languages
Japanese (ja)
Other versions
JPH0532342B2 (en
Inventor
Takashi Okawa
隆 大川
Yoshio Yokoe
横江 宣雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP59158097A priority Critical patent/JPS6135582A/en
Publication of JPS6135582A publication Critical patent/JPS6135582A/en
Publication of JPH0532342B2 publication Critical patent/JPH0532342B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a dielectric ceramic composite which has a relatively large dielectric constant and a small dielectric loss and facilitates the control of the temperature dependence of resonance frequency, by forming a perovskite type crystalline structure of a specific composition using barium carbonate, lanthanum oxide, yttrium oxide and niobium oxide. CONSTITUTION:A ceramic composite is formed which has a perovskite type crystalline structure made from a composition which is a mixture of barium carbonate, lanthanum oxide, yttrium oxide and niobium oxide and which is represented by the formula Ba(La1/2-x/2, Yx/2, Nb1/2)O8 [wherein 0<=x<1]. This composite has the following advantages: (1) the dielectric constant is relatively high, i.e., about 36-42: (2) the dielectric loss is exceedingly small, i.e., 1.89- 4.09X10<-4>; and (3) the temperature coefficient of the resonance frequency can be controlled from -89.5-+100(ppm/ deg.C) by changing the value of (x) in the formula. It is therefore possible to obtain a high-frequency dielectric resonator in which the temperature dependence of the resonance frequency is small and stable.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高周波用の誘電体磁器組成物に関するものであ
る。 (従来の技術) 近年、自動車電話、パーツナμ無線機の実用化、マイク
ロ波回路のIC化への発展、ガン発振器への応用等マイ
クロ波領域で誘電体磁器が広く利用されている。この様
な高周波用誘電体磁器は共振器に用いられるが、そこに
要求される特性としては(1)誘電体中では波長が14
7に短縮されるので小型化の要求に対して誘電率が大き
い事、121.7を周波での誘電損失が小さいこと、(
3)共振周波数の温度に対する変化が少ないこと、即ち
誘電率の温度依存性が小さく′かつ安定であること、以
上の8特性が挙げられる。 従来、この種のlil′rt体磁器とし体上器例えばB
s1OTiO2系材料、Re0−BaO−TiO2系材
料及び(BaSr ) (ZrTi ) OB系系材外
どが知られている。 (発明が解決しようとする問題点) しかしながら、Ba−TlO2系材料では誘電率がεr
=88〜40と高く、また誘電損失はms<LOOXI
O−’・と小さいが、単−相では共振周波数の温度係数
τf−0のものが得がたく、組成変化に対する誘電率及
び訪M、率の温度依存性の変化も大きいため、高い誘電
率、低い誘電損失を維持したまま共振周波数の温度係数
(τf)を安定に小さく制御することが困難である。ま
た、Re0−BaO−TlO2系では誘電率はgrm4
0〜60と非常に高くまた共振周波数温度係数τf −
00ものも婦られるが、誘電損失はtana>s、ox
t。 と大きい。さらに、(BaSr)(ZrTl )05系
で嬬誘電損失は−δ<2.0OX10   と小さく、
共振周波数の温度係数if晶0のも・のも−得られるが
誘電率がεr=29〜85と非常に小ぐい。(尚、上記
誘電損失(−δ)は半同軸共振器法によシロ00〜60
0MH2で測定した。)。このように、上記の何れの材
料においても、高周波用誘電体材料に要求される前記B
fiI性を共に一充分には満足していない。 特に高周波においても、比較的周波数が低くIGHz程
度になると波長が長くなるため、小型化するためにはな
おさら誘電率の高いことが必要とされる。前記のRe0
−BaO−TiO2系或いはBaO−TiO2系材料に
おいては、誘電率を増大させることはできるが誘電率の
温度依存性の制御が難しく、共振周波数の温度依存性が
不安定であったり、また誘電損失が増大し、高周波用誘
電体材料として充分に満足な特性のものを得ることがで
きなかった。 (問題点を解決するための手段) 本発明者は上記の現状に濱み鋭意研究の結果、酸化バリ
ウム(BaO)、酸化フンタy(La20a)、酸化イ
ツト1リウム(YgOa)及び酸化ニオブ(Nb205
)からなる混合組成で、組成l!膨式Ba晶宿造を持っ
た磁器組成物が前記高周波用誘電体材料として必要な8
特性を充分に(<ifえていることを知見した〇 本発明くよれば誘′M、率が比較的高く力為つ低い誘電
損失を維持すると共に、誘電率の温度依存性が小さくか
つ安定であシ、従って本発明に依る磁器組成物を用いた
誘電体共儀器の共振周波数の温度依存性が小さくかつ安
定な高周波用の誘電体磁器組成物が得られる。 (作用) 組成式B”(LaX−X  a Y’A  eNbX 
、 )03〔但し0≦x〈1〕で表わされる磁器組成物
の結晶構造はペロプスカイト型溝填で6シ、その誘電*
aは高周波用防電材料に要求される前記8I4ij性を
充分満足している。即ち、(1)誘電率(sr)は約8
6〜42と比較的高く、12)Es誘電損失tanδ)
は1.89〜4.09 X 10”−’と非常に小さく
、(3)組成式のXの値を変化させる事によシ共振周波
数の温度係数rf (ppm/”C)を−89,5〜+
100(ppm/”c )まで制御することができる。 しかしながら、B10.、La20B 、 YgOa及
びNb2o5゜組成比が組成式Ba(LaX−3、Yy
、−、Nb、q )0.。
(Industrial Application Field) The present invention relates to a dielectric ceramic composition for high frequency use. (Prior Art) In recent years, dielectric ceramics have been widely used in the microwave field, such as in the practical use of car phones and Partna μ radios, the development of ICs in microwave circuits, and applications in Gunn oscillators. Such high-frequency dielectric ceramics are used for resonators, but the required characteristics are (1) the wavelength in the dielectric is 14
7, so it has a large dielectric constant in response to the demand for miniaturization, and the dielectric loss at the frequency of 121.7 is small (
3) There is little change in the resonance frequency with respect to temperature, that is, the temperature dependence of the dielectric constant is small and stable, and the above eight characteristics can be mentioned. Conventionally, this type of lil'rt body porcelain, for example B
Known materials include s1OTiO2-based materials, Re0-BaO-TiO2-based materials, and (BaSr)(ZrTi)OB-based materials. (Problem to be solved by the invention) However, in Ba-TlO2-based materials, the dielectric constant is εr
=88~40, and the dielectric loss is ms<LOOXI
Although it is small as O-', it is difficult to obtain a temperature coefficient of resonant frequency τf-0 in a single phase, and the temperature dependence of the dielectric constant and the coefficient of M and M changes greatly with respect to composition changes, so a high dielectric constant is required. It is difficult to stably control the temperature coefficient (τf) of the resonant frequency to a small value while maintaining a low dielectric loss. In addition, in the Re0-BaO-TlO2 system, the dielectric constant is grm4
Very high resonant frequency temperature coefficient τf − of 0 to 60
00 is also possible, but the dielectric loss is tana>s, ox
t. It's big. Furthermore, in the (BaSr)(ZrTl)05 system, the dielectric loss is as small as -δ<2.0OX10.
A crystal with a temperature coefficient of resonant frequency of 0 can be obtained, but the dielectric constant is very small at εr=29 to 85. (In addition, the above dielectric loss (-δ) was determined by the semi-coaxial resonator method.
Measured at 0MH2. ). In this way, any of the above-mentioned materials can meet the above-mentioned B requirements for high-frequency dielectric materials.
Both fiI properties are not fully satisfied. In particular, even in the case of high frequencies, when the frequency is relatively low, on the order of IGHz, the wavelength becomes long, so a high dielectric constant is required for miniaturization. The above Re0
-In BaO-TiO2-based or BaO-TiO2-based materials, although it is possible to increase the dielectric constant, it is difficult to control the temperature dependence of the permittivity, the temperature dependence of the resonant frequency is unstable, and the dielectric loss increased, and it was not possible to obtain a dielectric material with sufficiently satisfactory characteristics as a high-frequency dielectric material. (Means for Solving the Problems) The inventors of the present invention were concerned with the above-mentioned current situation and as a result of intensive research, found that barium oxide (BaO), fluorine oxide (La20a), yttrium oxide (YgOa) and niobium oxide (Nb205)
) with a composition l! A ceramic composition having an expanded Ba crystal structure is required as the high frequency dielectric material.
According to the present invention, the dielectric constant is relatively high and the dielectric loss is maintained low, and the temperature dependence of the dielectric constant is small and stable. Therefore, it is possible to obtain a dielectric ceramic composition for high frequencies in which the temperature dependence of the resonant frequency of the dielectric resonator using the ceramic composition according to the present invention is small and stable. (Function) Compositional formula B" ( LaX-X a Y'A eNbX
, )03 [however, 0≦x<1] The crystal structure of the porcelain composition is perovskite-type groove filling, and its dielectric *
a fully satisfies the above-mentioned 8I4ij properties required for high frequency electrically shielding materials. That is, (1) the dielectric constant (sr) is approximately 8
Relatively high at 6-42, 12) Es dielectric loss tan δ)
(3) By changing the value of X in the composition formula, the temperature coefficient rf (ppm/"C) of the resonance frequency can be set to 5~+
However, if the composition ratio of B10., La20B, YgOa and Nb2o5° is the compositional formula Ba(LaX-3, Yy
,-,Nb,q)0. .

【O≦xく1】から逸脱すると、そのペロプスカイト型
の結晶構造はくずれ単−相でなくなシ同時に上記に述べ
たような優れたnv1特性が劣化する。 なお、後掲の実験例よシx=1の場合は共振周波数の温
度変化係数が+側に144.4 (ppm/’O)と大
きく実用的でないことが判明している。 (実施例) 高純度の炭酸バリウム(Ba C03) = e化フン
タ’CLaxOs>、R化イツトリウム(YgOa)及
び酸化ニオブ(Nb20s)を用いXが第1表の組成側
に示す割合となるように秤量し、めのう玉石を用いて一
昼夜湿式混合した。この混合物を乾燥したのち、180
0℃で2時間仮焼を行い、さらに約1重量%のバインダ
ーを加えてから整粒し、得られた粉末を約s 00Wo
y:の圧力で成形し、それを1400℃〜1700℃の
範囲の温度で2時間空気中において焼成した。 得られた試料については半回軸共振器を用い500〜6
00MtLzにおいて誘電率、誘電損失。 および共振周波数の温度係数を測定した。これらの結果
を第1表に示す。 (以下余白) 試料点1〜8″tでは本発明の組成式、Ba(La7.
−%  、Y3  、NbyL)08  で表わされる
組成であシ、かつXが0≦x(1の範囲で共ヌ周波数の
温度係数τf(ppm/”C)を制御した本発明の範囲
内のものである。一方試料に9はX=1と本発明の範囲
を少許逸脱した実験例を示す。 これら各試料薫1〜8は何れもalKl; (εr)が
86.8〜41.6と比較的高く、誘電損失(tanδ
)は1.89〜409X10  と非常に小さく、さら
に組成式のXの値を変化させる事により共振周波数の温
度変化係数(τf)を−89,5〜i o o pp昨
ちまで容易に制御できることが理解される。尚、組成式
のXの値が1の場合は試料点9の如く温度変化係数が+
144.4 ppm/’Cと大きくなりすぎ実用的でな
い。 (発明の効果) 上記の如く本発明によれば一般式Ba (La )G−
’/2Y%  、Nb、t;  )08[但し0≦xく
1]で表わされる組成からな)且つペロプスカイト型結
晶構造を持ったものが高周波用誘電体磁器として要求さ
れる。(1)誘電率が比較的高く、(2)誘電損失が小
さく、(3)共振周波数の温度依存性の制御が容易であ
るという8特性を全て満足した誘電体磁器組成物が得ら
れることが判明した。
If it deviates from [O≦x×1], the perovskite crystal structure collapses and ceases to be a single phase, and at the same time, the excellent nv1 characteristics described above deteriorate. In addition, as shown in the experimental example described later, when x=1, the temperature change coefficient of the resonance frequency is as large as 144.4 (ppm/'O) on the positive side, which is found to be impractical. (Example) Using high-purity barium carbonate (Ba C03) = Junta'CLaxOs>, yttrium Ride (YgOa), and niobium oxide (Nb20s), X was adjusted to the proportion shown in the composition side of Table 1. The mixture was weighed and wet-mixed using an agate cobblestone overnight. After drying this mixture, 180
Calcining was performed at 0°C for 2 hours, and after adding approximately 1% by weight of binder, the resulting powder was sized to approximately s 00Wo
y: and then baked in air at a temperature in the range of 1400°C to 1700°C for 2 hours. For the obtained sample, 500~6
Dielectric constant and dielectric loss at 00MtLz. and the temperature coefficient of resonance frequency were measured. These results are shown in Table 1. (Left below) At sample points 1 to 8''t, the composition formula of the present invention is Ba (La7.
-%, Y3, NbyL)08, and within the scope of the present invention, in which the temperature coefficient τf (ppm/"C) of the resonance frequency is controlled within the range of 0≦x(1) On the other hand, sample 9 shows an experimental example in which X=1, which slightly deviates from the range of the present invention.These samples 1 to 8 all have alKl; (εr) of 86.8 to 41.6. dielectric loss (tan δ
) is very small at 1.89 to 409X10, and by changing the value of X in the composition formula, the temperature change coefficient (τf) of the resonance frequency can be easily controlled from -89.5 to io is understood. In addition, when the value of X in the composition formula is 1, the temperature change coefficient is + as in sample point 9.
144.4 ppm/'C, which is too large to be practical. (Effect of the invention) As described above, according to the present invention, the general formula Ba (La )G-
'/2Y%, Nb, t; )08 [however, 0≦x1]) and having a perovskite crystal structure are required as dielectric ceramics for high frequencies. It is possible to obtain a dielectric ceramic composition that satisfies all eight characteristics: (1) relatively high dielectric constant, (2) low dielectric loss, and (3) easy control of temperature dependence of resonance frequency. found.

Claims (1)

【特許請求の範囲】[Claims] 1、組成式Ba(La_(_1_/_2_−_x_/_
2_)、Y_x_/_2、Nb_1_/_2)O_8[
但し0≦x<1]で表わされる組成からなり、且つペロ
ブスカイト型結晶構造を持つた誘電体磁器組成物。
1. Composition formula Ba(La_(_1_/_2_-_x_/_
2_), Y_x_/_2, Nb_1_/_2) O_8[
A dielectric ceramic composition having a composition expressed by 0≦x<1] and having a perovskite crystal structure.
JP59158097A 1984-07-27 1984-07-27 Dielectric ceramic composite Granted JPS6135582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59158097A JPS6135582A (en) 1984-07-27 1984-07-27 Dielectric ceramic composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59158097A JPS6135582A (en) 1984-07-27 1984-07-27 Dielectric ceramic composite

Publications (2)

Publication Number Publication Date
JPS6135582A true JPS6135582A (en) 1986-02-20
JPH0532342B2 JPH0532342B2 (en) 1993-05-14

Family

ID=15664235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59158097A Granted JPS6135582A (en) 1984-07-27 1984-07-27 Dielectric ceramic composite

Country Status (1)

Country Link
JP (1) JPS6135582A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155804A (en) * 1984-08-25 1986-03-20 京セラ株式会社 Dielectric porcelain composition
KR100426219B1 (en) * 2001-05-18 2004-04-06 홍국선 Dielectric Ceramic Compositions and Manufacturing Method of Multilayer components thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145799A (en) * 1974-10-17 1976-04-19 Nippon Electric Co
JPS5328299A (en) * 1976-08-27 1978-03-16 Matsushita Electric Ind Co Ltd Preparing porcelain for dielectric resonator
JPS5360140A (en) * 1976-11-10 1978-05-30 Matsushita Electric Ind Co Ltd Dielectric resonator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145799A (en) * 1974-10-17 1976-04-19 Nippon Electric Co
JPS5328299A (en) * 1976-08-27 1978-03-16 Matsushita Electric Ind Co Ltd Preparing porcelain for dielectric resonator
JPS5360140A (en) * 1976-11-10 1978-05-30 Matsushita Electric Ind Co Ltd Dielectric resonator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155804A (en) * 1984-08-25 1986-03-20 京セラ株式会社 Dielectric porcelain composition
JPH0527202B2 (en) * 1984-08-25 1993-04-20 Kyocera Corp
KR100426219B1 (en) * 2001-05-18 2004-04-06 홍국선 Dielectric Ceramic Compositions and Manufacturing Method of Multilayer components thereof

Also Published As

Publication number Publication date
JPH0532342B2 (en) 1993-05-14

Similar Documents

Publication Publication Date Title
JPS61128411A (en) Dielectric ceramic composition
KR100203515B1 (en) Dielectric ceramic composition for high frequency
US4487842A (en) Low-loss microwave dielectric material
JPH0527202B2 (en)
JPS6135582A (en) Dielectric ceramic composite
JPH067441B2 (en) Dielectric porcelain composition
JPH0524914A (en) Microwave dielectric porcelain composition
JPH01140505A (en) Dielectric porcelain composition
JPH06333426A (en) Dielectric ceramic composition for high frequency
JPH06338221A (en) Dielectric ceramic composition for high frequency
JP2759283B2 (en) Dielectric porcelain composition
JP2000203934A (en) Dielectric porcelain composition for high frequency and dielectric resonator
JP2821705B2 (en) Microwave dielectric porcelain composition
JP2691302B2 (en) Dielectric porcelain composition
JP2881427B2 (en) Dielectric porcelain composition
US5998323A (en) High frequency dielectric material
JPH04362061A (en) Microwave dielectric ceramic composition
JPH04331760A (en) Dielectric ceramic composition
JPH06103602B2 (en) Dielectric porcelain composition for microwave
JPH07112951B2 (en) High frequency dielectric ceramic composition
JPH0524904A (en) Dielectric porcelain composition for high frequency
JPH054942B2 (en)
JPS6256099B2 (en)
JPH06103813A (en) High frequency dielectric ceramic composition
JPH04274109A (en) Dielectric porcelain composition for microwave