JPS6134452A - Ricochet flow type psychrometer - Google Patents

Ricochet flow type psychrometer

Info

Publication number
JPS6134452A
JPS6134452A JP8663785A JP8663785A JPS6134452A JP S6134452 A JPS6134452 A JP S6134452A JP 8663785 A JP8663785 A JP 8663785A JP 8663785 A JP8663785 A JP 8663785A JP S6134452 A JPS6134452 A JP S6134452A
Authority
JP
Japan
Prior art keywords
liquid
wet
psychrometric
bulb
hygrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8663785A
Other languages
Japanese (ja)
Other versions
JPH0519942B2 (en
Inventor
イリ、プリヒタ
ペーター、ミヒラー
ギユンター、クアス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kombinat Textima VEB
Original Assignee
Kombinat Textima VEB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kombinat Textima VEB filed Critical Kombinat Textima VEB
Publication of JPS6134452A publication Critical patent/JPS6134452A/en
Publication of JPH0519942B2 publication Critical patent/JPH0519942B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • G01N25/62Investigating or analyzing materials by the use of thermal means by investigating moisture content by psychrometric means, e.g. wet-and-dry bulb thermometers
    • G01N25/64Investigating or analyzing materials by the use of thermal means by investigating moisture content by psychrometric means, e.g. wet-and-dry bulb thermometers using electric temperature-responsive elements

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、汚染された高温ないし熱いガスにお −ける
蒸気含有量を連続的に検出、監視、制御および調整する
ための自動的に作動する跳ね返り流形乾湿球湿度計に関
する。この乾湿球湿度計は特に、繊維、木材およ0食品
工業、プロセス工業およびエネルギー消費プラントにお
ける使用に適している。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention provides an automatically operated system for continuously detecting, monitoring, controlling and regulating the vapor content of contaminated hot to hot gases. This article relates to a rebound flow type psychrometric and wet bulb hygrometer. This psychrometric hygrometer is particularly suitable for use in the textile, wood and food industries, process industries and energy-consuming plants.

〔従来技術の問題点〕[Problems with conventional technology]

エネルギー消費プラントにお(プるガス温度の連続的な
測定は、高温、一部は高い湿度並びに汚れによって困難
にされている。従ってガス湿度測定技術の周知の作動原
理のうちで、水蒸気−ガス(空気)混合体における塩化
リチウム露点削、流動発振器(Huidikoszil
lator )あるいは自己洗浄式の乾湿球湿度計しか
使用できない。塩化リチウム露点計は、汚染された場所
がガラス繊維カバーの不均一な吸い込み作用および水酸
化リチウム並びに炭酸リチウムの形成を生ずるので、連
続運転において不正確であることが分かつている。
Continuous measurement of gas temperatures in energy-consuming plants is made difficult by high temperatures, partly by high humidity as well as by dirt.Therefore, among the well-known working principles of gas humidity measuring technology, water vapor-gas Lithium chloride dew point sharpening in (air) mixtures, flow oscillators (Huidikoszil
(lator) or a self-cleaning wet and dry bulb psychrometer. Lithium chloride dew point meters have been found to be inaccurate in continuous operation because contaminated areas cause uneven suction of the glass fiber cover and formation of lithium hydroxide and lithium carbonate.

流動発振器(例えば He1lialand  繊維報
告書1974/3.第291〜294頁参照)は、同様
に汚れに敏感であり、測定精度が温度変化によって著し
く害される。
Flow oscillators (see, for example, Helialand Textile Report 1974/3, pages 291-294) are likewise sensitive to dirt and the measurement accuracy is significantly impaired by temperature changes.

軟球温痕センザーおよびその蒸気が測定ガス内に含まれ
ている液体で湿される温度センサーを使用する古典的な
乾湿球湿度計の原理も利用できない。湿球温度センサー
は多孔質の材料で包囲され、この材料は液体で一度(測
定前に)だけ湿らされるか、あるいは連続的に湿らされ
、その場合最近において測定ガスに含まれている蒸気の
凝縮液も使用されている(例えばヨーロッパ特許出願公
開第14809号公報参照)。多孔質物質におGプる毛
管作用あるいは液体を運びセンサーに接するテープのい
ずれかによる湿球温度センサーへの液体の供給は、温度
が高くそれによって蒸発率が高い場合、および汚染され
た測定ガスの場合、十分でないことが分かつている。こ
の理由から湿球温僚センサーを周期的に液槽に漬けるこ
とが提案されでいるが、これは勿論連続的な測定に使用
できない(フランス特許第7705941号明細書参照
)。
The principle of a classical psychrometric hygrometer using a soft-bulb temperature trace sensor and its vapor moistened with a liquid contained in the measuring gas is also not available. Wet-bulb temperature sensors are surrounded by a porous material that is moistened with a liquid only once (prior to measurement) or continuously, in which case it has recently been moistened with vapor contained in the measuring gas. Condensate liquids have also been used (see, for example, European Patent Application No. 14809). The supply of liquid to the wet bulb temperature sensor, either by capillary action in a porous material or by a tape carrying the liquid and in contact with the sensor, is difficult to achieve when the temperature is high and therefore the evaporation rate is high, and when the measured gas is contaminated. It turns out that this is not enough. For this reason, it has been proposed to periodically immerse the wet-bulb temperature sensor in a liquid bath, but this, of course, cannot be used for continuous measurements (see French Patent No. 7,705,941).

古典的な乾湿球湿![1の変形例として、湿球温度セン
サーがその蒸気が測定ガスに含まれている液体の中に位
置しているような測定装置がある。
Classic wet-dry bulb wet! [A variant of 1 is a measuring device in which the wet bulb temperature sensor is located in a liquid whose vapor is contained in the measuring gas.

測定ガスと液体との間の激しい熱および物質の伝 ′ 
  [達において、液体の温度は古典的な乾湿球湿度甜
の湿球温度センサーの温度に近い。
Intense heat and material transfer between the measured gas and the liquid
[In these, the temperature of the liquid is close to the temperature of the classical wet-bulb temperature sensor of the wet-psychrometric humidity sensor.

熱および物質の伝達が気泡柱において行われる場合(例
えば米国特許第2302528号明細書あるいはPCT
特許WO82102771号参照)、測定装置は過度に
大きな涯れ、過度に早い液体の汚染およびそれに伴う高
価な監視費用を有している。これと同じことは、流動床
あるいは測定ガスへの液体の飛散装置を持った装置に対
しても言える(研究論文2145 J、Res、Nat
l、Bur、5tandt、 48 (1952年)あ
るいはドイツ連邦共和国特許第502589号明細書参
照)、、熱および物質の伝達が測定ガスで洗流される液
体表面において行われる場合、測定装置の周囲によって
僅かにほとんど遅れずに影響される湿球温度表示のため
に、伝達過程の強さが非常に高くなければならない。平
らな殻体の中にある液体が例えばドイツ連邦共和国特許
第1227692号明細書の場合のようにその表面に沿
って洗流される場合、この条件は満たされない。しかし
液体表面に測定ガスの跳ね返り流が供給される場合は違
う。
When heat and mass transfer takes place in a bubble column (e.g. US Pat. No. 2,302,528 or PCT
(see patent WO 82102771), the measuring device has excessive wear and tear, excessively rapid liquid contamination and associated high monitoring costs. The same can be said for devices with fluidized beds or devices for splashing liquid onto the sample gas (Research paper 2145 J, Res, Nat.
If the heat and mass transfer takes place at the liquid surface which is flushed with the measuring gas, the surroundings of the measuring device may be slightly In order for the wet-bulb temperature reading to be influenced by the temperature with little delay, the strength of the transmission process must be very high. This condition is not met if the liquid inside the flat shell is washed along its surface, as is the case for example in DE 12 27 692. However, this is not the case when the liquid surface is supplied with a rebound flow of measuring gas.

ドイツ民主共和国特許出願公開第128952号公報に
おいて跳ね返り流の異なった使用例が記載されている。
Different examples of the use of rebound flows are described in DE 128 952 A1.

熱絶縁された容器の底に、多孔質材料から成り跳ね返り
流が供給される液体を収容するリングが設けられている
。測定ガスは容器蓋にあるノズルから旋回無しに流れ出
て、液体表面を半径方向に導かれ、容器底の上側におい
て容器から接線方向に流れ出る。液体は小ざな圧力でセ
ラミックリングの回りに設()られた毛管を通って供給
される。液体供給量は蒸発量J:り多く決められている
ので、余分な液体は液槽の汚れを搬出する。乾球温度セ
ンサーはノズル開口と液体表面どの間に位置し、湿球温
度センサーは液体表面の下側に深く位置している。
At the bottom of the thermally insulated container there is a ring made of porous material and containing a liquid that is supplied with a rebound flow. The measuring gas flows out of the nozzle in the container lid without swirling, is guided radially across the liquid surface, and flows out of the container tangentially above the container bottom. Liquid is fed under small pressure through a capillary tube placed around the ceramic ring. Since the amount of liquid supplied is determined to be greater than the amount of evaporation J: excess liquid carries away dirt from the liquid tank. The dry bulb temperature sensor is located between the nozzle opening and the liquid surface, and the wet bulb temperature sensor is located deep below the liquid surface.

この単純な測定装置は大きな欠点を有している。This simple measuring device has major drawbacks.

測定ガス流は液体表面の上における転向後に容器壁によ
って半径方向に導かれない。それによって容器内におい
て再循環および混合が生じ、これは測定装置の表示の遅
れを高める結果と<rる。多孔質リングの外側壁および
供給毛管の測定ガスの供給は横への測定ガスの排出に関
して最少であるので、多孔質リングの外側壁および供給
毛管内にある液体の熱絶縁ないし加熱が十分ではない。
After deflection over the liquid surface, the measuring gas flow is not guided radially by the vessel wall. This results in recirculation and mixing within the container, which has the effect of increasing the display delay of the measuring device. Since the supply of measuring gas in the outer wall of the porous ring and in the supply capillary is minimal with respect to the lateral discharge of the measuring gas, there is insufficient thermal insulation or heating of the liquid present in the outer wall of the porous ring and in the supply capillary. .

液体の供給が液体を自己洗浄するために測定ガスの汚染
度に合わされるので、同じ測定ガスの状態において汚れ
に相応した種々の湿球温度が生ずる。液体表面がひどく
汚れている場合、勿論新鮮な液体の強い供給は十分にで
きない。
Since the liquid supply is adapted to the degree of contamination of the measuring gas in order to self-clean the liquid, different wet bulb temperatures corresponding to the contamination occur under the same measuring gas conditions. Of course, if the liquid surface is very dirty, a strong supply of fresh liquid will not be sufficient.

液体表面は不規則な波状特性を有している。従って湿球
温度センサーは時間的に平均的な液体表面からかなり大
きな距離に位置させねばならず、これは液体表面とセン
サーの位置との間に大きな温度差を生じてしまう。
The liquid surface has irregular wavy characteristics. The wet bulb temperature sensor must therefore be located at a fairly large distance from the temporally averaged liquid surface, which results in large temperature differences between the liquid surface and the location of the sensor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、汚染された高温から熱いガスの蒸気含
有量を連続的に正確に測定することにある。また従来の
装置の欠点を除去し、最小の監視費用を必要とするだけ
とし、小ざな時定数を有し、それによって連続的な測定
、監視に適し、蒸気含有量の制御あるいは調整に対づ゛
る発信器として適用できる測定装置を得ようとするもの
である。更にエネルギー消費プラントにおけるプロセス
の分析を行い、追加装置として従来周知の装置はできな
いような経済的な運転が行えるような測定装置を得よう
とするものである。
The purpose of the invention is to continuously and accurately measure the vapor content of contaminated hot to hot gases. It also eliminates the disadvantages of conventional devices, requires minimal monitoring costs, has a small time constant, and is therefore suitable for continuous measurement, monitoring, and for controlling or adjusting the steam content. The aim is to obtain a measuring device that can be used as a transmitter. Furthermore, the aim is to analyze processes in energy-consuming plants and, as an additional device, to obtain a measuring device which can be operated economically in a way that is not possible with previously known devices.

本発明の課題は、例えば繊維あるいは木材工業における
乾燥器、食品工業におけるパン焼きがま、プロセスプラ
ントのような工業的なエネルギー消費プラントにおいて
、汚染された高温から熱いガスの蒸気含有量を、経済的
な運転および場合によって熱回収のために測定、監視、
制御あるいは調整することにある。また塩化リチウム露
点計、流体発振器、古典的な乾湿球湿度計あるいは気泡
柱、流動床あるいは飛散装置付きの改善された乾湿球湿
度計、あるいは古典的な乾湿球湿度計における湿球温度
センサーが十分に湿らされない冒頭に述べた跳ね返り流
形乾湿球湿度計においで、ガスによって運ばれる汚れの
感度が気泡柱、流動床あるいは飛散装置あるいは長手方
向に洗流される液体を持った改善された乾湿球湿度計な
いし冒頭に述べた跳ね返り流形乾湿球湿度計の表示の遅
れ、並びに液体の周囲および供給による相互作用ににつ
で条件づけられる上述した両方の形式の不正確を生ずる
という欠点を除去することにある。
The object of the invention is to economically reduce the steam content of contaminated, high-temperature gases in industrial energy-consuming plants, such as dryers in the textile or wood industry, bread ovens in the food industry, process plants, etc. measurement, monitoring,
It consists in controlling or adjusting. Also, a lithium chloride dew point meter, a fluid oscillator, a classic psychrometric hygrometer or an improved psychrometric hygrometer with a bubble column, a fluidized bed or a scattering device, or a wet bulb temperature sensor in a classic psychrometric hygrometer are sufficient. In the rebound flow type wet-bulb hygrometers mentioned at the outset, the sensitivity of gas-borne dirt is improved by means of bubble columns, fluidized beds or splatter devices, or with liquid flushed longitudinally. To eliminate the drawbacks of the above-mentioned rebound flow type psychrometric psychrometric hygrometers, which have a delay in display and both types of inaccuracy, which are conditioned on the interaction of the liquid with the surroundings and the supply. It is in.

〔発明の要点および効果〕[Gist and effects of the invention]

本発明によれば、この課題は、熱絶縁された非常に低い
容器から成り、その蓋にあるノズルに旋回発生器が前置
接続され、乾球温度ヒレ1ノー−がノズルの開口の近く
に設【プられ、その容器の底に隔壁によって湿球温度セ
ンサーを持った測定室とその回りに位1する供給室とに
同心的に分離されtから突き出していない平らな液槽が
掛けられ、この液槽の回りに測定ガスおよび、液体を排
出する環′:状の流路が設()られている跳ね返り流形
乾湿球湿度計、および乾球および湿球温度によって自動
的に間欠的、に配量制御される圧力−供給装置によっ、
′て達成される。
According to the invention, this task consists of a thermally insulated very low vessel, in the lid of which a nozzle is pre-connected with a swirl generator, the dry-bulb temperature fin being close to the opening of the nozzle. A measuring chamber with a wet bulb temperature sensor is concentrically separated from a measuring chamber having a wet bulb temperature sensor and a supply chamber positioned around it by a partition wall, and a flat liquid tank that does not protrude from the t is hung at the bottom of the container. A rebound flow type psychrometric/wet-bulb hygrometer is equipped with a ring-shaped flow path around the liquid tank for discharging the measurement gas and liquid, and automatically and intermittently depending on the dry-bulb and wet-bulb temperatures. By means of a pressure supply device which is metered to
’ is achieved.

場合によっては、調整加熱によって一定温度に保持され
ている測定ガス流は、旋回発生器で回転され、ノズルか
ら旋回する跳ね返り流の形で上から垂直に同様に回転し
ている液槽内の液体に供給される。測定ガスは液体表面
における転向後に、容器蓋および容器胴体の壁で案内さ
れ、容器底にある液槽の回りに設けられた流路を通って
外壁にあるいは測定対象物に戻される。それによって跳
ね返り流の乾湿球湿度計の内部にお1プる再循環は防止
される、乾球温度セン9−はノズル開口において新鮮な
測定ガス流だけが供給され、湿球温度センサーは液槽の
測定室の中において回転によっt安定された液体表面の
直ぐ近くに位置している。
In some cases, the measuring gas stream, which is kept at a constant temperature by regulating heating, is rotated in a swirl generator and the liquid in the liquid bath is rotated vertically from above in the form of a rebound flow that swirls out of the nozzle. supplied to After deflection at the liquid surface, the measuring gas is guided by the container lid and the wall of the container body and is returned to the outer wall or to the object to be measured through a channel provided around the liquid reservoir in the bottom of the container. Recirculation of the rebound flow into the interior of the wet-bulb hygrometer is thereby prevented; the dry-bulb temperature sensor 9- is supplied with only a fresh flow of measuring gas at the nozzle opening, and the wet-bulb temperature sensor is supplied with only a fresh flow of measuring gas at the nozzle opening. in the immediate vicinity of the rotationally stabilized liquid surface in the measuring chamber.

液体供給は加圧した状態で貯蔵槽から間欠的に自動的に
配量され、乾球および湿球温度によって制御されて、蒸
発量の数倍に相応して接線方向に液槽の液体回転方向に
液槽の外側室に供給され、一方液体流は周期的に液槽に
遠心力によって集まる汚れを容器底にあるガス排出用の
環状流路に向番ノで搬送し、そこから余分な汚染された
液体が測定ガス流によって運び出され、液槽の測定室に
おける蒸発量の補給は僅かに透過する液槽隔壁を介して
行われる。それによって液体供給量の測定は湿球温度に
影響を与えず、液体の浄化は非常に強められる。測定ガ
スの汚染変に相応して調整できる蒸発@にり幾分多い液
体の供給制御は、測定ガスの種々の蒸気含有量において
供給液体の合理的な消費を生ずる。
The liquid supply is automatically metered intermittently from the storage tank under pressure and is controlled by the dry-bulb and wet-bulb temperatures to tangentially adjust the direction of liquid rotation in the tank, corresponding to several times the evaporation rate. The liquid stream is then periodically fed into the outer chamber of the liquid tank, while the liquid flow periodically transports the dirt that collects in the liquid tank by centrifugal force into the annular channel for gas exhaust at the bottom of the tank, from where it collects any excess contaminants. The evaporated liquid is carried away by the measuring gas flow, and the evaporated amount in the measuring chamber of the liquid tank is replenished via the slightly permeable liquid tank partition. As a result, the liquid supply measurement does not affect the wet bulb temperature and the liquid purification is greatly enhanced. The supply control of the liquid to be evaporated to a higher or higher degree, which can be adjusted accordingly to the contamination variations of the measuring gas, results in a reasonable consumption of the supply liquid at different vapor contents of the measuring gas.

〔実 施 例〕〔Example〕

以下図面に示す本発明の実施例について説明する。 Embodiments of the present invention shown in the drawings will be described below.

測定ガス流は供給配管1を介して旋回発生器2およびそ
の後ノズル3に送られる。このノズル3の開口には乾球
温度測定センサー4が設けられている。測定ガスは旋回
する跳ね返り流の形で液槽〇の中にある液体5に供給さ
゛れる。測定ガスの中にはその液体の蒸気が含まれてい
る。測定ガスは容器蓋7および胴体8によって案内され
て容器10にある環状流餉9を通って外方に、あるい番
、1測定対象物に戻る。液槽6′は僅かに透過づ゛る隔
壁9によって同心的な2つの室、即ら湿球温度セン”J
−”12を持った測定室と外側に位置し液体供給配管1
3および転向要素14を持った供給室とに分けられてい
る。その転向要素14は供給される液体流を液体5の回
転方向に案内する。跳ね返り流め案内、回転によって安
定される液体表面の近くに位置している湿球温度センサ
ー12、容器底10のお番プるiに掛けられているだ番
プの液槽6および容器絶縁体15.16は、遅れの少な
い正確な測定表示を保証する。
The measuring gas stream is sent via a supply line 1 to a swirl generator 2 and subsequently to a nozzle 3 . A dry bulb temperature measurement sensor 4 is provided at the opening of this nozzle 3. The measuring gas is fed in the form of a swirling rebound flow to the liquid 5 located in the liquid tank 0. The measurement gas contains vapor of the liquid. The measuring gas is guided by the container lid 7 and the body 8 through an annular flow valve 9 in the container 10 to the outside and back to the measuring object. The liquid tank 6' is divided into two concentric chambers by a slightly permeable partition 9, namely a wet bulb temperature sensor "J".
- Measuring chamber with “12” and liquid supply pipe 1 located outside
3 and a supply chamber with a deflection element 14. Its deflection element 14 guides the supplied liquid stream in the direction of rotation of the liquid 5. A wet-bulb temperature sensor 12 located close to the liquid surface stabilized by a rebound flow guide, a rotationally stabilized liquid tank 6 and a container insulator hung on the bottom of the container bottom 10. 15.16 ensures accurate measurement display with little delay.

【図面の簡単な説明】 図面は本発明に基づく跳ね返り流形乾湿球湿麿計の断面
図である。 1・・・測定ガス供給配管、2・・・旋回発生器、3・
・・ノズル、4・・・乾球温度センサー、5・・・液体
、6・・・液槽、7・・・容器蓋、8・・・胴体、9・
・・環状流路、10・・・容器底、11・・・隔壁、1
2・・・湿球温度センサー、13・・・液体供給配管、
14・・・転向要素、15.16・・・容器絶縁体。
BRIEF DESCRIPTION OF THE DRAWINGS The drawing is a sectional view of a rebound flow type wet and dry bulb psychrometric meter according to the present invention. 1...Measurement gas supply piping, 2...Swirl generator, 3.
... Nozzle, 4... Dry bulb temperature sensor, 5... Liquid, 6... Liquid tank, 7... Container lid, 8... Body, 9...
... Annular channel, 10 ... Container bottom, 11 ... Partition wall, 1
2...Wet bulb temperature sensor, 13...Liquid supply piping,
14... Turning element, 15.16... Container insulator.

Claims (1)

【特許請求の範囲】 1、液体自由表面に対して垂直に配置されているノズル
を介して測定ガスを供給するような感温検出器を使用し
て汚染されてた高温の蒸気−ガス混合体を連続測定する
ための跳ね返り流形乾湿球湿度計において、乾湿球湿度
計の蓋(7)にあるノズル(3)に旋回発生器(2)が
前置接続され、軟球温度センサー(4)がノズル開口に
おける測定ガス流の中に位置し、乾湿球湿度計容器の底
(10)に掛けられ透過する隔壁(9)によって同心的
な室に分割された平らな槽(6)が液槽され、この液槽
(6)の内側室に湿球温度センサー(12)が設けられ
、液槽(6)の外側室に液体供給配管(13)が転向要
素(14)で接線方向に開口し、跳ね返り流を案内する
ために蓋(7)のノズル縁取り部および容器胴体(8)
が設けられ、測定ガスおよび液体を排出するために容器
底(10)における液槽(6)の回りに流路(9)が設
けられていることを特徴とする汚染された高温の蒸気−
ガス混合体を連続測定するための跳ね返り流形乾湿球湿
度計。 2、液体を供給するために、乾球および湿球温度によっ
て自動的に間欠的には配量制御される圧力−供給装置が
設けられていることを特徴とする特許請求の範囲第1項
に記載の跳ね返り流形乾湿球湿度計。
[Claims] 1. A hot vapor-gas mixture that has been contaminated using a temperature-sensitive detector that supplies the measuring gas through a nozzle that is arranged perpendicular to the free surface of the liquid. In a rebound flow type psychrometric hygrometer for continuous measurement, a swirl generator (2) is connected in advance to the nozzle (3) in the lid (7) of the psychrometric hygrometer, and a soft bulb temperature sensor (4) A flat tank (6) is located in the flow of the measuring gas at the nozzle opening and is divided into concentric chambers by a transparent partition wall (9) that hangs over the bottom (10) of the psychrometric hygrometer container. , a wet bulb temperature sensor (12) is provided in the inner chamber of this liquid tank (6), a liquid supply pipe (13) opens tangentially at the deflection element (14) in the outer chamber of the liquid tank (6), The nozzle rim of the lid (7) and the container body (8) to guide the rebound flow.
Contaminated hot steam, characterized in that a flow path (9) is provided around the liquid reservoir (6) in the vessel bottom (10) for discharging the measuring gas and liquid.
Bounce-flow wet-bulb psychrometer for continuous measurement of gas mixtures. 2. In order to supply the liquid, a pressure supply device is provided which is automatically and intermittently metered according to the dry bulb and wet bulb temperatures. The rebound flow type psychrometric wet bulb hygrometer described.
JP8663785A 1984-04-24 1985-04-24 Ricochet flow type psychrometer Granted JPS6134452A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DD84262254A DD232762B1 (en) 1984-04-24 1984-04-24 RADIUSPSYCHROMETERS FOR CONTINUOUS MEASUREMENT IN POLLUTED, WARM STEAM GAS MIXTURES
DD1N/262254-4 1984-04-24

Publications (2)

Publication Number Publication Date
JPS6134452A true JPS6134452A (en) 1986-02-18
JPH0519942B2 JPH0519942B2 (en) 1993-03-18

Family

ID=5556406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8663785A Granted JPS6134452A (en) 1984-04-24 1985-04-24 Ricochet flow type psychrometer

Country Status (7)

Country Link
JP (1) JPS6134452A (en)
CH (1) CH669264A5 (en)
DD (1) DD232762B1 (en)
DE (1) DE3512549A1 (en)
FR (1) FR2563341B1 (en)
GB (1) GB2157834B (en)
IT (1) IT1182027B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3737260C1 (en) * 1987-11-03 1989-03-16 Ultrakust Electronic Gmbh Psychrometer
DE29600803U1 (en) * 1996-01-18 1996-05-09 Negele Industrieelektronik GmbH, 87743 Egg Continuous humidification device for wet bulb temperature sensors in psychrometric moisture meters using a cannula or other hollow body
IT1399944B1 (en) * 2010-05-11 2013-05-09 Giorik Spa COOKING OVEN WITH STEAM CONVENTION EQUIPPED WITH A HUMIDITY DETECTION AND ADJUSTMENT SYSTEM

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223385A (en) * 1975-08-18 1977-02-22 Shisaka Kenkyusho:Kk Bimetal psychrometer
JPS5834349A (en) * 1981-08-26 1983-02-28 Yamatake Honeywell Co Ltd Wet and dry bulb temperature detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1227692B (en) * 1960-03-25 1966-10-27 Regulator A G Measuring device for evaporation temperature
DD128952B1 (en) * 1976-11-01 1980-02-27 Wolfgang Bischof MEASURING DEVICE FOR DETERMINING THE MOISTURE CONTENT OF GASES

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223385A (en) * 1975-08-18 1977-02-22 Shisaka Kenkyusho:Kk Bimetal psychrometer
JPS5834349A (en) * 1981-08-26 1983-02-28 Yamatake Honeywell Co Ltd Wet and dry bulb temperature detector

Also Published As

Publication number Publication date
GB2157834B (en) 1988-02-17
DD232762A1 (en) 1986-02-05
GB8510300D0 (en) 1985-05-30
IT1182027B (en) 1987-09-30
IT8547974A0 (en) 1985-04-18
FR2563341B1 (en) 1988-11-10
CH669264A5 (en) 1989-02-28
DD232762B1 (en) 1990-07-18
DE3512549A1 (en) 1985-10-24
GB2157834A (en) 1985-10-30
FR2563341A1 (en) 1985-10-25
IT8547974A1 (en) 1986-10-18
JPH0519942B2 (en) 1993-03-18

Similar Documents

Publication Publication Date Title
Charlesworth et al. Evaporation from drops containing dissolved solids
US3603135A (en) Apparatus for continuous measuring of the moisture content in a high temperature chamber at atmospheric pressure
US5456025A (en) Apparatus for determining the humidity of exhaust air exiting a yankee dryer hood
US4461167A (en) Psychrometer for measuring the humidity of a gas flow
US4518566A (en) Device for determining the concentration of an absorbable component in a gaseous mixture
JPS6134452A (en) Ricochet flow type psychrometer
US4559823A (en) Device and method for measuring the energy content of hot and humid air streams
US1942934A (en) Hygrometer
US2953441A (en) Apparatus for sulfur dioxide determination
US3459034A (en) Apparatus for measuring the moisture content of a gaseous substance in a high temperature chamber
US3495458A (en) Continuous sampling gas testing apparatus for use in dusty atmospheres
FI83269C (en) Method and apparatus for measuring the dew point of gases
SU1083101A1 (en) Psychrometer
Heertjes et al. Temperature and humidity measurements in a drying fluidized bed
US5581015A (en) Devices and methods for measuring temperature and vapor levels in a gas
KR100273935B1 (en) Equipment for continuously measuring wet-bulb temperature from moving gas stream
US5853246A (en) Wet-bulb thermometer
US4625550A (en) Method and apparatus for the continuous psychrometric measurement of the concentration of a vaporous component in a gas
JP2660926B2 (en) Drying method of powder
US1484129A (en) Hygrometer
US3157049A (en) Device for measuring moisture temperature
US4409834A (en) Evapopsychrometer
SU620843A1 (en) Isothermal calorimeter with continuous heat exchange
JPS57128840A (en) Calibration device of gas partial pressure sensor
SU578551A1 (en) Unit for investigating a heat-mass exchange process in double-phase double component flow