JPS6133180A - Production of epoxy compound - Google Patents

Production of epoxy compound

Info

Publication number
JPS6133180A
JPS6133180A JP59153762A JP15376284A JPS6133180A JP S6133180 A JPS6133180 A JP S6133180A JP 59153762 A JP59153762 A JP 59153762A JP 15376284 A JP15376284 A JP 15376284A JP S6133180 A JPS6133180 A JP S6133180A
Authority
JP
Japan
Prior art keywords
carbonate
compound
alkali metal
dihydrogen phosphate
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59153762A
Other languages
Japanese (ja)
Other versions
JPH0559910B2 (en
Inventor
Toyokazu Yanagii
豊和 楊井
Masaharu Watanabe
正治 渡辺
Kimio Inoue
井上 公夫
Takaaki Murai
孝明 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP59153762A priority Critical patent/JPS6133180A/en
Publication of JPS6133180A publication Critical patent/JPS6133180A/en
Publication of JPH0559910B2 publication Critical patent/JPH0559910B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound in high selectivity and yield, by decarbonating a carbonate compound in the presence of a catalyst consisting of an alkali metal halide and an alkali metal dihydrogen phosphate. CONSTITUTION:The objective compound can be produced by decarbonating a 1,2-diol carbonate compound such as ethylene carbonate, and a 5-membered ring carbonate prepared by the reaction of various 1,2-diols with phosgene, dimethyl carbonate, etc., at 150-250 deg.C in the presence of a catalyst consisting of an alkali metal halide and an alkali metal dihydrogen phosphate (including anhydride and hydrate). The amounts of the halide and the dihydrogen phosphate are 0.01-10pts. and 0.01-20pts. per 100pts. of the carbonate compound, respectively, in a batch process. An epoxy resin especially suitable for the sealing of integrated circuits and for the production of a monofunctional epoxy diluent can be prepared by this process in high yield.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエポキシ化合物のm製造方法に関する。さらに
詳しくはカーボネート化合物の脱炭酸によるエポキシ化
合物の製造方法において収率よくエポキシ化合物を得る
ことができる触媒を用いて製造する方法である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing an epoxy compound. More specifically, it is a method for producing an epoxy compound by decarboxylation of a carbonate compound using a catalyst that can obtain an epoxy compound in good yield.

エポキシ化合物は、成型材、封止材、塗料。Epoxy compounds are used as molding materials, sealants, and paints.

接着剤等の多くの用途に適用できる重要な工業原料であ
る。
It is an important industrial raw material that can be used in many applications such as adhesives.

(従来技術) エポキシ化合物のうち、エポキシ樹脂類の重要な合成方
法の代表的なものはエピハロヒドリンとフェノールとの
反応によるものである。
(Prior Art) Among epoxy compounds, an important representative method for synthesizing epoxy resins is the reaction between epihalohydrin and phenol.

即ち、フェノール類、アミン類等の活性水素化合物をエ
ピハロヒドリンとアルカリ性物質の存在下に反応させて
グリシジルエーテルを得る方法である。  5 しかしながら、このエビハロヒドリン法では、生成物の
樹脂中にエピハロヒドリンに由来するノ・ロゲン原子が
樹脂そのものに化学的に結合した形で混在−することが
避は難い。
That is, it is a method of obtaining glycidyl ether by reacting active hydrogen compounds such as phenols and amines with epihalohydrin in the presence of an alkaline substance. However, in this epihalohydrin method, it is unavoidable that the epihalohydrin-derived nitrogen atoms are mixed in the resin product in the form of chemically bonded to the resin itself.

エポキシ樹脂の用途のうち、特に電子材料分野における
対土用に用いられる場合、この不純物であるハロゲンが
長期間の使用中に湿気等により酸となって遊離し、金属
素材の腐蝕を招く事が判明し、その解決が急務となって
いる。
Among the uses of epoxy resins, especially when used as soil countermeasures in the field of electronic materials, halogen impurities can become liberated as acids due to moisture etc. during long-term use, leading to corrosion of metal materials. It has become clear that there is an urgent need to resolve it.

そこで、カーボネート化合物を脱炭酸によりエポキシ化
合物に変換する方法が本質的にハロゲンを含まないこと
に着目し、フェノール性水酸基を持つ化合物をカーボネ
ート化合物に変換し、さらにエポキシ化合物に変換する
ことによってノ\ロゲンを含まないエポキシ樹脂を得る
方法を本発明者等は先に゛見出した。
Therefore, we focused on the fact that the method of converting a carbonate compound into an epoxy compound by decarboxylation is essentially halogen-free, and by converting a compound with a phenolic hydroxyl group into a carbonate compound and then converting it into an epoxy compound, we The present inventors have previously discovered a method for obtaining an epoxy resin that does not contain rogens.

カーボネート化合物を収率よく分解してエポキシ化合物
を得るために、従来、幾つかの触媒が知られており、例
えば特開昭57−77682に開示されているアルカリ
金属ハライド、 ILISP 2856.413で開示
されているアルカリ金属およびアルカリ土類金属のリン
酸塩、ピロリン酸塩、塩化物、臭化物、酢酸塩、炭酸塩
9重炭酸塩などがある。
In order to obtain epoxy compounds by decomposing carbonate compounds with good yield, several catalysts have been known in the past, such as the alkali metal halide disclosed in JP-A-57-77682, and the catalyst disclosed in ILISP 2856.413. Examples include alkali metal and alkaline earth metal phosphates, pyrophosphates, chlorides, bromides, acetates, carbonates, and 9 bicarbonates.

(発明が解決しようとする問題点) 先に述べた我々の発明にこれらを適用しようとしたとこ
ろ、’tJ’;p 2,856,413の触媒ではエポ
キシ化合物の収率が10%を超えるものは見出せず、漸
くヨウ化カリウムの場合で、約60チの収率を達成でき
たに過ぎなかった。
(Problems to be solved by the invention) When we tried to apply these to our invention mentioned above, we found that the catalyst 'tJ';p 2,856,413 had an epoxy compound yield of over 10%. However, in the case of potassium iodide, a yield of only about 60% was achieved.

本発明者等は、かかる状況に鑑み、より高い収率でカー
ボネート化合物をエポキシ化合物に変換する触媒系を探
索すべく、鋭意検討を行なった結果、ハロゲン化アルカ
リ金属と、アルカリ金属のリン酸二水素塩の二種を併用
して触媒として用いると、単独で用いる場合よりも収率
が向上するという驚くべき事実を見出し本発明に至った
In view of this situation, the present inventors conducted intensive studies in order to search for a catalyst system that converts a carbonate compound into an epoxy compound with a higher yield. The inventors discovered the surprising fact that when two types of hydrogen salts are used together as a catalyst, the yield is improved compared to when they are used alone, leading to the present invention.

(発明の構成) 即ち本発明は「カーボネート化合物を脱炭酸することに
よるエポキシ化合物の製造方法において触媒としてハロ
ゲン化アルカリ金属とアルカリ金属のリン酸二水素塩を
併用することを特徴とするエポキシ化合物の製造方法。
(Structure of the Invention) That is, the present invention provides a method for producing an epoxy compound by decarboxylating a carbonate compound, which is characterized in that an alkali metal halide and an alkali metal dihydrogen phosphate are used together as a catalyst. Production method.

」である。”.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の方法で原料となるカーボネート化合物は1.2
−ジオールのカーボネート化合物である。
The carbonate compound used as a raw material in the method of the present invention is 1.2
- It is a carbonate compound of a diol.

工業的に入手できるエチレンカーボネート、および各種
1.2−ジオールをホスゲン、ジメチルカーボネート、
ジメチルカーボネート等と反応させて5員環カーボネー
トとしたものを原料として用い得る。
Industrially available ethylene carbonate and various 1,2-diols are combined with phosgene, dimethyl carbonate,
A 5-membered ring carbonate obtained by reacting with dimethyl carbonate or the like can be used as a raw material.

さらに本発明者等が先の発明中に示したフェノール性水
酸基とグリシジルアルキルカーボネート全反応させて水
酸基を1,2−カーボネート化グリセリンエーテルに変
換した化合物の様に、他の方法で合成した5員環カーボ
ネートも原料として用い得る。
In addition, five-membered compounds synthesized by other methods, such as the compound in which the phenolic hydroxyl group and the glycidyl alkyl carbonate were completely reacted to convert the hydroxyl group into 1,2-carbonated glycerin ether, which the present inventors showed in the previous invention. Ring carbonates may also be used as raw materials.

本発明の方法において、ハロゲン化アルカリ金属と、ア
ルカリ金属のリン酸二水素塩の二種を併用して触媒とす
る。これらはいずれも市販品を用い得る。リン酸塩は無
水物でも水和物でもよい。
In the method of the present invention, two types, an alkali metal halide and an alkali metal dihydrogen phosphate, are used together to form a catalyst. All of these can be commercially available products. The phosphate may be anhydrous or hydrated.

上記のカーボネート化合物を加熱下にこれらの触媒と接
触させることにより反応が進行する。
The reaction proceeds by bringing the above carbonate compound into contact with these catalysts while heating.

反応温度はカーボネート化合物、エポキシ化合物の沸点
や反応性にもよるが150−250℃が好ましい。
The reaction temperature is preferably 150-250°C, although it depends on the boiling point and reactivity of the carbonate compound and epoxy compound.

反応形式は、あらかじめカーボネート化合物と峨媒を反
応器に仕込んでおき、次いで反応器を昇温す名バッチ式
でも、反応温度に保った触媒槽にカーボネートを仕込む
連続式でも用いることができる。
The reaction format can be either a batch type in which a carbonate compound and a vehicle are charged into a reactor in advance and then the temperature of the reactor is raised, or a continuous type in which the carbonate is charged in a catalyst tank maintained at the reaction temperature.

バッチ式の場合、触媒の使用量はカーボネート化合物1
00部に対し、ノ・ロゲン化アルカリを001〜10部
、アルカリ金属のリン酸二水素塩’!rO,01〜20
部の範囲より選んで添加する。添加量はカーボネートの
反応性、触媒の活性1反応温度などに応じて適切な値を
選ぶ。
In the case of batch type, the amount of catalyst used is 1 carbonate compound
00 parts, 001 to 10 parts of alkali chloride, alkali metal dihydrogen phosphate'! rO, 01~20
Select and add from a range of parts. The amount to be added is selected appropriately depending on the reactivity of the carbonate, the activity of the catalyst, and the reaction temperature.

減圧下に反応すれば、脱炭酸が促進され、またエポキシ
化合物の沸点によっては、エポキシ化合物を留出させら
れ、加熱による収率低下を防止できる。
If the reaction is carried out under reduced pressure, decarboxylation is promoted, and depending on the boiling point of the epoxy compound, the epoxy compound can be distilled out, thereby preventing a decrease in yield due to heating.

連続式の場合、原料を気相として仕込むか液相か等の選
択、触媒に対する仕込み速度2反応温度反応系の圧力等
は原料カーボネートの種類、使用する触媒の種類に応じ
適切な値を選んで行なうことができる。
In the case of a continuous type, the selection of whether to charge the raw material in the gas phase or liquid phase, the charging rate for the catalyst, the reaction temperature, the pressure of the reaction system, etc., should be selected appropriately depending on the type of raw material carbonate and the type of catalyst used. can be done.

(発明の効果) 本発明の方法により、ノ・ロゲン不純物を含まず、特に
集積回路対重用のエポキシ樹脂、−官能エボキン希釈剤
の製造に特に適しているエポキシ樹脂を従来より収率よ
く製造することができる。
(Effects of the Invention) By the method of the present invention, an epoxy resin that does not contain any nitrogen impurities and is particularly suitable for the production of epoxy resins for integrated circuits and heavy duty use, and -functional Evoquin diluents, can be produced in higher yield than before. be able to.

また、本発明の方法によってカーボネート化合物をエポ
キシ化合物により良い収率で変換するこ′ とができる
Further, by the method of the present invention, a carbonate compound can be converted into an epoxy compound in a better yield.

以下に実施例および参考例を示し、この発明?さらに詳
細に説明する。
Examples and reference examples are shown below. This will be explained in more detail.

実施例−1〜6.比較例−1〜14 反応器にフェノールの1,2−カーボネート化グリセリ
ンエーテル約51金仕込み、各種触媒を表−1の様な比
率で添加した。続いて反応器を200mmHfまで減圧
にしたのち、200℃に昇@。
Examples-1 to 6. Comparative Examples 1 to 14 Approximately 51 gold 1,2-carbonated glycerin ether of phenol was charged into a reactor, and various catalysts were added at the ratios shown in Table 1. Subsequently, the pressure in the reactor was reduced to 200 mmHf, and then the temperature was raised to 200°C.

30分200℃で保持した後、反応粗液をガスクロマト
グラフィーによって分析し、残存カーボネート濃度、フ
ェニルグリシジルエーテル濃度を分析して、原料カーボ
ネート転化率、フェニルグリシジルエーテル収率1選損
率を次の計算により求めた。
After being held at 200°C for 30 minutes, the reaction crude liquid was analyzed by gas chromatography to analyze the residual carbonate concentration and phenyl glycidyl ether concentration, and the raw material carbonate conversion rate, phenyl glycidyl ether yield, and selectivity were determined as follows: Obtained by calculation.

なお、NaH2PO4は2水和物を使用した。Note that a dihydrate of NaH2PO4 was used.

(仕込カーボネート重量) 但し、A−力〜ボネート分子量−194B−フェニルグ
リンジルエーテル分子!= 15゜同じ反応時間で従来
技術の触媒(比較例1〜13)K比し、本発明の触媒系
(実施例1〜6)が高い収率を示している。
(Weight of charged carbonate) However, A-force~bonate molecular weight-194B-phenyl grindyl ether molecule! = 15°K Compared to the prior art catalysts (Comparative Examples 1 to 13) at the same reaction time, the catalyst systems of the present invention (Examples 1 to 6) show higher yields.

かつ選択率も良好であることがわかる。It can also be seen that the selectivity is also good.

表−1 実施例−7 フェノールの1.2−カーボネート化グリセリンエーテ
ル19.8f、ヨウ化カリウム0.4Fリン酸二水素ナ
トリウム2水和物1.05P’i反応器に仕込み、20
 mmHfの減圧下反応器を200℃に加熱し、生成す
るフェニルグリシジルエーテルを留出させながら留出液
の発生がほぼ無くなるまで反応を行なった。
Table-1 Example-7 1.2-carbonated glycerin ether of phenol 19.8f, potassium iodide 0.4F sodium dihydrogen phosphate dihydrate 1.05P'i charged in a reactor, 20
The reactor was heated to 200° C. under reduced pressure of mmHf, and the reaction was carried out while distilling out the generated phenyl glycidyl ether until almost no distillate was generated.

留出液は13.3fで、ガスクロマトグラフィーによる
フェニルグリシジルエーテル含有量は95.3チであっ
た。
The distillate had a weight of 13.3 f, and the phenyl glycidyl ether content determined by gas chromatography was 95.3 f.

対カーボネート収率は83%である。この反応の缶残液
中の未反応カーボネートヲガスクロマトグラフィーによ
って求めたところ、1.2fであった。すなわち原料転
化率は94%1選択率は88チである。
The yield based on carbonate was 83%. The amount of unreacted carbonate in the bottom liquid of this reaction was determined by gas chromatography and was 1.2 f. That is, the raw material conversion rate is 94% and the 1 selectivity is 88%.

この留出液はボンベ燃焼法でヨウ素含有量は4ppmで
・・ロゲン不純物が少ないエポ十シ樹脂材料であること
を確認した。
This distillate was found to have an iodine content of 4 ppm using the cylinder combustion method, and was confirmed to be an epoxy resin material with little rogen impurities.

比較例−15 実施例と同様の操作で、フェノール、の1,2−カーボ
ネート化グリセ。リンエーテル19.9f’にヨウ化カ
リウム0,4fの存在下に反応させた。
Comparative Example-15 1,2-carbonated glycerol of phenol was produced in the same manner as in Example. Phosphorus ether 19.9f' was reacted in the presence of 0.4f potassium iodide.

発生した留出液゛は9.8fでガスクロマトグラフィー
によるフェニルグリシジルエーテル含有量は937%で
あった対カーボネート収率は60%である。
The generated distillate was 9.8 f, and the phenyl glycidyl ether content as determined by gas chromatography was 937%.The yield based on carbonate was 60%.

ガスクロマトグラフィー分析によム缶残中のカーボネー
トは1.5F、すなわち原料転化率92%選択率は65
チである。
According to gas chromatography analysis, the carbonate content in the rum can residue was 1.5F, that is, the raw material conversion rate was 92%, and the selectivity was 65%.
It is Chi.

この留出液中のノ\ロゲン不純物はs ppmであった
The amount of nitrogen impurity in this distillate was sp ppm.

Claims (1)

【特許請求の範囲】[Claims] カーボネート化合物を脱炭酸することによるエポキシ化
合物の製造方法において触媒としてハロゲン化アルカリ
金属とアルカリ金属のリン酸二水素塩を併用することを
特徴とするエポキシ化合物の製造方法。
1. A method for producing an epoxy compound, comprising using an alkali metal halide and an alkali metal dihydrogen phosphate together as a catalyst in the method for producing an epoxy compound by decarboxylating a carbonate compound.
JP59153762A 1984-07-24 1984-07-24 Production of epoxy compound Granted JPS6133180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59153762A JPS6133180A (en) 1984-07-24 1984-07-24 Production of epoxy compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59153762A JPS6133180A (en) 1984-07-24 1984-07-24 Production of epoxy compound

Publications (2)

Publication Number Publication Date
JPS6133180A true JPS6133180A (en) 1986-02-17
JPH0559910B2 JPH0559910B2 (en) 1993-09-01

Family

ID=15569573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153762A Granted JPS6133180A (en) 1984-07-24 1984-07-24 Production of epoxy compound

Country Status (1)

Country Link
JP (1) JPS6133180A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034930A1 (en) * 1997-02-07 1998-08-13 Shell Internationale Research Maatschappij B.V. Process for the manufacture of epoxy compounds
WO1999009020A1 (en) * 1997-08-14 1999-02-25 Shell Internationale Research Maatschappij B.V. Process for the manufacture of epoxy compounds
US6005063A (en) * 1997-02-07 1999-12-21 Shell Oil Company Epoxy compounds from chlorohydrin ethers of polyphenols
JP2007161652A (en) * 2005-12-14 2007-06-28 Daicel Chem Ind Ltd Method for producing alicyclic epoxy compound and alicyclic epoxy compound
CN107057746A (en) * 2017-05-10 2017-08-18 东莞理工学院 A kind of method for preparing liquid fuel using poly- 3 butyric ester

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034930A1 (en) * 1997-02-07 1998-08-13 Shell Internationale Research Maatschappij B.V. Process for the manufacture of epoxy compounds
US6001954A (en) * 1997-02-07 1999-12-14 Shell Oil Company Process for the manufacture of epoxy compounds
US6005063A (en) * 1997-02-07 1999-12-21 Shell Oil Company Epoxy compounds from chlorohydrin ethers of polyphenols
US6235870B1 (en) 1997-02-07 2001-05-22 Shell Oil Company Dehydrohalogenation of poly (phenylhalo-b-hydroxypropyl ether) to form polyepoxide
WO1999009020A1 (en) * 1997-08-14 1999-02-25 Shell Internationale Research Maatschappij B.V. Process for the manufacture of epoxy compounds
US6172182B1 (en) 1997-08-14 2001-01-09 Shell Oil Company Process for the manufacture of epoxy compounds
JP2007161652A (en) * 2005-12-14 2007-06-28 Daicel Chem Ind Ltd Method for producing alicyclic epoxy compound and alicyclic epoxy compound
CN107057746A (en) * 2017-05-10 2017-08-18 东莞理工学院 A kind of method for preparing liquid fuel using poly- 3 butyric ester

Also Published As

Publication number Publication date
JPH0559910B2 (en) 1993-09-01

Similar Documents

Publication Publication Date Title
US2260753A (en) Process for the production of derivatives of epihalohydrins
IE43223B1 (en) Production of dialkyl carbonate
US5003084A (en) Process for preparing alkylene carbonates
JPH11508921A (en) Method for producing 1,2-bis (acyloxylate)
US9487460B2 (en) Method for producing allyl alcohol and allyl alcohol produced thereby
US3397223A (en) Preparation of cyclopropane derivatives
JPS6133180A (en) Production of epoxy compound
US4228084A (en) Process for the production of glycidyl methacrylate
US8969600B2 (en) Method for producing glycidol
EP0300794B1 (en) Preparation of cyclic carbonate
JP3840695B2 (en) Method for producing oxetane compound having hydroxyl group
US4049733A (en) Synthesis of diphenylmethane using phosphoric-sulfuric acid catalyst
JP5664779B2 (en) Method for producing hexafluoroacetone or hydrate thereof
US2862978A (en) Synthetic glycerine production with intermediate removal of acrolein
JP4320343B2 (en) Method for producing phosphonate having alcoholic hydroxy group
US6093857A (en) Preparation of cyclopentanols
US2984688A (en) Methods for producing vinyl ethers
Loh et al. A versatile and practical synthesis of α-trifluoromethylated alcohols from trifluoroacetaldehyde ethyl hemiacetal in water
JPS63297333A (en) Production of 1,3-dichloro-2-propanol
JPS6326094B2 (en)
US2245509A (en) Production of 4,4'-dichlorodibutyl ether
JPS635037A (en) Production of 2,3-dichloro-1-propene
US2135453A (en) Preparation of oxygenated organic compounds
JPS5835137A (en) Preparation of hydroxyalkyl vinyl ether
JP2011084513A (en) Method for preparing allyl compound