JPS6134174A - Cell for vacuum deposition - Google Patents

Cell for vacuum deposition

Info

Publication number
JPS6134174A
JPS6134174A JP15527184A JP15527184A JPS6134174A JP S6134174 A JPS6134174 A JP S6134174A JP 15527184 A JP15527184 A JP 15527184A JP 15527184 A JP15527184 A JP 15527184A JP S6134174 A JPS6134174 A JP S6134174A
Authority
JP
Japan
Prior art keywords
cell
metallic material
vacuum
gas
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15527184A
Other languages
Japanese (ja)
Inventor
Yuichi Ishikawa
雄一 石川
Nushito Takahashi
主人 高橋
Kenji Otaka
憲二 尾高
Muneo Furuse
宗雄 古瀬
Toshihiko Yoshimura
敏彦 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15527184A priority Critical patent/JPS6134174A/en
Publication of JPS6134174A publication Critical patent/JPS6134174A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the titled cell enabling the growth of a high quality thin film almost free from defects by forming a diffusion and deposition barrier on the surface of a heater made of a metallic material having a high m.p. so as to reduce the release of gases from the surface of the metallic material. CONSTITUTION:A cell for vacuum deposition is composed essentially of a heater made of a metallic material having a high m.p., a heat insulating plate and a crucible, and nitride is formed on the surface of the metallic material. The formed nitride acts as a diffusion and deposition barrier during vacuum deposition and inhibits the release of gases such as H2, C and O2 present in the metallic material, so a vacuum-deposited thin film is prevented from causing defects.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高融点金属材料を用いた真空蒸着用セルに係り
、特に放出ガス量を低減し、高品質な薄膜を生成するの
に好適な真空蒸着用セルに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a vacuum evaporation cell using a high-melting point metal material, and in particular to a vacuum deposition cell suitable for reducing the amount of released gas and producing a high-quality thin film. Regarding a vapor deposition cell.

〔発明の背景〕[Background of the invention]

従来の真空蒸着用セル、例えば分子線エピタキシー用の
クヌードセンセル(Kセル)は高融点金属材料製のヒー
タ、熱遮閉板とセラミックス製のルツボから構成されて
いる。このにセルを超高真空中で蒸着のため、加熱する
と表面に吸着していた水、その他のガスを真空中に放出
する。特に高温(1000−1500℃)では材料内部
に含まれていた水素、炭素、#素に起因するガスを多量
に放出するので、真空容器の真空度を悪くし、成長させ
る薄膜に欠陥を生じさせ易く、薄膜の品質を低下させる
原因となっている。
A conventional vacuum deposition cell, such as a Knudsen cell (K cell) for molecular beam epitaxy, is comprised of a heater made of a high melting point metal material, a heat shield plate, and a ceramic crucible. The cell is placed in an ultra-high vacuum for vapor deposition, so when heated, water and other gases adsorbed on the surface are released into the vacuum. Particularly at high temperatures (1000-1500℃), a large amount of gas caused by hydrogen, carbon, and # elements contained inside the material is released, which deteriorates the degree of vacuum in the vacuum container and causes defects in the thin film being grown. This is a cause of deterioration in the quality of thin films.

〔発明の目的〕[Purpose of the invention]

本発明の目的は高融点金属材料の表面からの放出ガス量
を低減し、欠陥の少ない高品質の簿膜を成長できる真空
蒸着用セルを提供することにある。
An object of the present invention is to provide a vacuum deposition cell that can reduce the amount of gas released from the surface of a high-melting point metal material and grow a high-quality film with few defects.

〔発明の概要〕[Summary of the invention]

高融点金属材料で作製した真空蒸着用セルを真空中で蒸
着のため高温に加熱すると材料表面に吸着していたガス
や材料内部に含まれていた水素。
When a vacuum evaporation cell made of a high-melting point metal material is heated to high temperatures for evaporation in a vacuum, gas adsorbed to the material surface and hydrogen contained inside the material.

水素、酸素などの不純物に起因するガスが放出され、真
空容器内の真空度を悪化し、蒸着薄膜の欠陥生成の原因
となる。そのためきわめて高純度の材料を用いたり、予
め蒸着温度以上の高温に加熱し、材料内部の不純物の拡
散を容易にし除去する予備ベーキングが行なわれる。
Gases caused by impurities such as hydrogen and oxygen are released, worsening the degree of vacuum within the vacuum container and causing defects in the deposited thin film. For this reason, preliminary baking is performed to facilitate the diffusion and removal of impurities within the material by using extremely high-purity materials or by heating the material to a high temperature higher than the deposition temperature in advance.

しかし予備ベーキング終了後の冷却過程で雰囲気中のガ
ス分子を吸着し、これらが蒸着のための加熱中に放出さ
れたり、蒸着用セルを大気に開放する度に多量のガス分
子を吸着し、これらが再び放出され、問題となる。また
高純度の高融点金属は高価であり、入手も容易でない。
However, gas molecules in the atmosphere are adsorbed during the cooling process after preliminary baking, and these gas molecules are released during heating for vapor deposition, and large amounts of gas molecules are adsorbed each time the vapor deposition cell is opened to the atmosphere. is released again and becomes a problem. Further, high-purity high-melting point metals are expensive and not easy to obtain.

さらに予備ベーキングで材料内部の不純物に起因するガ
ス放出を低減させるにはきわめて高温で長時間加熱する
必要があり、あまり実用的でない。例えば市販の最高品
位のクヌードセンセルでは放出ガス量を1桁低減させる
ためには1400℃で約100時間の加熱が必要である
Furthermore, in order to reduce gas release caused by impurities inside the material in preliminary baking, it is necessary to heat the material at an extremely high temperature for a long time, which is not very practical. For example, the highest quality commercially available Knudsen cell requires heating at 1400° C. for about 100 hours in order to reduce the amount of released gas by one order of magnitude.

本発明は高融点金属材料の表面に窒化物を形成させ、内
部不純物の表面への拡散・析出の障壁として、ガス放出
を低減させるものである。
The present invention forms a nitride on the surface of a high-melting point metal material to act as a barrier to diffusion and precipitation of internal impurities on the surface, thereby reducing gas release.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図により説明する6図はタン
タルの放出ガス量を1650℃で測定した結果の一例で
ある。実線1はアセトン脱脂したタンタルの放出ガス量
を表わし、実線2は1350℃、IX 10− ’ T
orrの窒素ガス中で1時間窒化を施したタンタルの放
出ガス量を表わす。図から表面に窒化物を形成した試料
の放出ガス量が1桁近く減少しているのがわかる。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. Figure 6 is an example of the results of measuring the amount of released gas of tantalum at 1650°C. Solid line 1 represents the amount of gas released from acetone-degreased tantalum, and solid line 2 represents the temperature at 1350°C, IX 10-'T
It represents the amount of gas released from tantalum after being nitrided for 1 hour in nitrogen gas at The figure shows that the amount of gas released from the sample with nitride formed on the surface is reduced by nearly an order of magnitude.

表面窒化物は、窒素ガス、水素と窒素の混合ガスやアン
モニアガスを高温に保持し、表面を清浄にした高融点金
属に導入することにより形成される。
Surface nitrides are formed by maintaining nitrogen gas, a mixed gas of hydrogen and nitrogen, or ammonia gas at a high temperature and introducing it into a refractory metal whose surface has been cleaned.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば真空蒸着用セルの構
成材料である高融点金属の表面に形成した窒化物が内部
不純物の表面への拡散・析出の障壁となり、ガス放出を
阻止できるので、蒸着時のセルからの放出ガス量が少な
くなり、欠陥の少ない高品質の薄膜が成長できる効果が
ある。
As explained above, according to the present invention, the nitride formed on the surface of the high melting point metal that is the constituent material of the vacuum evaporation cell acts as a barrier to the diffusion and precipitation of internal impurities to the surface, and can prevent gas release. The amount of gas released from the cell during vapor deposition is reduced, which has the effect of growing a high-quality thin film with fewer defects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は1650℃におけるタンタルの加熱時間と放出ガ
ス量の関係図である。 1 タンタル(アセトン脱脂)、2・・タンタル(IX
IO−’Torrの窒素ガス中で1350°Cで1時間
窒化)。
The drawing is a diagram showing the relationship between the heating time of tantalum at 1650° C. and the amount of released gas. 1 Tantalum (acetone degreased), 2... Tantalum (IX
IO-'Torr of nitrogen gas at 1350 °C for 1 h).

Claims (1)

【特許請求の範囲】 1、高融点金属材料製のヒータ、熱遮閉板とルツボより
成る真空蒸着用セルにおいて、高融点金属材料表面から
の放出ガスを低減させるため高融点金属材料表面に拡散
析出障壁を形成したことを特徴とする真空蒸着用セル。 2、拡散析出障壁として表面に窒化物を形成したことを
特徴とする特許請求の範囲第1項記載の真空蒸着用セル
[Claims] 1. In a vacuum evaporation cell consisting of a heater made of a high melting point metal material, a heat shield plate, and a crucible, in order to reduce gas released from the surface of the high melting point metal material, diffusion is performed on the surface of the high melting point metal material. A vacuum deposition cell characterized by forming a precipitation barrier. 2. The vacuum evaporation cell according to claim 1, characterized in that a nitride is formed on the surface as a diffusion/precipitation barrier.
JP15527184A 1984-07-27 1984-07-27 Cell for vacuum deposition Pending JPS6134174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15527184A JPS6134174A (en) 1984-07-27 1984-07-27 Cell for vacuum deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15527184A JPS6134174A (en) 1984-07-27 1984-07-27 Cell for vacuum deposition

Publications (1)

Publication Number Publication Date
JPS6134174A true JPS6134174A (en) 1986-02-18

Family

ID=15602253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15527184A Pending JPS6134174A (en) 1984-07-27 1984-07-27 Cell for vacuum deposition

Country Status (1)

Country Link
JP (1) JPS6134174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8590232B2 (en) 1999-06-16 2013-11-26 Bonnie Roche Display devices, accessories therefor and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8590232B2 (en) 1999-06-16 2013-11-26 Bonnie Roche Display devices, accessories therefor and methods

Similar Documents

Publication Publication Date Title
JP3898278B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
Kester et al. Deposition and characterization of boron nitride thin films
FR2929959A1 (en) PROCESS FOR THE PREPARATION OF POLYCRYSTALS AND SINGLE CRYSTALS OF ZINC OXIDE (ZNO) ON A GERM BY CHEMICALLY ACTIVE SUBLIMATION AT HIGH TEMPERATURE
JPH07300666A (en) Production of molecular beam source for silicon evaporation and crucible used for the same
JPS61272922A (en) Semiconductor device wafer substrate and manufacture thereof
JPH04292499A (en) Production of silicon carbide single crystal
JPS6134174A (en) Cell for vacuum deposition
JPS62101026A (en) Impurity diffusion source
JPH0688866B2 (en) Boron nitride coated crucible and method of manufacturing the same
JPH04303926A (en) Manufacture of high-purity metal-silicide target for sputtering
JPH0412096A (en) Method for growing 6h-type and 4h-type silicon carbide single crystal
JP2007145679A (en) Apparatus for and method of producing aluminum nitride single crystal
Jiang et al. The deposition and characterization of β-SiC and diamond/β-SiC composite films
Gonzalez‐Hernandez et al. Crystallization temperature of ultrahigh vacuum deposited silicon films
JP3717562B2 (en) Single crystal manufacturing method
JPH0784357B2 (en) Boron nitride coated crucible
JPS6212697A (en) Production of silicon carbide single crystal film
WO2012173520A1 (en) Method for growing an aln monocrystal and device for implementing same
JPS6316464B2 (en)
JPS59162199A (en) Crystal growth using silicon nitride and manufacture of parts therefor
JPS6143413A (en) Formation of compound semiconductor single crystal thin film
JPH08283094A (en) Production of single crystal and device therefor
JP3183939B2 (en) Method for producing zinc oxide single crystal thin film
JP3205666B2 (en) Method for synthesizing CeO2 epitaxial single crystal thin film on Si single crystal substrate
JPH053410B2 (en)